Previous Issue
Volume 13, July
 
 

Risks, Volume 13, Issue 8 (August 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
14 pages, 379 KiB  
Article
Overconfidence and Investment Loss Tolerance: A Large-Scale Survey Analysis of Japanese Investors
by Honoka Nabeshima, Mostafa Saidur Rahim Khan and Yoshihiko Kadoya
Risks 2025, 13(8), 142; https://doi.org/10.3390/risks13080142 - 23 Jul 2025
Abstract
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level [...] Read more.
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level shaped by sociodemographic, economic, psychological, and cultural factors. This study empirically examines the association between overconfidence and investment loss tolerance, which is measured by the point at which respondents indicate they would sell their investments in a hypothetical loss scenario. Using a large-scale dataset of 161,765 active investors from one of Japan’s largest online securities firms, we conduct ordered probit and ordered logit regression analyses, controlling for a range of sociodemographic, economic, and psychological variables. Our findings reveal that overconfidence is statistically significantly and negatively associated with investment loss tolerance, indicating that overconfident investors are more prone to prematurely liquidating assets during market downturns. This behavior reflects an impulse to avoid even modest losses. The findings suggest several possible practical strategies to mitigate the detrimental effects of overconfidence on long-term investment behavior. Full article
17 pages, 1363 KiB  
Article
Navigating Risk in Crypto Markets: Connectedness and Strategic Allocation
by Nader Naifar
Risks 2025, 13(8), 141; https://doi.org/10.3390/risks13080141 - 23 Jul 2025
Abstract
This study examined the dynamic interconnectedness and portfolio implications within the cryptocurrency ecosystem, focusing on five representative digital assets across the core functional categories: Layer 1 cryptocurrencies (Bitcoin (BTC) and Ethereum (ETH)), decentralized finance (Uniswap (UNI)), stablecoins (Dai), and crypto infrastructure tokens (Maker [...] Read more.
This study examined the dynamic interconnectedness and portfolio implications within the cryptocurrency ecosystem, focusing on five representative digital assets across the core functional categories: Layer 1 cryptocurrencies (Bitcoin (BTC) and Ethereum (ETH)), decentralized finance (Uniswap (UNI)), stablecoins (Dai), and crypto infrastructure tokens (Maker (MKR)). Using the Extended Joint Connectedness Approach within a Time-Varying Parameter VAR framework, the analysis captured time-varying spillovers of return shocks and revealed a heterogeneous structure of systemic roles. Stablecoins consistently acted as net absorbers of shocks, reinforcing their defensive profile, while governance tokens, such as MKR, emerged as persistent net transmitters of systemic risk. Foundational assets like BTC and ETH predominantly absorbed shocks, contrary to their perceived dominance. These systemic roles were further translated into portfolio design, where connectedness-aware strategies, particularly the Minimum Connectedness Portfolio, demonstrated superior performance relative to traditional variance-based allocations, delivering enhanced risk-adjusted returns and resilience during stress periods. By linking return-based systemic interdependencies with practical asset allocation, the study offers a unified framework for understanding and managing crypto network risk. The findings carry practical relevance for portfolio managers, algorithmic strategy developers, and policymakers concerned with financial stability in digital asset markets. Full article
(This article belongs to the Special Issue Cryptocurrency Pricing and Trading)
Show Figures

Figure 1

Previous Issue
Back to TopTop