SWIPT Enabled Wavelet Cooperative NOMA: Energy-Efficient Design Under Imperfect SIC
Abstract
1. Introduction
2. Materials and Methods
2.1. Related Work
2.2. Research Gap and Contributions
- A novel SWIPT-CWNOMA system is proposed for an energy-constrained multi-user wireless network, considering the Rayleigh fading channel conditions to reflect realistic wireless propagation conditions. The network employs an energy-efficient wavelet transform-based CNOMA system in which the wavelet transform is applied to enhance signal reconstruction and SWIPT to improve reception reliability and EE.
- In this research work, the expressions for SINR, achievable capacity, and EE are derived for a multi-user SWIPT-CWNOMA system. The expressions are derived under both perfect and imperfect SIC conditions at a variable range of SNR. For a fair comparison, we have also presented an analysis of SWIPT-CWNOMA with reference to OMA and CNOMA systems in the context of EE, signal-to-interference and noise ratio (SINR), and throughput.
- The residual error analysis is provided for each of the multiple users under varying power allocation strategies. The analysis highlights the impact of power factor (PF) allocation settings on the SIC efficiency of the users.
3. System Model
3.1. Phase I: Transmission in Wavelet NOMA
3.2. Phase II: Cooperative Phase
4. Analysis of SINR, Achievable Rate, Energy Efficiency, and Computational Complexity of Multi-User SWIPT-CWNOMA
4.1. SINR Analysis
4.2. Achievable Capacity Analysis
4.3. Energy Efficiency Analysis
4.4. Computational Complexity Analysis
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, A.F.M.S.; Karabulut, M.A.; Rabie, K. Multiple Access Schemes for 6G Enabled NTN-Assisted IoT Technologies: Recent Developments, Prospects and Challenges. IEEE Int. Things Mag. 2024, 7, 48–54. [Google Scholar] [CrossRef]
- Sarkar, D.; Yogita; Yadav, S.S.; Pal, V.; Kumar, N.; Patra, S.K. A Comprehensive Survey On IRS-Assisted NOMA-Based 6G Wireless Network: Design Perspectives, Challenges and Future Directions. IEEE Trans. Netw. Ser. Manag. 2024, 21, 2539–2562. [Google Scholar] [CrossRef]
- Yeom, J.S.; Kim, Y.B.; Jung, B.C. Spectrally Efficient Uplink Cooperative NOMA with Joint Decoding for Relay-Assisted IoT Networks. IEEE Int. Things Mag. 2023, 10, 210–223. [Google Scholar] [CrossRef]
- Kim, J.B.; Lee, I.H. Capacity Analysis of Cooperative Relaying Systems Using Non-Orthogonal Multiple Access. IEEE Commun. Lett. 2015, 19, 1949–1952. [Google Scholar] [CrossRef]
- Xu, M.; Ji, F.; Wen, M.; Duan, W. Novel Receiver Design for the Cooperative Relaying System with Non-Orthogonal Multiple Access. IEEE Commun. Lett. 2016, 20, 1679–1682. [Google Scholar] [CrossRef]
- Zeng, M.; Hao, W.; Dobre, O.A.; Ding, Z. Cooperative NOMA: State of the Art, Key Techniques, and Open Challenges. IEEE Netw. 2020, 34, 205–211. [Google Scholar] [CrossRef]
- Yu, Z.; Zhai, C.; Liu, J.; Xu, H. Cooperative Relaying Based Non-Orthogonal Multiple Access (NOMA) with Relay Selection. IEEE Trans. Veh. Technol. 2018, 67, 11606–11618. [Google Scholar] [CrossRef]
- Guo, N.; Ge, J.; Bu, Q.; Zhang, C. Multi-User Cooperative Non-Orthogonal Multiple Access Scheme with Hybrid Full/Half-Duplex User-Assisted Relaying. IEEE Access 2019, 7, 39207–39226. [Google Scholar] [CrossRef]
- Prashar, A.; Sood, N. Performance Analysis of MIMO-NOMA and SISO-NOMA in Downlink Communication Systems. In Proceedings of the 2nd International Conference on Intelligent Technologies, Hubli, India, 24–26 June 2022. [Google Scholar]
- Huang, R.; Wan, D.; Ji, F.; Qing, H.; Li, J.; Yu, H.; Chen, F. Performance Analysis of NOMA-based Cooperative Networks with Relay Selection. China Commun. 2020, 17, 111–119. [Google Scholar] [CrossRef]
- Kader, M.F.; Shin, S.Y.; Leung, V.C.M. Full-Duplex Non-Orthogonal Multiple Access in Cooperative Relay Sharing for 5G Systems. IEEE Trans. Veh. Technol. 2018, 67, 5831–5840. [Google Scholar] [CrossRef]
- Zhang, S.; Di, B.; Song, L.; Li, Y. Sub-Channel and Power Allocation for Non-Orthogonal Multiple Access Relay Networks with Amplify-and-Forward Protocol. IEEE Trans. Wirel. Commun. 2017, 16, 2249–2261. [Google Scholar] [CrossRef]
- Palitharathna, K.W.; Suraweera, H.A.; Godaliyadda, R.I.; Herath, V.R.; Ding, Z. Impact of Receiver Orientation on Full-Duplex Relay Aided NOMA Underwater Optical Wireless Systems. In Proceedings of the ICC 2020—2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Deepan, N.; Rebekka, B. Outage Performance of Full duplex Cooperative NOMA with Energy harvesting over Nakagami-m fading channels. In Proceedings of the TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks, Tiruchirappalli, India, 22–24 May 2019. [Google Scholar]
- Sreenu, S.; Naidu, K. Resource optimization for cooperative SWIPT-NOMA systems with imperfect SIC. AEU Int. J. Electron. Commun. 2024, 187, 155517. [Google Scholar] [CrossRef]
- Hussein, A.; Rosenberg, C.; Mitran, P. Hybrid NOMA in Multi-Cell Networks: From a Centralized Analysis to Practical Schemes. IEEE Trans. Netw. 2021, 30, 1268–1282. [Google Scholar] [CrossRef]
- Tran, H.Q.; Vien, Q.T. SWIPT-based cooperative NOMA for Two Way Relay Communications: PSR versus TSR. Wirel. Commun. Mob. Comput. 2023, 2023, 3069999. [Google Scholar] [CrossRef]
- Le-Thanh, T.; Ho-Van, K. Secured NOMA Full-Duplex Transmission with Energy Harvesting. IEEE Access 2024, 12, 91342–91356. [Google Scholar] [CrossRef]
- Philip, W.E.; Mishra, A.K. Impact of Residual Hardware Impairments on Joint Transmission-CoMP-Cooperative NOMA Networks. IEEE Access 2024, 12, 66363–66372. [Google Scholar] [CrossRef]
- Gu, X.; Zhang, G.; Zhuo, B.; Duan, W.; Wang, J.; Wen, M.; Ho, P.H. On the Performance of Cooperative NOMA Downlink: A RIS-Aided D2D Perspective. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 1610–1624. [Google Scholar] [CrossRef]
- Muhammad, A.; Elhattab, M.; Arfaoui, M.A.; Assi, C. Optimizing Age of Information in RIS-Empowered Uplink Cooperative NOMA Networks. IEEE Trans. Netw. Serv. Manag. 2024, 21, 897–907. [Google Scholar] [CrossRef]
- Zhang, G.; Gu, X.; Duan, W.; Wen, M.; Choi, J.; Gao, F.; Ho, P.H. Hybrid Time-Switching and Power-Splitting EH Relaying for RIS-NOMA Downlink. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 146–158. [Google Scholar] [CrossRef]
- Zhai, Q.; Dong, L.; Liu, C.; Li, Y.; Cheng, W. Resource Management for Active RIS Aided Multi-Cluster SWIPT Cooperative NOMA Networks. IEEE Trans. Netw. Serv. Manag. 2024, 21, 4421–4434. [Google Scholar] [CrossRef]
- Ding, Z.; Peng, M.; Poor, H.V. Cooperative Non-Orthogonal Multiple Access in 5G Systems. IEEE Commun. Lett. 2015, 19, 1462–1465. [Google Scholar] [CrossRef]
- Liu, J.; He, J. Design and analysis of CP-free OFDM PDMA transmission system. EURASIP J. Adv. Signal Process. 2024, 2024, 68. [Google Scholar] [CrossRef]
- Suma, M.N.; Narasimhan, S.V.; Kanmani, B. The OFDM system based on Discrete Cosine Harmonic Wavelet transform. In Proceedings of the National Conference on Communications, Kharagpur, India, 3–5 February 2012. [Google Scholar]
- Tang, J.; Luo, J.; Liu, M.; So, D.K.C.; Alsusa, E.; Chen, G.; Wong, K.K.; Chambers, J.A. Energy Efficiency Optimization for NOMA With SWIPT. IEEE J. Sel. Top. Signal Process. 2019, 13, 452–466. [Google Scholar] [CrossRef]
- Khan, A.; Shin, S.Y. Wavelet OFDM-Based Non-orthogonal Multiple Access Downlink Transceiver for Future Radio Access. IETE Tech. Rev. 2018, 35, 17–27. [Google Scholar] [CrossRef]
- Sirvi, S.; Tharani, L. Wavelet based OFDM system over flat fading channel using NLMS equalization. In Proceedings of the International Conference on Computing, Communication and Automation, Greater Noida, India, 29–30 April 2016. [Google Scholar]
- Baig, S.; Ali, U.; Asif, H.M.; Khan, A.A.; Mumtaz, S. Closed-Form BER Expression for Fourier and Wavelet Transform-Based Pulse-Shaped Data in Downlink NOMA. IEEE Commun. Lett. 2019, 23, 592–595. [Google Scholar] [CrossRef]
- Baig, S.; Ahmad, M.; Asif, H.M.; Shehzad, M.N.; Jaffery, M.H. Dual PHY Layer for Non-Orthogonal Multiple Access Transceiver in 5G Networks. IEEE Access 2018, 6, 3130–3139. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, S.; Yan, X.; Wu, H.C.; Wu, Y. Innovative Modulation Scheme Using Multiwavelets for Non-orthogonal Multiple-Access Downlink Transceiver. In Proceedings of the 2020 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Paris, France, 27–29 October 2020. [Google Scholar]
- Ahmad, M.; Baig, S.; Asif, H.M.; Raahemifar, K.; Rajbhandari, S. Mitigation of Imperfect Successive Interference Cancellation and Wavelet-Based Nonorthogonal Multiple Access in the 5G Multiuser Downlink Network. Wirel. Commun. Mob. Comput. 2021, 2021, 8876026. [Google Scholar] [CrossRef]
- Ahmad, M.; Shin, S. Massive MIMO NOMA with Wavelet Pulse Shaping to Minimize Undesired Channel Interference. ICT Express 2023, 9, 635–641. [Google Scholar] [CrossRef]
- Khennoufa, F.; Khelil, A.; Beddiaf, S.; Kara, F.; Rabie, K.; Kaya, H.; Emir, A.; Ikki, S.; Yanikomeroglu, H. Wireless Powered Cooperative Communication Network for Dual-hop Uplink NOMA with IQI and SIC Imperfections. IEEE Access 2023, 11, 76506–76523. [Google Scholar] [CrossRef]
- Hwang, D.; Yang, J.; Nam, S.S.; Joung, J.; Song, H.K. Cooperative Non-Orthogonal Multiple Access Transmission Through Full-Duplex and Half-Duplex Relays. IEEE Wirel. Commun. Lett. 2023, 12, 351–355. [Google Scholar] [CrossRef]
- Al-Dweik, A.; Bedoui, A.; Iraqi, Y. On the BER Analysis of NOMA Systems. IEEE Wirel. Commun. Lett. 2024, 13, 786–790. [Google Scholar] [CrossRef]
- Magalhães, S.R.C.; Bayhan, S.; Heijenk, G. Power Allocation for Multi-Cell Non-Orthogonal Multiple Access Networks: Energy efficiency vs. Throughput vs. Power Consumption. In Proceedings of the Joint European Conference on Networks and Communications and 6G Summit, Gothenburg, Sweden, 6–9 June 2023. [Google Scholar]
- Doan, T.B.; Nguyen, T.H. Exploiting SWIPT for Coordinated-NOMA Systems Under Nakagami-m Fading. IEEE Access 2024, 12, 19216–19228. [Google Scholar] [CrossRef]
- Chafii, M.; Harbi, Y.J.; Burr, A.G. Wavelet-OFDM vs. OFDM: Performance Comparison. In Proceedings of the 23rd International Conference on Telecommunications (ICT), Thessaloniki, Greece, 16–18 May 2016. [Google Scholar]
- Yin, H.; Luo, J.; Wang, B.; Zhang, B.; Luo, S.; Kong, D. Novel Waveform Design with a Reduced Cyclic Prefix in MIMO Systems. Electronics 2024, 13, 1968. [Google Scholar] [CrossRef]
- Jaber, A.; Fadhil, A. Enhanced Model of the Wireless Multicarrier Communication OFDM Systems Applied on the FPGA Platform Based on Steganography system. Ind. J. Comp. Sci. 2025, 14. [Google Scholar] [CrossRef]
- Lee, J.; Ryu, H.G. Performance comparison between wavelet-based OFDM system and iFFT-based OFDM system. In Proceedings of the 2017 International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 18–20 October 2017; pp. 957–960. [Google Scholar]
- Zhang, J.; Wang, W.; Tang, J.; Zhao, N.; Wong, K.; Wang, X. Robust Secure Transmission for IRS-Aided NOMA Networks with Hybrid Beamforming. IEEE Trans. Wirel. Commun. 2024, 23, 3086–3101. [Google Scholar] [CrossRef]
- Mahmood, A.; Marey, M.; Nasralla, M.; Esmail, M.; Zeeshan, M. Optimal Power Allocation and Cooperative Relaying under Fuzzy Inference System (FIS) Based Downlink PD-NOMA. Electronics 2022, 11, 1338. [Google Scholar] [CrossRef]
- Mabumba, M.; Tembo, S.; Phiri, L. Cooperative Relaying in a Three User Downlink NOMA System Using Dynamic Power Allocation. Semicond. Sci. Inf. Devices 2023, 5, 26–32. [Google Scholar] [CrossRef]
- Khennoufa, F.; Khelil, A.; Rabie, K.; Kaya, H.; Li, X. An efficient hybrid energy harvesting protocol for cooperative NOMA systems: Error and outage performance. Phys. Commun. 2023, 58, 102061. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, Y.; Luo, B.; Chen, G.; Meng, W. Investigation of microseismic signal denoising using an improved wavelet adaptive thresholding method. Sci. Rep. 2022, 12, 22186. [Google Scholar] [CrossRef]
- Ilyas, D.; Hassan, S.A.; Mahmood, A.; Gidlund, M. Performance of STBC Cooperative NOMA with Imperfect Successive Interference Cancellation. In Proceedings of the IEEE International Conference on Communications Workshops, Montreal, QC, Canada, 14–23 June 2021. [Google Scholar]
- Liu, Y.; Qin, Z.; Elkashlan, M.; Ding, Z.; Nallanathan, A.; Hanzo, L. Nonorthogonal Multiple Access for 5G and Beyond. Proc. IEEE 2017, 105, 2347–2381. [Google Scholar] [CrossRef]









| Ref., Year | NOMA Type | Key Features | KPIs | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Relay | SWIPT | DWT | Multi- User | REC | EE | iSIC | SINR | Ach. Rate | BER/ SER | ||
| [30], 2019 | WNOMA | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
| [32], 2020 | WNOMA | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ |
| [33], 2021 | WNOMA | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ |
| [35], 2023 | DF CNOMA | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ |
| [34], 2023 | WNOMA | ✗ | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | ✗ | ✓ |
| [36], 2023 | HD DF CNOMA | ✓ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
| [37], 2023 | DF NOMA | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✓ |
| [38], 2023 | PD NOMA | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
| [15], 2024 | DF CNOMA | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ | ✗ |
| [39], 2024 | DF CNOMA | ✓ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ |
| This work, 2025 | SWIPT-CWNOMA | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Parameters | Values |
|---|---|
| Wavelets Level | 2 |
| Wavelet Family | Daubechies |
| Signal Bandwidth | 1000 kHz |
| Modulation Scheme | quadrature phase shift keying (QPSK) |
| Sub Carriers | 128 |
| Channel Model | Rayleigh Fading Channel |
| Path Loss Exponent | 4 |
| PF | 0.8, 0.15, 0.05 |
| Antenna Configuration | 1Tx and 1Rx |
| Interference Cancellation | SIC |
| SIC | Perfect and Imperfect |
| Energy Harvesting Efficiency | 0.10 |
| Energy Harvesting Gain | 0.7 |
| Relay Scheme | DF |
| Users | Power Factor Allocation | ||
|---|---|---|---|
| User 1 | User 2 | User 3 | |
| Scheme A | 0.8 | 0.15 | 0.05 |
| Scheme B | 0.6 | 0.25 | 0.15 |
| Scheme C | 0.5 | 0.3 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, U.; Khan, A.A.; Baig, S.; Ahmad, M.; Ribeiro, M.V. SWIPT Enabled Wavelet Cooperative NOMA: Energy-Efficient Design Under Imperfect SIC. Electronics 2025, 14, 4390. https://doi.org/10.3390/electronics14224390
Mushtaq U, Khan AA, Baig S, Ahmad M, Ribeiro MV. SWIPT Enabled Wavelet Cooperative NOMA: Energy-Efficient Design Under Imperfect SIC. Electronics. 2025; 14(22):4390. https://doi.org/10.3390/electronics14224390
Chicago/Turabian StyleMushtaq, Uzma, Asim Ali Khan, Sobia Baig, Muneeb Ahmad, and Moisés V. Ribeiro. 2025. "SWIPT Enabled Wavelet Cooperative NOMA: Energy-Efficient Design Under Imperfect SIC" Electronics 14, no. 22: 4390. https://doi.org/10.3390/electronics14224390
APA StyleMushtaq, U., Khan, A. A., Baig, S., Ahmad, M., & Ribeiro, M. V. (2025). SWIPT Enabled Wavelet Cooperative NOMA: Energy-Efficient Design Under Imperfect SIC. Electronics, 14(22), 4390. https://doi.org/10.3390/electronics14224390

