Evaluating the Role of School-Based Physical Activity in Mitigating Cardiometabolic Risk Factors in Children and Adolescents with Overweight or Obesity: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy
2.3. Eligibility Criteria
2.4. Study Selection Process
2.5. Data Extraction Process
2.6. Quality Assessment Process
2.7. Data Analysis Process
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Participant Characteristics
3.4. Intervention Characteristics
3.4.1. Type of Intervention
3.4.2. Time Point of Intervention
Study | Sample | Intervention | Main Findings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author (Year) | Country | Design | Age (Years) (M ± SD/Rng) | Sex | n (C) | n (T) | Type | Time Point | Intensity | HRmax/HRR | Min per Class/Section | Days per Week | Total Weeks | |
Gonzalez-Galvez et al. (2024) [22] | Spain | RCT | 12.51 ± 0.75 | Boy/Girl: 18/14 | 12 | SIT group: 9 HIIT group: 11 | Exercise training | cool-down period of the PE class | SIT group: h HIIT group: h | SIT group: 90–95% HRmax HIIT group: 80–85% HRmax | 12 | 2 | 8 | SIT group: FM%↓, SBP↔, DBP↔, VO2max↔ HIIT group: FM%↓, SBP↓, DBP↓, VO2max↑ |
Meng et al. (2022) [23] | China | RCT | 11.2 ± 0.7 | Boy: 36 | 13 | HIIT group: 12 MICT group: 11 | Exercise training | activity class | HIIT group: h MICT group: m | HIIT group: 80~90% HRmax MICT group: 70% HRmax | HIIT: 11 MICT: 30 | 3 | 12 | HIIT group: BMI↓, VO2max↑, LDL-C↓, HOMA-IR↓ MICT group: BMI↓, VO2max↑, BF%↓, HOMA-IR↓ |
Ponnambalam et al. (2022) [24] | India | RCT | 11–14 | NA | 140 | 140 | Structured movement | Staying after school | m, h | NA | 60 | 5 | 36 | BMI↓, WHtR↔ |
Machado et al. (2022) [33] | Brazil | non-RCT | 10.3 ± 1.8 | Boy/Girl: 14/21 | 15 | 20 | Structured movement | after school | m, h | NA | 50 | 2 | 24 | z-BMI↓, WHtR↓, SBP↓, DBP↓, FBG↓, |
Lambrick et al. (2016) [37] | New Zealand | RCT | 8–10 | Boy/Girl: 17/12 | 14 | 15 | Exercise training | Extracurricular time | h | 86% HRmax | 40 | 2 | 6 | VO2max↑, WC↓ |
Seabra et al. (2016) [34] | Portugal | non-RCT | 8–12 | Boy: 59 | 30 | 29 | Structured movement | Staying after school | m, h | 70–80% HRmax | 60–90 | 3 | 24 | z-BMI↓, WC↓, TG↓, VO2max↑ |
Carrel et al. (2005) [36] | America | RCT | 12 ± 0.5 | Boy/Girl: 26/24 | 23 | 27 | Structured movement | PE class | m | NA | 45 | 5 | 36 | BF%↓, VO2max↑, FBG↓ |
Wang et al. (2015) [35] | China | non-RCT | 7–12 | Boy/Girl: 82/170 | 136 | 116 | Structured movement | class break | m | NA | 10 | 10(twice a day) | 48 | BF%↓, SBP↓, DBP↓ |
Wang et al. (2022) [31] | China | RCT | 14.17 ± 0.45/12–18 | Boy/Girl: 22/8 | 15 | 15 | Structured movement | PE class | m, h | 40~70% HRR | 60 | 2 | 12 | BMI↓, SBP↔, DBP↔ |
Yu et al. (2022) [32] | China | RCT | 14.98 ± 1.63/12–18 | Boy/Girl: 45/16 | 22 | 39 | Structured movement | PE class | l, m | 30~60% HRR | 45 | 2 | 36 | BMI↓, z-BMI↓, BF%↓, WC↓, WHtR↓ |
Gonzalez-Ruiz et al. (2021) [30] | Colombia | RCT | 13.49 ± 1.65/11–17 | Boy/Girl: 31/68 | 26 | HIPE group: 24 LIPE group: 24 PLUS group: 25 | Structured movement | PE class | HIPE group: h LIPE group: l, m PLUS group: l, m, h | HIPE group: >70%HRmax LIPE group: 50~70%HRmax PLUS group: >50% HRmax | 60 | 2 | 24 | HIPE group: z-BMI↓, BF%↓, TC↓, LDL-C↓ LIPE group: BMI↓, BF%↓, TC↔, HDL-C↑ LDL-C↔ PLUS group: TG↓, BF%↔, TC↔, LDL-C↔ |
3.5. Risk of Bias
3.6. Meta-Analyses Results
3.6.1. Effects of School-Based PA Interventions on Body Composition
3.6.2. Effects of School-Based PA Interventions on Cardiorespiratory Fitness
3.6.3. Effects of School-Based PA Interventions on Blood Pressure
3.6.4. Effects of School-Based PA Interventions on Blood Lipids
3.6.5. Effects of School-Based PA Interventions on Blood Glucose
4. Discussion
4.1. Body Composition
4.2. Cardiorespiratory Fitness
4.3. Blood Pressure
4.4. Blood Lipids
4.5. Blood Glucose
4.6. Limitations and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Summerbell, C.; Wabitsch, M. Child and adolescent obesity. Nat. Rev. Dis. Primers 2023, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Phelps, N.H.; Singleton, R.K.; Zhou, B.; Heap, R.A.; Mishra, A.; Bennett, J.E.; Paciorek, C.J.; Lhoste, V.P.F.; Carrillo-Larco, R.M.; Stevens, G.A.; et al. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Sun, M.; da Silva, M.; Bjorge, T.; Fritz, J.; Mboya, I.B.; Jerkeman, M.; Stattin, P.; Wahlstrom, J.; Michaelsson, K.; van Guelpen, B.; et al. Body mass index and risk of over 100 cancer forms and subtypes in 4.1 million individuals in Sweden: The Obesity and Disease Development Sweden (ODDS) pooled cohort study. Lancet Reg. Health Eur. 2024, 45, 101034. [Google Scholar] [CrossRef] [PubMed]
- Carrasquilla, G.D.; Angquist, L.; Sorensen, T.I.A.; Kilpelainen, T.O.; Loos, R.J.F. Child-to-adult body size change and risk of type 2 diabetes and cardiovascular disease. Diabetologia 2024, 67, 864–873. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800–813. [Google Scholar] [CrossRef]
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 31 January 2025).
- Chen, T.; Lin, J.; Lin, Y.; Xu, L.; Lu, D.; Li, F.; Hou, L.; Yu, C.C.W. Effects of aerobic exercise and resistance exercise on physical indexes and cardiovascular risk factors in obese and overweight school-age children: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0257150. [Google Scholar] [CrossRef]
- Mathieu, P.; Poirier, P.; Pibarot, P.; Lemieux, I.; Despres, J.P. Visceral obesity: The link among inflammation, hypertension, and cardiovascular disease. Hypertension 2009, 53, 577–584. [Google Scholar] [CrossRef]
- Wang, K.; Xu, B.; Wang, Z.; Su, J. Effects of Combined Motion Intervention on Body Composition, Cardiovascular Risk Factors and Cardiopulmonary Fitness of Obese Female Adolescents. Chin. Gen. Pract. 2024, 29, 1109–1117. [Google Scholar] [CrossRef]
- Tak, Y.J.; Lee, S.Y. Anti-Obesity Drugs: Long-Term Efficacy and Safety: An Updated Review. World J. Mens. Health 2021, 39, 208–221. [Google Scholar] [CrossRef]
- Pinckard, K.; Baskin, K.K.; Stanford, K.I. Effects of Exercise to Improve Cardiovascular Health. Front. Cardiovasc. Med. 2019, 6, 69. [Google Scholar] [CrossRef]
- Lee, E.Y.; Yoon, K.H. Epidemic obesity in children and adolescents: Risk factors and prevention. Front. Med. 2018, 12, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Busnatu, S.S.; Serbanoiu, L.I.; Lacraru, A.E.; Andrei, C.L.; Jercalau, C.E.; Stoian, M.; Stoian, A. Effects of Exercise in Improving Cardiometabolic Risk Factors in Overweight Children: A Systematic Review and Meta-Analysis. Healthcare 2022, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Bronfenbrenner, U.; Morris, P.A. The Bioecological Model of Human Development. In Handbook of Child Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Love, R.; Adams, J.; van Sluijs, E.M.F. Are school-based physical activity interventions effective and equitable? A systematic review and meta-analysis of cluster randomised controlled trials. Lancet 2018, 392, S53. [Google Scholar] [CrossRef]
- Hernandez-Martinez, J.; Perez-Carcamo, J.; Melki, H.; Cid-Calfucura, I.; Vasquez-Carrasco, E.; Delgado-Floody, P.; Romero, C.; Herrera-Valenzuela, T.; Branco, B.H.M.; Valdes-Badilla, P. Effects of Exergaming on Morphological Variables, Biochemical Parameters, and Blood Pressure in Children and Adolescents with Overweight/Obesity: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. Children 2024, 12, 29. [Google Scholar] [CrossRef]
- Davis, C.L.; Litwin, S.E.; Pollock, N.K.; Waller, J.L.; Zhu, H.; Dong, Y.; Kapuku, G.; Bhagatwala, J.; Harris, R.A.; Looney, J.; et al. Exercise effects on arterial stiffness and heart health in children with excess weight: The SMART RCT. Int. J. Obes. 2020, 44, 1152–1163. [Google Scholar] [CrossRef]
- Oosterhoff, M.; Joore, M.; Ferreira, I. The effects of school-based lifestyle interventions on body mass index and blood pressure: A multivariate multilevel meta-analysis of randomized controlled trials. Obes. Rev. 2016, 17, 1131–1153. [Google Scholar] [CrossRef]
- Stoner, L.; Rowlands, D.; Morrison, A.; Credeur, D.; Hamlin, M.; Gaffney, K.; Lambrick, D.; Matheson, A. Efficacy of Exercise Intervention for Weight Loss in Overweight and Obese Adolescents: Meta-Analysis and Implications. Sports Med. 2016, 46, 1737–1751. [Google Scholar] [CrossRef]
- Cai, L.; Wu, Y.; Cheskin, L.J.; Wilson, R.F.; Wang, Y. Effect of childhood obesity prevention programmes on blood lipids: A systematic review and meta-analysis. Obes. Rev. 2014, 15, 933–944. [Google Scholar] [CrossRef]
- Guerra, P.H.; Nobre, M.R.; Silveira, J.A.; Taddei, J.A. The effect of school-based physical activity interventions on body mass index: A meta-analysis of randomized trials. Clinics 2013, 68, 1263–1273. [Google Scholar] [CrossRef]
- Gonzalez-Galvez, N.; Soler-Marin, A.; Abelleira-Lamela, T.; Abenza-Cano, L.; Mateo-Orcajada, A.; Vaquero-Cristobal, R. Eight weeks of high-intensity interval vs. sprint interval training effects on overweight and obese adolescents carried out during the cool-down period of physical education classes: Randomized controlled trial. Front. Public. Health 2024, 12, 1394328. [Google Scholar] [CrossRef]
- Meng, C.; Yucheng, T.; Shu, L.; Yu, Z. Effects of school-based high-intensity interval training on body composition, cardiorespiratory fitness and cardiometabolic markers in adolescent boys with obesity: A randomized controlled trial. BMC Pediatr. 2022, 22, 112. [Google Scholar] [CrossRef] [PubMed]
- Ponnambalam, S.; Palanisamy, S.; Singaravelu, R.; Janardhanan, H.A. Effectiveness of After-School Physical Activity Intervention on Body Mass Index and Waist Circumference/Height Ratio among Overweight Adolescents in Selected Schools at Puducherry, India: A Randomized Controlled Trial. Indian. J. Community Med. 2022, 47, 72–75. [Google Scholar] [CrossRef] [PubMed]
- David, M.; Alessandro, L.; Jennifer, T.; Altman, D.G.; The PRISMA Group. Reprint-Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Phys. Ther. 2009, 89, 873–880. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Page, M.J. RoB 2: A revised tool for assessing risk of bias in randomised trials. In Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Caldwell, H.M., Oxman, A.D., Eds.; The Cochrane Collaboration: London, UK, 2019; pp. 123–145. Available online: https://methods.cochrane.org/risk-bias-2 (accessed on 26 February 2025).
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.W.V. Cochrane Handbook for Systematic Reviews of Interventions; Version 6.0; The Cochrane Collaboration: London, UK, 2019. [Google Scholar]
- Smellie, W.S. Testing pitfalls and summary of guidance in lipid management. BMJ 2006, 333, 83–86. [Google Scholar] [CrossRef]
- Gonzalez-Ruiz, K.; Correa-Bautista, J.E.; Izquierdo, M.; Garcia-Hermoso, A.; Martinez-Vizcaino, V.; Lobelo, F.; Gonzalez-Jimenez, E.; Schmidt-RioValle, J.; Correa-Rodriguez, M.; Fernandez-Irigoyen, J.; et al. Exercise dose on hepatic fat and cardiovascular health in adolescents with excess of adiposity. Pediatr. Obes. 2021, 17, e12869. [Google Scholar] [CrossRef]
- Wang, A.; Bu, D.; Yu, S.; Sun, Y.; Wang, J.; Lee, T.C.T.; Baker, J.S.; Gao, Y. Effects of a School-Based Physical Activity Intervention for Obesity, Health-Related Physical Fitness, and Blood Pressure in Children with Intellectual Disability: A Randomized Controlled Trial. Int. J. Environ. Res. Public. Health 2022, 19, 12015. [Google Scholar] [CrossRef]
- Yu, S.; Gao, Y.; Wang, A.; Sun, Y.; Wang, J.; Kwok, H.H.M.; Wu, S.; Lam, C.K.; Tao, E.D.; Jiao, J.J.; et al. Effectiveness of an adapted physical activity intervention for weight management in adolescents with intellectual disability: A randomized controlled trial. Pediatr. Obes. 2022, 17, e12882. [Google Scholar] [CrossRef]
- Machado, E.; Jannuzzi, F.; Telles, S.; Oliveira, C.; Madeira, I.; Sicuro, F.; Souza, M.D.G.; Monteiro, A.; Bouskela, E.; Collett-Solberg, P.; et al. A Recreational Swimming Intervention during the Whole School Year Improves Fitness and Cardiometabolic Risk in Children and Adolescents with Overweight and Obesity. Int. J. Environ. Res. Public. Health 2022, 19, 17093. [Google Scholar] [CrossRef]
- Seabra, A.; Katzmarzyk, P.; Carvalho, M.J.; Seabra, A.; Coelho, E.S.M.; Abreu, S.; Vale, S.; Povoas, S.; Nascimento, H.; Belo, L.; et al. Effects of 6-month soccer and traditional physical activity programmes on body composition, cardiometabolic risk factors, inflammatory, oxidative stress markers and cardiorespiratory fitness in obese boys. J. Sports Sci. 2016, 34, 1822–1829. [Google Scholar] [CrossRef]
- Wang, J.J.; Lau, W.C.; Wang, H.J.; Ma, J. Evaluation of a comprehensive intervention with a behavioural modification strategy for childhood obesity prevention: A nonrandomized cluster controlled trial. BMC Public. Health 2015, 15, 1206. [Google Scholar] [CrossRef] [PubMed]
- Carrel, A.L.; Clark, R.R.; Peterson, S.E.; Nemeth, B.A.; Sullivan, J.; Allen, D.B. Improvement of fitness, body composition, and insulin sensitivity in overweight children in a school-based exercise program—A randomized, controlled study. Arch. Pediatr. Adolesc. Med. 2005, 159, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Lambrick, D.; Westrupp, N.; Kaufmann, S.; Stoner, L.; Faulkner, J. The effectiveness of a high-intensity games intervention on improving indices of health in young children. J. Sports Sci. 2016, 34, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Moeller, N.C.; Oestergaard, L.; Rasmussen, M.G.B.; Schmidt-Persson, J.; Larsen, K.T.; Juhl, C.B. How to get children moving? The effectiveness of school-based interventions promoting physical activity in children and adolescents—A systematic review and meta-analysis of randomized controlled- and controlled studies. Health Place 2024, 89, 103333. [Google Scholar] [CrossRef]
- Shen, F.; Zhang, P.; Wang, H.; Zhou, Y.; Li, L. A review of the impact of school-based interventions on cardiovascular metabolic risk in children. Chin. J. Sch. Health 2023, 44, 1747. [Google Scholar] [CrossRef]
- Guo, P.; Zhou, Y.; Zhu, Y. Effects of a school-based lifestyle intervention on ideal cardiovascular health in Chinese children and adolescents: A national, multicentre, cluster-randomised controlled trial. Lancet Glob. Health 2023, 11 (Suppl. 1), S14. [Google Scholar] [CrossRef]
- Brown, T.; Moore, T.H.; Hooper, L.; Gao, Y.; Zayegh, A.; Ijaz, S.; Elwenspoek, M.; Foxen, S.C.; Magee, L.; O’Malley, C.; et al. Interventions for preventing obesity in children. Cochrane Database Syst. Rev. 2019, 7, CD001871. [Google Scholar] [CrossRef]
- Li, W.; Chen, P.; Wu, Z.; Ye, T. Meta-analysis of the effect of family-based exercise intervention on overweight and obesity in preschool children. Chin. J. Child. Health Care 2025, 33, 214–220. [Google Scholar] [CrossRef]
- Pozuelo-Carrascosa, D.P.; Cavero-Redondo, I.; Herráiz-Adillo, Á.; Díez-Fernández, A.; Sánchez-López, M.; Martínez-Vizcaíno, V. School-Based Exercise Programs and Cardiometabolic Risk Factors: A Meta-analysis. Pediatrics 2018, 142, e20181033. [Google Scholar] [CrossRef]
- Manojlovic, M.; Roklicer, R.; Trivic, T.; Milic, R.; Maksimovic, N.; Tabakov, R.; Sekulic, D.; Bianco, A.; Drid, P. Effects of school-based physical activity interventions on physical fitness and cardiometabolic health in children and adolescents with disabilities: A systematic review. Front. Physiol. 2023, 14, 1180639. [Google Scholar] [CrossRef]
- Ruiz, L.D.; Zuelch, M.L.; Dimitratos, S.M.; Scherr, R.E. Adolescent Obesity: Diet Quality, Psychosocial Health, and Cardiometabolic Risk Factors. Nutrients 2019, 12, 43. [Google Scholar] [CrossRef] [PubMed]
- Rebecca, M.P.; Jamie Lee, P.; Joerg, L. Weight-Based Victimization: Bullying Experiences of Weight Loss Treatment–Seeking Youth. Pediatrics 2013, 131, e1–e9. [Google Scholar] [CrossRef]
- Keteyian, S.J.; Brawner, C.A.; Savage, P.D.; Ehrman, J.K.; Schairer, J.; Divine, G.; Aldred, H.; Ophaug, K.; Ades, P.A. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. Am. Heart J. 2008, 156, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Wang, X. Effect of high-intensity interval training on cardiorespiratory in children and adolescents with overweight or obesity: A meta-analysis of randomized controlled trials. Front. Public. Health 2024, 12, 1269508. [Google Scholar] [CrossRef]
- Dykstra, B.J.; Griffith, G.J.; Renfrow, M.S.; Mahon, A.D.; Harber, M.P. Cardiorespiratory and Muscular Fitness in Children and Adolescents with Obesity. Curr. Cardiol. Rep. 2024, 26, 349–357. [Google Scholar] [CrossRef]
- McRae, G.; Payne, A.; Zelt, J.G.; Scribbans, T.D.; Jung, M.E.; Little, J.P.; Gurd, B.J. Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Appl. Physiol. Nutr. Metab. 2012, 37, 1124–1131. [Google Scholar] [CrossRef]
- Cocks, M.; Shaw, C.S.; Shepherd, S.O.; Fisher, J.P.; Ranasinghe, A.M.; Barker, T.A.; Tipton, K.D.; Wagenmakers, A.J. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J. Physiol. 2013, 591, 641–656. [Google Scholar] [CrossRef]
- Dobbins, M.; DeCorby, K.; Robeson, P.; Husson, H.; Tirilis, D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6–18. Cochrane Database Syst. Rev. 2009, 4, 1465–1858. [Google Scholar] [CrossRef]
- Lin, L.; Li, C.; Gao, A.; Zhang, F.; Zhang, X.; Li, J.; Feng, Q.; Jin, C.Y.; Liu, Z.; Wang, H. Effect of a comprehensive school-based intervention on childhood obesity. China J. Sch. Health 2018, 39, 1505–1508. [Google Scholar] [CrossRef]
- Hassan, M.A.; Zhou, W.; Ye, M.; He, H.; Gao, Z. The effectiveness of physical activity interventions on blood pressure in children and adolescents: A systematic review and network meta-analysis. J. Sport. Health Sci. 2024, 13, 699–708. [Google Scholar] [CrossRef]
- Li, C.X.; Leng, J. Research Progress on Hyperlipidemia. Adv. Clin. Med. 2024, 14, 1635–1646. [Google Scholar] [CrossRef]
- Georgoulis, M.; Chrysohoou, C.; Georgousopoulou, E.; Damigou, E.; Skoumas, I.; Pitsavos, C.; Panagiotakos, D. Long-term prognostic value of LDL-C, HDL-C, lp(a) and TG levels on cardiovascular disease incidence, by body weight status, dietary habits and lipid-lowering treatment: The ATTICA epidemiological cohort study (2002–2012). Lipids Health Dis. 2022, 21, 141. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.R.; Hawley, J.A. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport. Exerc. Med. 2016, 2, e000143. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawaf, H.A.; Gabr, S.A.; Iqbal, A.; Alghadir, A.H. High-Intensity Interval Training Improves Glycemic Control, Cellular Apoptosis, and Oxidative Stress of Type 2 Diabetic Patients. Medicina 2023, 59, 1320. [Google Scholar] [CrossRef]
- Zheng, K. The effects of aerobic exercise on inflammatory factors, insulin resistance and endothelial function in overweight or obese children. Chin. J. Phys. Med. Rehabil. 2020, 42, 193–196. [Google Scholar] [CrossRef]
- Lazzer, S.; D’Alleva, M.; Isola, M.; De Martino, M.; Caroli, D.; Bondesan, A.; Marra, A.; Sartorio, A. Cardiometabolic Index (CMI) and Visceral Adiposity Index (VAI) Highlight a Higher Risk of Metabolic Syndrome in Women with Severe Obesity. J. Clin. Med. 2023, 12, 55. [Google Scholar] [CrossRef]
- Bluher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef]
- Schulze, M.B.; Stefan, N. Metabolically healthy obesity: From epidemiology and mechanisms to clinical implications. Nat. Rev. Endocrinol. 2024, 20, 633–646. [Google Scholar] [CrossRef]
Category | Outcome Indicators | Trials (n) | Heterogeneity Test Results (I2-Value) | Meta-Analysis Results Hedges’ g [95%CI] |
---|---|---|---|---|
Body composition | BMI (kg/m2) | 11 | 90.54% ** | −0.42 [−0.92, 0.09] |
z-BMI | 6 | 0.00% | −0.11 [−0.34, 0.12] | |
BF (%) | 11 | 67.67% ** | −0.43 [−0.73, −0.13] ** | |
WC (cm) | 10 | 15.55% | −0.19 [−0.37, −0.00] | |
WHtR | 4 | 0.00% | −0.26 [−0.60, 0.08] | |
Cardiorespiratory fitness | VO2max (mL/kg/min) | 7 | 82.22% ** | 0.63 [−0.03, 1.30] |
Blood pressure | SBP (mmHg) | 11 | 75.81% ** | −0.05 [−0.43, 0.32] |
DBP (mmHg) | 11 | 36.23% | −0.27 [−0.50, −0.04] * | |
Blood lipids | HDL-C (mg/dL) | 8 | 46.27% | 0.15 [−0.12, 0.42] |
LDL-C (mg/dL) | 8 | 70.07% ** | −0.26 [−0.62, 0.11] | |
TG (mg/dL) | 8 | 36.23% | −0.38 [−0.63, −0.13] ** | |
TC (mg/dL) | 7 | 79.94% ** | −0.22 [−0.67, 0.23] | |
Blood glucose | FBG (mg/dL) | 9 | 65.03% ** | −0.60 [−0.92, −0.28] ** |
BI (uIU/mL) | 8 | 0.00% | −0.62 [−0.84, −0.40] ** | |
HOMA-IR | 6 | 51.82% | −0.58 [−0.95, −0.21] ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, D.; Li, B. Evaluating the Role of School-Based Physical Activity in Mitigating Cardiometabolic Risk Factors in Children and Adolescents with Overweight or Obesity: A Systematic Review and Meta-Analysis. Children 2025, 12, 439. https://doi.org/10.3390/children12040439
Mao D, Li B. Evaluating the Role of School-Based Physical Activity in Mitigating Cardiometabolic Risk Factors in Children and Adolescents with Overweight or Obesity: A Systematic Review and Meta-Analysis. Children. 2025; 12(4):439. https://doi.org/10.3390/children12040439
Chicago/Turabian StyleMao, Dingmeng, and Bowen Li. 2025. "Evaluating the Role of School-Based Physical Activity in Mitigating Cardiometabolic Risk Factors in Children and Adolescents with Overweight or Obesity: A Systematic Review and Meta-Analysis" Children 12, no. 4: 439. https://doi.org/10.3390/children12040439
APA StyleMao, D., & Li, B. (2025). Evaluating the Role of School-Based Physical Activity in Mitigating Cardiometabolic Risk Factors in Children and Adolescents with Overweight or Obesity: A Systematic Review and Meta-Analysis. Children, 12(4), 439. https://doi.org/10.3390/children12040439