Previous Issue
Volume 8, April
 
 

J. Manuf. Mater. Process., Volume 8, Issue 3 (June 2024) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 6624 KiB  
Article
Verifying the Accuracy of 3D-Printed Objects Using an Image Processing System
by Takuya Okamoto and Sharifu Ura
J. Manuf. Mater. Process. 2024, 8(3), 94; https://doi.org/10.3390/jmmp8030094 - 30 Apr 2024
Viewed by 179
Abstract
Image processing systems can be used to measure the accuracy of 3D-printed objects. These systems must compare images of the CAD model of the object to be printed with its 3D-printed counterparts to identify any discrepancies. Consequently, the integrity of the accuracy measurement [...] Read more.
Image processing systems can be used to measure the accuracy of 3D-printed objects. These systems must compare images of the CAD model of the object to be printed with its 3D-printed counterparts to identify any discrepancies. Consequently, the integrity of the accuracy measurement process is heavily dependent on the image processing settings chosen. This study focuses on this issue by developing a customized image processing system. The system generates binary images of a given CAD model and its 3D-printed counterparts and then compares them pixel by pixel to determine the accuracy. Users can experiment with various image processing settings, such as grayscale to binary image conversion threshold, noise reduction parameters, masking parameters, and pixel-fineness adjustment parameters, to see how they affect accuracy. The study concludes that the grayscale to binary image conversion threshold has the most significant impact on accuracy and that the optimal threshold varies depending on the color of the 3D-printed object. The system can also effectively eliminate noise (filament marks) during image processing, ensuring accurate measurements. Additionally, the system can measure the accuracy of highly complex porous structures where the pore size, depth, and distribution are random. The insights gained from this study can be used to develop intelligent systems for the metrology of additive manufacturing. Full article
15 pages, 3501 KiB  
Article
Development of Hot-Wire Laser Additive Manufacturing for Dissimilar Materials of Stainless Steel/Aluminum Alloys
by Keita Marumoto, Takahiro Horai, Daiji Morita, Chisako Oda, Takafumi Fujii, Takashi Yuzawa, Ryogo Koba and Motomichi Yamamoto
J. Manuf. Mater. Process. 2024, 8(3), 93; https://doi.org/10.3390/jmmp8030093 - 30 Apr 2024
Viewed by 122
Abstract
The formation of brittle intermetallic compounds (IMCs) at the interface between dissimilar materials causes considerable problems. In this study, a multi-material additive manufacturing technique that employs a diode laser and the hot-wire method was developed for stainless steel/aluminum alloys. An Al-Mg aluminum alloy [...] Read more.
The formation of brittle intermetallic compounds (IMCs) at the interface between dissimilar materials causes considerable problems. In this study, a multi-material additive manufacturing technique that employs a diode laser and the hot-wire method was developed for stainless steel/aluminum alloys. An Al-Mg aluminum alloy filler wire (JIS 5183-WY) was fed on an austenitic stainless-steel plate (JIS SUS304) while varying the laser power and process speed and using paste-type flux and flux-cored wire. The effects of laser power and process speed on phenomena during manufacturing and IMC formation were investigated. Finally, the wall-type multilayer specimens were fabricated under optimized conditions. The suppression of IMC formation to a thickness of less than 2 μm was achieved in the specimens, along with a high interfacial strength of over 120 MPa on average. Full article
19 pages, 9377 KiB  
Article
Analysis of Tool Load Concerning the Cross-Sectional Size of Removed Material
by Peter Kozový, Miroslav Matuš, Vladimír Bechný, Jozef Holubják, Richard Joch and Michal Šajgalík
J. Manuf. Mater. Process. 2024, 8(3), 92; https://doi.org/10.3390/jmmp8030092 - 30 Apr 2024
Viewed by 212
Abstract
High-feed milling (HFM) represents a progressive manufacturing technology that has recently found widespread application across various industries. HFM is characterized by high machining speed, reduced cycle times, increased overall productivity, and increased tool life. Due to its versatility, HFM is a suitable technology [...] Read more.
High-feed milling (HFM) represents a progressive manufacturing technology that has recently found widespread application across various industries. HFM is characterized by high machining speed, reduced cycle times, increased overall productivity, and increased tool life. Due to its versatility, HFM is a suitable technology for the application of various materials. The study deals with experimental analysis of cutting forces, machined surface integrity, and statistical evaluation in high-feed machining. In the present study, nickel-copper-based alloy (Monel) was chosen as the machined material, employing HFM with a monolithic ceramic milling cutter. The Monel material is characterized by its excellent mechanical properties and chemical resistance in harsh environments. During machining, cutting forces were recorded in three mutually perpendicular directions. This paper delves into the analysis of the impact of the depth of cut (ap), width of cut (ae), and lead-in angle (ε). The chosen evaluation characteristics encompass the tool load, primary profile, and the attained roughness of the machined surface. It is noteworthy that the technology under consideration predominantly aligns with the roughing phase of the manufacturing process. Additionally, the investigation incorporates a statistical analysis of the response surface pertaining to the cutting force components, namely Fx, Fy, Fz, and the resultant cutting force F. Full article
Show Figures

Figure 1

18 pages, 5115 KiB  
Article
Effect of Flashlamp Heating System Parameters on the Wedge Peel Strength of Thermoplastic Carbon Fiber Tape in the Automated Tape Placement Process
by Alexander Legenstein and Ewald Fauster
J. Manuf. Mater. Process. 2024, 8(3), 91; https://doi.org/10.3390/jmmp8030091 - 29 Apr 2024
Viewed by 174
Abstract
Laser-assisted automated tape placement systems are currently the state of the art regarding thermoplastic tape placement. Flashlamp heating systems are rather new in this field of application and offer high energy density with low safety requirements and moderate costs compared to laser-assisted automated [...] Read more.
Laser-assisted automated tape placement systems are currently the state of the art regarding thermoplastic tape placement. Flashlamp heating systems are rather new in this field of application and offer high energy density with low safety requirements and moderate costs compared to laser-assisted automated tape placement systems. In this study, the effect of processing parameters on interlaminar bonding of carbon fiber-reinforced polyamide 6 tapes is investigated using a flashlamp heating system. The temperature during placement is monitored using an infrared camera, and the bonding strength is characterized by a wedge peel test. The bonding quality of the tapes placed between 210 °C and 330 °C at a lay-up speed of 50 mm/s is investigated. Thermogravimetric analysis, differential scanning calorimetry, and micrographs are used to investigate the material properties and effects of the processing conditions on the thermophysical properties and geometric properties of the tape. No significant changes in the thermophysical or geometric properties were found. Moisture within the tapes and staining of the quartz guides of the flashlamp system have significant influence on the bonding strength. The highest wedge peel strength of dried tapes was found at around 330 °C. Full article
(This article belongs to the Topic Advanced Composites Manufacturing and Plastics Processing)
15 pages, 8219 KiB  
Article
An Experiment-Based Variable Compensation Method to Improve the Geometric Accuracy of Sub-Mm Features Fabricated by Stereolithography (SLA)
by Francesco Modica, Vito Basile and Irene Fassi
J. Manuf. Mater. Process. 2024, 8(3), 90; https://doi.org/10.3390/jmmp8030090 - 29 Apr 2024
Viewed by 227
Abstract
In this paper, we present an experimental procedure to enhance the dimensional accuracy of fabrication via stereolithography (SLA) of features at the sub-mm scale. Deviations in sub-mm hemispherical cavity diameters were detected and measured on customized samples by confocal microscopy. The characterization and [...] Read more.
In this paper, we present an experimental procedure to enhance the dimensional accuracy of fabrication via stereolithography (SLA) of features at the sub-mm scale. Deviations in sub-mm hemispherical cavity diameters were detected and measured on customized samples by confocal microscopy. The characterization and experimental observations of samples allowed the identification of inaccuracy sources, mainly due to the laser beam scanning strategy and the incomplete removal of uncured liquid resin in post-processing (i.e., IPA washing). As a technology baseline, the measured dimensional errors on cavity diameters were up to −46%. A compensation method was defined and implemented, resulting in relevant improvements in dimensional accuracy. However, measurements on sub-mm cavities having different sizes revealed that a constant compensation parameter (i.e., C = 85, 96, 120 μm) is not fully effective at the sub-mm scale, where average errors remain at −24%, −18.8%, and −16% for compensations equal to 85, 96 and 120 μm, respectively. A further experimental campaign allowed the identification of an effective nonlinear compensation law where the compensation parameter depends on the sub-mm feature size C = f(D). Results show a sharp improvement in dimensional accuracy on sub-mm cavity fabrication, with errors consistently below +8.2%. The proposed method can be extended for the fabrication of any sub-mm features without restrictions on the specific technology implementation. Full article
Show Figures

Figure 1

27 pages, 10943 KiB  
Article
Reducing Oxidation during Direct Metal Deposition Process: Effects on Ti6Al4V Microstructure and Mechanical Properties
by Dominik Keller and Konrad Wegener
J. Manuf. Mater. Process. 2024, 8(3), 89; https://doi.org/10.3390/jmmp8030089 - 28 Apr 2024
Viewed by 229
Abstract
The production of materials with a high affinity for oxidation using the direct metal deposition (DMD) process requires an extended process examination that goes beyond the usual, purely energetic consideration, with the aim of providing sufficient energy to melt the substrate and the [...] Read more.
The production of materials with a high affinity for oxidation using the direct metal deposition (DMD) process requires an extended process examination that goes beyond the usual, purely energetic consideration, with the aim of providing sufficient energy to melt the substrate and the powder material supplied. This is because the DMD process does not allow any conclusions to be drawn as to whether it and its respective selected parameters result in an oxidation critical process. To assess this, a superposition of the temperature field with the existing spatial oxygen concentration is required. This work uses this approach to develop an oxidation model that reduces oxidation during the DMD process. In addition to the numerical model, an analytical model is derived, with which the temperature of a material element can be calculated analytically and the resulting boundary oxygen concentration calculated using Fick’s 2nd law. The model also takes into account two-stage oxidation kinetics for Ti alloys. The effect of too high a travel speed (with the same specific energy of the other experiments) is shown visually in the numerical calculation of the temperature field. However, if the process model is taken into account, the components do fulfil the specified requirements. Finally, the effect of oxidation on the microstructure, microhardness, ultimate strength, yield strength and elongation at failure of Ti6Al4V structures produced using DMD is also investigated, and further supports our conclusions regarding the effectiveness of the proposed model. Full article
Show Figures

Figure 1

13 pages, 5745 KiB  
Article
Evaluating the Influence of Tool Material on the Performance of Refill Friction Stir Spot Welds in AA2029
by Ruth Belnap, Taylor Smith, Paul Blackhurst, Josef Cobb, Heath Misak, John Bosker and Yuri Hovanski
J. Manuf. Mater. Process. 2024, 8(3), 88; https://doi.org/10.3390/jmmp8030088 - 27 Apr 2024
Viewed by 252
Abstract
Joining high strength 2xxx series aluminum is known to be complex and difficult; these alloys are traditionally considered non-weldable for fusion welding. This paper describes details on welding AA2029-T8 for skin-stiffened structures using refill friction stir spot welding (RFSSW). RFSSW is a solid-state [...] Read more.
Joining high strength 2xxx series aluminum is known to be complex and difficult; these alloys are traditionally considered non-weldable for fusion welding. This paper describes details on welding AA2029-T8 for skin-stiffened structures using refill friction stir spot welding (RFSSW). RFSSW is a solid-state process invented in the early 2000s that produces spot welds that are strong, lightweight, flush, and hermetic. Cycle times between 1 and 3 s are discussed, and process forces within a range of 8 to 14 kN are demonstrated. Furthermore, lap-shear quasi-static tensile strengths are shown to be between 10 kN and 12 kN in 9 mm diameter spots. A comparison of the performance of RFSSW welds made with various tool materials—which include H13 tool steel, tungsten carbide, and MP159—is detailed. Comparisons of parameters, weld consolidation, and heat-affected zones are presented with discussion related to heat generation specific to each tool material. Full article
Show Figures

Figure 1

24 pages, 23162 KiB  
Article
An Experimental Procedure to Study the High-Speed Orthogonal Cutting of Unidirectional GFRP
by Martina Panico, Luca Boccarusso, Antonio Formisano, Giuseppe Villani and Antonio Langella
J. Manuf. Mater. Process. 2024, 8(3), 87; https://doi.org/10.3390/jmmp8030087 - 26 Apr 2024
Viewed by 485
Abstract
The aim of this paper is to establish a valid procedure for better understanding all of the phenomena associated with the high-speed machining of glass fiber-reinforced plastic (GFRP) composites. Both rectangular and circular specimens were machined at high cutting speeds (up to 50 [...] Read more.
The aim of this paper is to establish a valid procedure for better understanding all of the phenomena associated with the high-speed machining of glass fiber-reinforced plastic (GFRP) composites. Both rectangular and circular specimens were machined at high cutting speeds (up to 50 m/min) in order to understand what occurred for all values of fiber orientation angles during machining operations. An innovative testing methodology was proposed and studied to investigate the phenomenon of burr formation and thus understand how to avoid it during machining operations. To this end, the forces arising during the machining process and the roughness of the resulting surface were carefully studied and correlated with the cutting angle. Additionally, the cutting surface and chip morphology formed during cutting tests were examined using a high-speed camera. Close correlations were found between the variations in the cutting forces’ signals and the trends of the surface roughness and the morphology of the machined surface. Full article
Show Figures

Figure 1

32 pages, 22322 KiB  
Article
Enhanced Energy Absorption with Bioinspired Composite Triply Periodic Minimal Surface Gyroid Lattices Fabricated via Fused Filament Fabrication (FFF)
by Dawit Bogale Alemayehu and Masahiro Todoh
J. Manuf. Mater. Process. 2024, 8(3), 86; https://doi.org/10.3390/jmmp8030086 - 23 Apr 2024
Viewed by 634
Abstract
Bio-inspired gyroid triply periodic minimum surface (TPMS) lattice structures have been the focus of research in automotive engineering because they can absorb a lot of energy and have wider plateau ranges. The main challenge is determining the optimal energy absorption capacity and accurately [...] Read more.
Bio-inspired gyroid triply periodic minimum surface (TPMS) lattice structures have been the focus of research in automotive engineering because they can absorb a lot of energy and have wider plateau ranges. The main challenge is determining the optimal energy absorption capacity and accurately capturing plastic plateau areas using finite element analysis (FEA). Using nTop’s Boolean subtraction method, this study combined walled TPMS gyroid structures with a normal TPMS gyroid lattice. This made a composite TPMS gyroid lattice (CTG) with relative densities ranging from 14% to 54%. Using ideaMaker 4.2.3 (3DRaise Pro 2) software and the fused deposition modeling (FDM) Raise3D Pro 2 3D printer to print polylactic acid (PLA) bioplastics in 1.75 mm filament made it possible to slice computer-aided design (CAD) models and fabricate 36 lattice samples precisely using a layer-by-layer technique. Shimadzu 100 kN testing equipment was utilized for the mechanical compression experiments. The finite element approach validates the results of mechanical compression testing. Further, a composite CTG was examined using a field emission scanning electron microscope (FE-SEM) before and after compression testing. The composite TPMS gyroid lattice showed potential as shock absorbers for vehicles with relative densities of 33%, 38%, and 54%. The Gibson–Ashby model showed that the composite TPMS gyroid lattice deformed mainly by bending, and the size effect was seen when the relative densities were less than 15%. The lattice’s relative density had a significant impact on its ability to absorb energy. The research also explored the use of these innovative foam-like composite TPMS gyroid lattices in high-speed crash box scenarios to potentially enhance vehicle safety and performance. The structures have tremendous potential to improve vehicle safety by acting as advanced shock absorbers, which are particularly effective at higher relative densities. Full article
(This article belongs to the Special Issue Lattice Structure and Metamaterial Design for Additive Manufacturing)
Show Figures

Figure 1

34 pages, 9496 KiB  
Article
Telemetry System to Monitor Elastic Torque on Rolling Stand Spindles
by Stanislav S. Voronin, Boris M. Loginov, Olga A. Gasiyarova, Sergey A. Evdokimov, Alexander S. Karandaev and Vadim R. Khramshin
J. Manuf. Mater. Process. 2024, 8(3), 85; https://doi.org/10.3390/jmmp8030085 - 23 Apr 2024
Viewed by 448
Abstract
This article outlines the relevance of building online telemetry systems for online monitoring of the technical conditions of rolling mill equipment. Electromechanical systems of the horizontal stand of the plate Mill 5000 are described, when operating in harsh conditions caused by the shock [...] Read more.
This article outlines the relevance of building online telemetry systems for online monitoring of the technical conditions of rolling mill equipment. Electromechanical systems of the horizontal stand of the plate Mill 5000 are described, when operating in harsh conditions caused by the shock loading when workpieces enter the stand. It is noted that dynamic torque overloads, exceeding the rated motor torque by many-fold, cause the fatigue failure of spindle joints and breakage of rolls. In this regard, the development and implementation of systems for monitoring the elastic torque on spindles are extremely urgent. This issue has long been studied, but the references provide no information on the building principles and hardware composition of such systems. The use of strain gauges connected according to a balanced bridge circuit to measure the elastic torque is justified. This paper’s contribution is the proposed modular principle for building a telemetry monitoring system based on the analysis of known techniques for measuring and transmitting diagnostic data. The developed system structure is provided and the concept of data transfer and processing are explained. This article suggests the inductive power supply of a measuring unit mounted on a shaft without the use of batteries. A hardware structure was developed to be applied in a system for measuring, transmitting, and visualizing signals proportional to the elastic torque, manufactured on the basis of data measuring instruments by leading companies. The specifics of placement and connection of strain gauges are considered. The hardware providing a wireless power supply to the signal encoder and digital data transfer between the transmitter and receiver is described. The results of implementing the system on Mill 5000 are provided. The installation of a telemetry ring and a receiving head for the inductive power supply and data reception is shown. An experimental assessment of the elastic torques occurring when workpieces enter the cage was obtained by implementing a drive control algorithm which provided biting in the drive acceleration mode. The reliability of measuring the elastic torque with an error not exceeding ±5% and the reduction of dynamic loads on the spindle by 1.3–1.5 times due to the elimination of impacts from closing angular gaps in spindle joints was confirmed. This increases the service life of mechanical equipment and reduces the cost of eliminating the accident aftermath. The prospect of modifying the developed system into a cyber-physical system for monitoring the rolling mill’s mechatronic equipment conditions is shown. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop