Hyperspectral imaging (HSI) is an advanced imaging technique that captures detailed spectral information across multiple fields. This review explores its applications in counterfeit detection, remote sensing, agriculture, medical imaging, cancer detection, environmental monitoring, mining, mineralogy, and food processing, specifically highlighting significant achievements from
[...] Read more.
Hyperspectral imaging (HSI) is an advanced imaging technique that captures detailed spectral information across multiple fields. This review explores its applications in counterfeit detection, remote sensing, agriculture, medical imaging, cancer detection, environmental monitoring, mining, mineralogy, and food processing, specifically highlighting significant achievements from the past five years, providing a timely update across several fields. It also presents a cross-disciplinary classification framework to systematically categorize applications in medical, agriculture, environment, and industry. In counterfeit detection, HSI identified fake currency with high accuracy in the 400–500 nm range and achieved a 99.03% F1-score for counterfeit alcohol detection. Remote sensing applications include hyperspectral satellites, which improve forest classification accuracy by 50%, and soil organic matter, with the prediction reaching R
2 = 0.6. In agriculture, the HSI-TransUNet model achieved 86.05% accuracy for crop classification, and disease detection reached 98.09% accuracy. Medical imaging benefits from HSI’s non-invasive diagnostics, distinguishing skin cancer with 87% sensitivity and 88% specificity. In cancer detection, colorectal cancer identification reached 86% sensitivity and 95% specificity. Environmental applications include PM2.5 pollution detection with 85.93% accuracy and marine plastic waste detection with 70–80% accuracy. In food processing, egg freshness prediction achieved R
2 = 91%, and pine nut classification reached 100% accuracy. Despite its advantages, HSI faces challenges like high costs and complex data processing. Advances in artificial intelligence and miniaturization are expected to improve accessibility and real-time applications. Future advancements are anticipated to concentrate on the integration of deep learning models for automated feature extraction and decision-making in hyperspectral imaging analysis. The development of lightweight, portable HSI devices will enable more on-site applications in agriculture, healthcare, and environmental monitoring. Moreover, real-time processing methods will enhance efficiency for field deployment. These improvements seek to enhance the accessibility, practicality, and efficacy of HSI in both industrial and clinical environments.
Full article