Next Issue
Volume 3, June
Previous Issue
Volume 2, December

Hydrology, Volume 3, Issue 1 (March 2016) – 13 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Water Balance to Recharge Calculation: Implications for Watershed Management Using Systems Dynamics Approach
Hydrology 2016, 3(1), 13; https://doi.org/10.3390/hydrology3010013 - 18 Mar 2016
Cited by 12 | Viewed by 3412
Abstract
Groundwater depletion in the face of growth is a well-known problem, particularly in those areas that have grown to become dependent on a declining resource. This research comprises a broad synthesis of existing water resources data, to understand the long-term implications of continued [...] Read more.
Groundwater depletion in the face of growth is a well-known problem, particularly in those areas that have grown to become dependent on a declining resource. This research comprises a broad synthesis of existing water resources data, to understand the long-term implications of continued growth in water demand on groundwater dominant water resources, and to develop a tool for sustainable water management. The Palouse region of Washington and Idaho, USA. (approximately 60,000 people in a rural setting) is entirely dependent on groundwater from two basalt aquifers for potable water. Using the systems dynamics approach and a water balance that considered the entire hydrologic cycle, a hydrologic model of these aquifers was developed, tested and applied to simulate their behavior over a 150 year time period assuming the current infrastructure does not change. With 1% population growth and current water extraction rates, the results indicated the upper aquifer use may be sustainable, while the lower aquifer use is likely unsustainable in the long term. This study also shows that uncertainties in key aspects of the system create limitations to groundwater management. Full article
Show Figures

Figure 1

Article
A Conceptual Framework for Assessment of Governance Performance of Lake Basins: Towards Transformation to Adaptive and Integrative Governance
Hydrology 2016, 3(1), 12; https://doi.org/10.3390/hydrology3010012 - 15 Mar 2016
Cited by 3 | Viewed by 3140
Abstract
Governance is essential to lake basin management, but it is the most challenged and needs increased attention. Lake Basin Governance performance assessment is designed to measure the progress and impacts of policies, institutions and the roles of various actors in ensuring sustainability. It [...] Read more.
Governance is essential to lake basin management, but it is the most challenged and needs increased attention. Lake Basin Governance performance assessment is designed to measure the progress and impacts of policies, institutions and the roles of various actors in ensuring sustainability. It measures the performance of technical/operational, social/networks, and institutional arrangement that make up the socio-ecological system. Governance performance assessment becomes very necessary with over-emphasis of institutions on resources utilization and exploitation. The purpose of this paper is to present a governance performance assessment framework specifically for lake basins. The Adaptive Integrated Lake Basin Management (AILBM) framework is a diagnostic and prescriptive performance assessment tool with an outcome to produce an adaptive and integrative system with equity, inclusiveness, transparency, accountability and flexibility to problem-solving and resilience. A case study on water governance performance assessment of the Songkhla Lake Basin (SLB) in Thailand is provided for illustration and application and indicated a poor performance rating on governance in the Basin, revealing gaps, defects, strengths and weaknesses in the current system, necessary to recommend future improvements. Full article
(This article belongs to the Special Issue The Intersection of Society and Watershed Science)
Show Figures

Figure 1

Article
A Hydrological Concept including Lateral Water Flow Compatible with the Biogeochemical Model ForSAFE
Hydrology 2016, 3(1), 11; https://doi.org/10.3390/hydrology3010011 - 04 Mar 2016
Cited by 6 | Viewed by 2551
Abstract
The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows [...] Read more.
The study presents a hydrology concept developed to include lateral water flow in the biogeochemical model ForSAFE. The hydrology concept was evaluated against data collected at Svartberget in the Vindeln Research Forest in Northern Sweden. The results show that the new concept allows simulation of a saturated and an unsaturated zone in the soil as well as water flow that reaches the stream comparable to measurements. The most relevant differences compared to streamflow measurements are that the model simulates a higher base flow in winter and lower flow peaks after snowmelt. These differences are mainly caused by the assumptions made to regulate the percolation at the bottom of the simulated soil columns. The capability for simulating lateral flows and a saturated zone in ForSAFE can greatly improve the simulation of chemical exchange in the soil and export of elements from the soil to watercourses. Such a model can help improve the understanding of how environmental changes in the forest landscape will influence chemical loads to surface waters. Full article
Show Figures

Figure 1

Article
Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT VEGETATION Albedo Product in a Mediterranean Mountainous Site
Hydrology 2016, 3(1), 10; https://doi.org/10.3390/hydrology3010010 - 23 Feb 2016
Cited by 9 | Viewed by 2882
Abstract
Albedo plays an important role in snow evolution modeling quantifying the amount of solar radiation absorbed and reflected by the snowpack, especially in mid-latitude regions with semiarid conditions. Satellite remote sensing is the most extensive technique to determine the variability of snow albedo [...] Read more.
Albedo plays an important role in snow evolution modeling quantifying the amount of solar radiation absorbed and reflected by the snowpack, especially in mid-latitude regions with semiarid conditions. Satellite remote sensing is the most extensive technique to determine the variability of snow albedo over medium to large areas; however, scale effects from the pixel size of the sensor source may affect the results of snow models, with different impacts depending on the spatial resolution. This work presents the evaluation of snow albedo values retrieved from (1) Landsat images, L (16-day frequency with 30 × 30 m pixel size) and (2) SPOT VEGETATION albedo products, SV (10-day frequency with 1 × 1 km pixel size) in the Sierra Nevada mountain range in South Spain, a Mediterranean site representative of highly heterogeneous conditions. Daily snow albedo map series were derived from both sources, and used as input for the snow module in the WiMMed (Watershed Integrated Management in Mediterranean Environment) hydrological model, which was operational at the study area for snow monitoring for two hydrological years, 2011–2012 and 2012–2013, in the Guadalfeo river basin in Sierra Nevada. The results showed similar albedo trends in both data sources, but with different values, the shift between both sources being distributed in space according to the altitude. This difference resulted in lower snow cover fraction values in the SV-simulations that affected the rest of snow variables included in the simulation. This underestimation, mainly due to the effects of mixed pixels composed by both snow and snow-free areas, produced higher divergences from both sources during the melting periods when the evapo-sublimation and melting fluxes are more relevant. Therefore, the selection of the albedo data source in these areas, where snow evapo-sublimation plays a very important role and the presence of snow-free patches is very frequent, can condition the final accuracy of the simulations of operational models; Landsat is the recommended source if the monitoring of the snowpack is the final goal of the modeling, whereas the SV product may be advantageous when water resource planning in the medium and long term is intended. Applications of large pixel size albedo sources need further assessment for short-term operational objectives. Full article
(This article belongs to the Special Issue Snow Hydrology)
Show Figures

Figure 1

Article
Statistical Analysis of the Raindrop Size Distribution Using Disdrometer Data
Hydrology 2016, 3(1), 9; https://doi.org/10.3390/hydrology3010009 - 19 Feb 2016
Cited by 3 | Viewed by 2432
Abstract
The present study utilizes nine years of measurements taken from a Joss–Waldvogel disdrometer (JWD). From this dataset, thirty six rainfall events, were selected and categorized, respectively, in convective and stratiform types, according to specific criteria. Six statistical distributions namely the one- and two-parameter [...] Read more.
The present study utilizes nine years of measurements taken from a Joss–Waldvogel disdrometer (JWD). From this dataset, thirty six rainfall events, were selected and categorized, respectively, in convective and stratiform types, according to specific criteria. Six statistical distributions namely the one- and two-parameter exponential, the two- and three-parameter lognormal and finally the two- and three-parameter gamma were fitted on the observed drop size distributions (DSDs). The goodness-of-fit between each statistical and the observed distribution was determined based on the Kolmogorov–Smirnov test. The results show that 72% of the stratiform events are best described by the three-parameter lognormal distribution while 28% are best described by the three-parameter gamma distribution. In the case of convective events, the results are more diversified; the two- and three-parameter gamma distribution fits best in 39% and 17% of the events, respectively, while the two- and three-parameter lognormal distribution fits best in 6% and 39% of the events. The one- and two-parameter exponential distribution was not the best fit in any case. Moreover, initial steps have already been taken in order for these findings to be used for calibration purposes of a recently employed X-band rainscanner in the Attica region in Greece. Full article
Show Figures

Figure 1

Article
Exploring Perceptions and Behaviors about Drinking Water in Australia and New Zealand: Is It Risky to Drink Water, When and Why?
Hydrology 2016, 3(1), 8; https://doi.org/10.3390/hydrology3010008 - 19 Feb 2016
Cited by 13 | Viewed by 3340
Abstract
Consumers in most developed countries, including Australia and New Zealand, presume their drinking water is safe. How social perceptions about drinking water are formed, however, remains inadequately explored in the research literature. This research contributes exploratory insights by examining factors that affect consumer [...] Read more.
Consumers in most developed countries, including Australia and New Zealand, presume their drinking water is safe. How social perceptions about drinking water are formed, however, remains inadequately explored in the research literature. This research contributes exploratory insights by examining factors that affect consumer perceptions and behaviors. Individual perceptions of drinking water quality and actions undertaken to mitigate perceived risks were collected during 183 face-to-face interviews conducted at six research sites. Qualitative thematic analysis revealed the majority did not consider drinking water a “risky” activity, trusted water management authorities to manage all safety issues and believed self-evaluation of drinking water’s taste and appearance were sufficient measures to ensure safe consumption. Quantitatively, significant relationships emerged between water quality perceptions and sex, employment status, drinking water treatment and trust in government to provide safe water. Expert advice was rarely sought, even by those who believed drinking tap water posed some health risks. Generational differences emerged in media usage for drinking water advice. Finally, precautionary measures taken at home and abroad often failed to meet national drinking water guidelines. Three major conclusions are drawn: a. broad lack of awareness exists about the most suitable and safe water treatment activities, as well as risks posed; b. health literacy and interest may be improved through greater consumer involvement in watershed management; and c. development of health campaigns that clearly communicate drinking water safety messages in a timely, relevant and easily understandable fashion may help mitigate actual risks and dispel myths. Full article
(This article belongs to the Special Issue The Intersection of Society and Watershed Science)
Show Figures

Figure 1

Article
Model-Based Attribution of High-Resolution Streamflow Trends in Two Alpine Basins of Western Austria
Hydrology 2016, 3(1), 7; https://doi.org/10.3390/hydrology3010007 - 18 Feb 2016
Cited by 5 | Viewed by 2389
Abstract
Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to [...] Read more.
Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to identify the trend drivers, i.e., to attribute the detected streamflow trends, given that the model captures all important processes causing the trends. We modelled the hydrological conditions for two alpine catchments in western Austria (a large, mostly lower-altitude catchment with wide valley plains and a nested high-altitude, glaciated headwater catchment) with the distributed, physically-oriented WaSiM-ETH model, which includes a dynamical glacier module. The model was calibrated in a transient mode, i.e., not only on several standard goodness measures and glacier extents, but also in such a way that the simulated streamflow trends fit with the observed ones during the investigation period 1980 to 2007. With this approach, it was possible to separate streamflow components, identify the trends of flow components, and study their relation to trends in atmospheric variables. In addition to trends in annual averages, highly resolved trends for each Julian day were derived, since they proved powerful in an earlier, data-based attribution study. We were able to show that annual and highly resolved trends can be modelled sufficiently well. The results provide a holistic, year-round picture of the drivers of alpine streamflow changes: Higher-altitude catchments are strongly affected by earlier firn melt and snowmelt in spring and increased ice melt throughout the ablation season. Changes in lower-altitude areas are mostly caused by earlier and lower snowmelt volumes. All highly resolved trends in streamflow and its components show an explicit similarity to the local temperature trends. Finally, results indicate that evapotranspiration has been increasing in the lower altitudes during the study period. Full article
Show Figures

Figure 1

Article
Soil Erosion Processes in European Vineyards: A Qualitative Comparison of Rainfall Simulation Measurements in Germany, Spain and France
Hydrology 2016, 3(1), 6; https://doi.org/10.3390/hydrology3010006 - 18 Feb 2016
Cited by 62 | Viewed by 4420
Abstract
Small portable rainfall simulators are considered a useful tool to analyze soil erosion processes in cultivated lands. European research groups in Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) and Germany (Trier) have used different rainfall simulators (varying in drop size [...] Read more.
Small portable rainfall simulators are considered a useful tool to analyze soil erosion processes in cultivated lands. European research groups in Spain (Valencia, Málaga, Lleida, Madrid and La Rioja), France (Reims) and Germany (Trier) have used different rainfall simulators (varying in drop size distribution and fall velocities, kinetic energy, plot forms and sizes, and field of application) to study soil loss, surface flow, runoff and infiltration coefficients in different experimental plots (Valencia, Montes de Málaga, Penedès, Campo Real and La Rioja in Spain, Champagne in France and Mosel-Ruwer valley in Germany). The measurements and experiments developed by these research teams give an overview of the variety of methodologies used in rainfall simulations to study the problem of soil erosion and describe the erosion features in different climatic environments, management practices and soil types. The aims of this study are: (i) to investigate where, how and why researchers from different wine-growing regions applied rainfall simulations with successful results as a tool to measure soil erosion processes; (ii) to make a qualitative comparison about the general soil erosion processes in European terroirs; (iii) to demonstrate the importance of the development of standard method for measurement of soil erosion processes in vineyards, using rainfall simulators; and (iv) and to analyze the key factors that should be taken into account to carry out rainfall simulations. The rainfall simulations in all cases allowed infiltration capacity, susceptibility of the soil to detachment and generation of sediment loads to runoff to be determined. Despite using small plots, the experiments were useful to analyze the influence of soil cover to reduce soil erosion, to make comparisons between different locations, and to evaluate the influence of different soil characteristics. The comparative analysis of the studies performed in different study areas points out the need to define an operational methodology to carry out rainfall simulations, which allows us to obtain representative and comparable results and to avoid errors in the interpretation in order to achieve comparable information about runoff and soil loss. Full article
Show Figures

Figure 1

Article
Regional Flood Frequency Analysis in the Volta River Basin, West Africa
Hydrology 2016, 3(1), 5; https://doi.org/10.3390/hydrology3010005 - 06 Feb 2016
Cited by 8 | Viewed by 3249
Abstract
In the Volta River Basin, flooding has been one of the most damaging natural hazards during the last few decades. Therefore, flood frequency estimates are important for disaster risk management. This study aims at improving knowledge of flood frequencies in the Volta River [...] Read more.
In the Volta River Basin, flooding has been one of the most damaging natural hazards during the last few decades. Therefore, flood frequency estimates are important for disaster risk management. This study aims at improving knowledge of flood frequencies in the Volta River Basin using regional frequency analysis based on L-moments. Hence, three homogeneous groups have been identified based on cluster analysis and a homogeneity test. By using L-moment diagrams and goodness of fit tests, the generalized extreme value and the generalized Pareto distributions are found suitable to yield accurate flood quantiles in the Volta River Basin. Finally, regression models of the mean annual flood with the size of the drainage area, mean basin slope and mean annual rainfall are proposed to enable flood frequency estimation of ungauged sites within the study area. Full article
Show Figures

Figure 1

Editorial
Acknowledgement to Reviewers of Hydrology in 2015
Hydrology 2016, 3(1), 4; https://doi.org/10.3390/hydrology3010004 - 21 Jan 2016
Viewed by 1668
Abstract
The editors of Hydrology would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2015. [...] Full article
Article
Spatial Heterogeneity of Snow Density and Its Influence on Snow Water Equivalence Estimates in a Large Mountainous Basin
Hydrology 2016, 3(1), 3; https://doi.org/10.3390/hydrology3010003 - 12 Jan 2016
Cited by 14 | Viewed by 2760
Abstract
Accurate representation of the spatial distribution of snow water equivalent (SWE) in mountainous basins is critical for furthering the understanding of snow as a water resource, especially in the Western United States. To estimate the spatial distribution and total volume of SWE over [...] Read more.
Accurate representation of the spatial distribution of snow water equivalent (SWE) in mountainous basins is critical for furthering the understanding of snow as a water resource, especially in the Western United States. To estimate the spatial distribution and total volume of SWE over mountainous basins, previous work has either assumed uniform snow density or used simple approaches to estimate density. This study uses over 1000 direct measurements of SWE and snow depth (from which density was calculated) in sampling areas that were physiographically proportional to a large (207 km2) mountainous basin in southwest Montana. Using these data, modeled spatial distributions of density and depth were developed and combined to obtain estimates of total basin SWE. Six estimates of SWE were obtained using varying combinations of the distributed depth and density models and were compared to the average of three different models that utilized direct measurements of SWE. Models utilizing direct SWE measurements varied by approximately 1% around their mean, while SWE estimates derived from combined depth and density models varied by over 14% around the same mean. This study highlights the need to carefully consider the spatial variability of density when estimating SWE based on snow depth in these environments. Full article
(This article belongs to the Special Issue Snow Hydrology)
Show Figures

Figure 1

Article
Streamflow Trends and Responses to Climate Variability and Land Cover Change in South Dakota
Hydrology 2016, 3(1), 2; https://doi.org/10.3390/hydrology3010002 - 05 Jan 2016
Cited by 19 | Viewed by 3065
Abstract
Trends in high, moderate, and low streamflow conditions from United States Geological Survey (USGS) gauging stations were evaluated for a period of 1951–2013 for 18 selected watersheds in South Dakota (SD) using a modified Mann-Kendall test. Rainfall trends from 21 rainfall observation stations [...] Read more.
Trends in high, moderate, and low streamflow conditions from United States Geological Survey (USGS) gauging stations were evaluated for a period of 1951–2013 for 18 selected watersheds in South Dakota (SD) using a modified Mann-Kendall test. Rainfall trends from 21 rainfall observation stations located within 20-km of the streamflow gauging stations were also evaluated for the same study period. The concept of elasticity was used to examine sensitivity of streamflow to variation in rainfall and land cover (i.e., grassland) in the study watersheds. Results indicated significant increasing trends in seven of the studied streams (of which five are in the east and two are located in the west), nine with slight increasing trends, and two with decreasing trends for annual streamflow. About half of the streams exhibited significant increasing trends in low and moderate flow conditions compared to high flow conditions. Ten rainfall stations showed slight increasing trends and seven showed decreasing trends for annual rainfall. Streamflow elasticity analysis revealed that streamflow was highly influenced by rainfall across the state (five of eastern streams and seven of western streams). Based on this analysis, a 10% increase in annual rainfall would result in 11%–30% increase in annual streamflow in more than 60% of SD streams. While streamflow appears to be more sensitive to rainfall across the state, high sensitivity of streamflow to rapid decrease in grassland area was detected in two western watersheds. This study provides valuable insight into of the relationship between streamflow, climate, and grassland cover in SD and would support further research and stakeholder decision making about water resources. Full article
Show Figures

Figure 1

Article
Characterization of Water Level Variability of the Main Ethiopian Rift Valley Lakes
Hydrology 2016, 3(1), 1; https://doi.org/10.3390/hydrology3010001 - 25 Dec 2015
Cited by 11 | Viewed by 2928
Abstract
In this paper, the water level fluctuations of eight Ethiopian Rift Valley lakes were analyzed for their hydrological stability in terms of water level dynamics and their controlling factors. Long-term water balances and morphological nature of the lakes were used as bases for [...] Read more.
In this paper, the water level fluctuations of eight Ethiopian Rift Valley lakes were analyzed for their hydrological stability in terms of water level dynamics and their controlling factors. Long-term water balances and morphological nature of the lakes were used as bases for the analyses. Pettit’s homogeneity test and Mann–Kendall trend analysis were applied to test temporal variations of the lake levels. It is found that the hydrological stability of most of the Ethiopian Rift Valley lakes is sensitive to climate variability. In terms of monotonic trends, Lake Ziway, Hawassa, Abaya and Beseka experienced significant increasing trend, while Ziway, Langano and Chamo do not. In addition, homogeneity test revealed that Lake Hawassa and Abaya showed significant upward shift around 1991/1992, which was likely caused by climate anomalies such as the El Niño / Southern Oscillation (ENSO) phenomena. Lake Abiyata is depicted by its significant decreasing monotonic trend and downward regime shift around 1984/1985, which is likely related to the extended water abstraction for industrial consumption. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop