Previous Issue
Volume 15, April
 
 

Membranes, Volume 15, Issue 5 (May 2025) – 30 articles

Cover Story (view full-size image): Emerging contaminants (ECs) are recently identified substances that pose significant risks to both the environment and human health. These include antibiotics, anti-inflammatory drugs, hormones, microplastics, and various synthetic chemicals, some of which may contribute to the development of bacterial resistance. A recent study detected 35 ECs in Lagoa da Conceição, Florianópolis, Brazil, corroborating findings reported in the international literature. Conventional water treatment methods are often inadequate for the effective removal of these compounds. In contrast, the membrane distillation technique evaluated in this study demonstrated considerable potential as an innovative and efficient method for EC removal. This approach contributes to enhanced water quality and reduced environmental risk, with promising applicability on a large scale. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 1755 KiB  
Article
Microplasma-Mediated Enhancement of FD-150 Uptake in HL-60 Cells
by Mahedi Hasan, Jaroslav Kristof, Abubakar Hamza Sadiq, Md Jahangir Alam, Sadia Afrin Rimi, Farhana Begum and Kazuo Shimizu
Membranes 2025, 15(5), 156; https://doi.org/10.3390/membranes15050156 - 18 May 2025
Abstract
Lipids are the primary components of cell membranes, and their properties can be temporarily modified by microplasma-generated species to enhance drug uptake. The ability of microplasmas to influence membrane dynamics has made them effective tools for facilitating drug uptake into cells. Despite this, [...] Read more.
Lipids are the primary components of cell membranes, and their properties can be temporarily modified by microplasma-generated species to enhance drug uptake. The ability of microplasmas to influence membrane dynamics has made them effective tools for facilitating drug uptake into cells. Despite this, the effect of microplasma irradiation on cell membranes is yet to be investigated. We investigated the effects of microplasma irradiation on fluorescein isothiocyanate-dextran 150 (FD-150) uptake in Human Promyelocytic Leukemia (HL-60) cells, with the focus on transmembrane potential and lipid order changes. Plasma was applied to HL-60 cells for five, seven, and ten minutes. Fluorescence intensity measurements showed that an uptake of FD-150 increased with treatment time, before declining at ten minutes of treatment. Following treatment, transmembrane potential analysis indicated transient hyperpolarization followed by gradual depolarization until 60 min, corresponding to increased FD-150 absorption. Analysis of the lipid order showed a more disordered membrane state, with the most pronounced changes observed at ten minutes. The increase in lipid disorder increases membrane permeability while excessive disruption of the lipid order impairs cell viability. These findings demonstrate the potential of plasma-generated reactive species in modulating membrane characteristics for intracellular drug delivery. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

14 pages, 1415 KiB  
Article
Preparation of Tannic Acid-Pectin Coated PVDF Membrane for High-Efficiency Separation of Oil and Water Emulsions
by Liangku Zhai, Jiuyun Cui, Lei Lu, Hailong Wang, Can Wei, Jirong Luo and Atian Xie
Membranes 2025, 15(5), 155; https://doi.org/10.3390/membranes15050155 - 16 May 2025
Viewed by 41
Abstract
The simple preparation of superhydrophilic membranes with good stability is of great significance for efficient oil–water separation. In this work, a polyvinylidene fluoride (PVDF) membrane modified with tannic acid (TA) and pectin (PT) was developed through immersion in TA/PT solutions, facilitating the formation [...] Read more.
The simple preparation of superhydrophilic membranes with good stability is of great significance for efficient oil–water separation. In this work, a polyvinylidene fluoride (PVDF) membrane modified with tannic acid (TA) and pectin (PT) was developed through immersion in TA/PT solutions, facilitating the formation of complexes via co-deposition. The optimized PVDF@TA/PT3 membrane exhibited superhydrophilicity/superoleophobicity. The membrane achieved remarkable separation efficiencies exceeding 98.3% and fluxes ranging from 71.3 to 156.3 L m−2 h−1 for various oil–water emulsions under gravity-driven conditions. Notably, the membrane maintained exceptional durability through 10 separation cycles, retaining about 98% efficiency while exhibiting strong antifouling properties. Excellent separation performance coupled with facile fabrication protocol and chemical stability of the membrane, position the PVDF@TA/PT membrane as a technologically viable candidate for wastewater purification. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
21 pages, 1917 KiB  
Review
Uncovering the Mechanisms of Intracellular Membrane Trafficking by Reconstituted Membrane Systems
by Shuhan Chen, Yinghui Liu and Haijia Yu
Membranes 2025, 15(5), 154; https://doi.org/10.3390/membranes15050154 - 16 May 2025
Viewed by 50
Abstract
Intracellular membrane trafficking that transports proteins, lipids, and other substances between organelles is crucial for maintaining cellular homeostasis and signal transduction. The imbalance of membrane trafficking leads to various diseases. It is challenging to uncover the mechanisms of the complicated and dynamic trafficking [...] Read more.
Intracellular membrane trafficking that transports proteins, lipids, and other substances between organelles is crucial for maintaining cellular homeostasis and signal transduction. The imbalance of membrane trafficking leads to various diseases. It is challenging to uncover the mechanisms of the complicated and dynamic trafficking process at the cellular or animal levels. The applications of functional reconstituted membrane systems, which can mimic the intracellular membrane compartments in a clean and simplified pattern, tremendously facilitate our understanding of the membrane trafficking process. In this review, we summarize applications of the in vitro membrane models, including liposomes, nanodiscs, and single-vesicle platforms, in elucidating molecular mechanisms that govern vesicle fusion and non-vesicular lipid transport, the key steps of membrane trafficking. This review highlights how membrane reconstitution approaches contribute to illustrating the protein-mediated molecular choreography of cellular membranes. Full article
(This article belongs to the Special Issue Membrane Systems: From Artificial Models to Cellular Applications)
15 pages, 2533 KiB  
Article
Mesoscopic Structure of Lipid Nanoparticles Studied by Small-Angle X-Ray Scattering: A Spherical Core-Triple Shell Model Analysis
by Hao Li, Panqi Song, Yiwen Li, Shuyang Tu, Mehwish Mehmood, Liang Chen, Na Li and Qiang Tian
Membranes 2025, 15(5), 153; https://doi.org/10.3390/membranes15050153 - 16 May 2025
Viewed by 26
Abstract
Lipid nanoparticles (LNPs) are widely recognized as effective drug delivery systems for RNA therapeutics because their efficacy is critically dependent on structural organization. The mesoscopic architecture of these multicomponent systems, which is governed by interactions among ionizable lipids, structural lipids, nucleic acids, and [...] Read more.
Lipid nanoparticles (LNPs) are widely recognized as effective drug delivery systems for RNA therapeutics because their efficacy is critically dependent on structural organization. The mesoscopic architecture of these multicomponent systems, which is governed by interactions among ionizable lipids, structural lipids, nucleic acids, and stabilizers, dictates encapsulation efficiency, biodistribution, and therapeutic performance. Although small-angle X-Ray scattering (SAXS) enables nanostructure characterization, the absence of suitable analytical models has hindered LNP development. Here, we present a core-triple shell SAXS model that resolves LNP hierarchical organization, including the inner lipid layer, intermediate hydrophilic region, and outer PEG corona. For LNPs encapsulating mRNA, a Gaussian distribution model was implemented to characterize the quasi-periodic structure originating from the self-assembly of mRNA-ionizable lipid complexes. Validation studies employing Comirnaty-based LNPs demonstrated that controlled variation of nitrogen-to-phosphorus (N/P) ratios produced distinguishable structural features that establish quantitative correlations between N/P ratios and LNP mesoscopic assembled structure. The modeling framework provides pharmaceutical researchers with robust analytical tools for systematic stability assessment and precision formulation for the optimization of LNPs. These structural insights are expected to advance the development of next-generation RNA therapeutics by potentially enhancing their delivery efficiency and pharmacokinetic properties. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

14 pages, 933 KiB  
Article
Membrane ATPases and Mitochondrial Proteins in Fetal Cerebellum After Exposure to L-Glutamate During Gestation
by Adrián Tejero, David Agustín León-Navarro and Mairena Martín
Membranes 2025, 15(5), 152; https://doi.org/10.3390/membranes15050152 - 16 May 2025
Viewed by 21
Abstract
L-Glutamate (L-Glu) and its salt derivatives are widely used in the food industry as flavor enhancers. Although the consumption of these compounds is generally considered safe, some studies suggest that chronically consuming L-Glu may be associated with various disorders. In this study, Wistar [...] Read more.
L-Glutamate (L-Glu) and its salt derivatives are widely used in the food industry as flavor enhancers. Although the consumption of these compounds is generally considered safe, some studies suggest that chronically consuming L-Glu may be associated with various disorders. In this study, Wistar pregnant rats were treated daily with 1 g/L of L-Glu in their drinking water throughout the gestational period. OPA-1, DRP-1, and mitofusin 2—key proteins involved in mitochondrial fusion and fission—were analyzed by Western blot. The results showed that L-Glu exposure significantly decreased DRP-1 levels, while OPA-1 and mitofusin 2 levels were unaffected. This was accompanied by a notable decrease in mitochondrial complexes III and V. The activities of Mg2+-ATPase and Na+/K+-ATPase were also analyzed in fetal cerebellar plasma membranes. Maternal L-Glu intake significantly increased Mg2+-ATPase activity. Regarding Na+/K+-ATPase, the data showed that L-Glu exposure did not modulate the protein level or its activity. However, a positive interaction with glutamate receptors was observed in both activities, although neither AMPA nor NMDA receptors appeared to be involved. These results suggest that chronic maternal L-Glu intake during gestation modulates Mg2+-ATPase activity and protein markers of mitochondrial dynamics in the fetal cerebellum, which could affect neonatal development. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

12 pages, 6498 KiB  
Article
Fast-Rising Electric Pulses by Reducing Membrane Tension for Efficient Membrane Electroporation
by Ping Ye, Lulu Huang and Kuiwen Zhao
Membranes 2025, 15(5), 151; https://doi.org/10.3390/membranes15050151 - 16 May 2025
Viewed by 25
Abstract
Membrane electroporation is an emerging minimally invasive ablation technique being rapidly applied in the ablation treatment of tumors and heart conditions. Different rise times of electric fields lead to variations in the distribution and duration of electric field strength on the cell membrane. [...] Read more.
Membrane electroporation is an emerging minimally invasive ablation technique being rapidly applied in the ablation treatment of tumors and heart conditions. Different rise times of electric fields lead to variations in the distribution and duration of electric field strength on the cell membrane. This study investigated the effect of the electric field’s rise time on membrane electroporation characteristics using molecular dynamics simulations. The results showed that fast-rising electrical pulses can significantly reduce the membrane tension induced by the Coulomb force within a short period of time and lead to a trend of the electric field angle distribution towards smaller values below 45°, thereby effectively promoting the pore formation process. Optimizing the electric field’s rise time is an effective electroporation ablation strategy, potentially improving the efficacy of clinical cancer treatment. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

15 pages, 5927 KiB  
Article
Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation
by Kai Yuan, Rizhi Chen and Yiqing Zeng
Membranes 2025, 15(5), 150; https://doi.org/10.3390/membranes15050150 - 15 May 2025
Viewed by 53
Abstract
Membrane technology has emerged as an effective solution for the purification of oily wastewater, particularly in the separation of oil-in-water (O/W) emulsions. However, challenges, such as membrane fouling and the development of robust ceramic membranes with superior stability, continue to limit their widespread [...] Read more.
Membrane technology has emerged as an effective solution for the purification of oily wastewater, particularly in the separation of oil-in-water (O/W) emulsions. However, challenges, such as membrane fouling and the development of robust ceramic membranes with superior stability, continue to limit their widespread application. In this work, helical carbon nanotubes (HCNTs) with interlocking structures were grown in ceramic support channels through the airflow-induced chemical vapor deposition (CVD) method to fabricate membrane material with high hydrophilicity and underwater oleophobicity. The influence of CVD parameters on the growth of HCNTs and the membrane separation performance for O/W emulsions were studied systematically. The optimal HCNTs-SiC composite membrane was prepared at 600 °C, featuring a pore size of 0.95 μm and flux of 229.29 L·m−2·h−1. This membrane demonstrated exceptional purification efficiency (99.99%) for a 500 ppm O/W emulsion, along with a stable flux of 32.48 L·m−2·h−1 under a transmembrane pressure (TMP) of 1.5 bar. Furthermore, the unique membrane structure and surface heterogeneity contributed to its long service life and excellent recovery capability. This work provides a novel strategy for designing high-performance ceramic membranes for oil–water separation, offering potential solutions to current limitations in membrane technology. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

21 pages, 5143 KiB  
Article
The Ammonia Adsorption and Desorption Behavior of Nafion
by Dominik Sachse, Andreas Glüsen, Klaus Wippermann, Martin Müller, Uwe Rau and Ralf Peters
Membranes 2025, 15(5), 149; https://doi.org/10.3390/membranes15050149 - 14 May 2025
Viewed by 88
Abstract
The electrochemical nitrogen reduction reaction (eNRR) for electrochemical ammonia (NH3) synthesis is considered a promising alternative to the energy-intensive and highly CO2-emitting Haber-Bosch process. In numerous experiments, the Nafion membrane has been used as an electrolyte or separator. However, [...] Read more.
The electrochemical nitrogen reduction reaction (eNRR) for electrochemical ammonia (NH3) synthesis is considered a promising alternative to the energy-intensive and highly CO2-emitting Haber-Bosch process. In numerous experiments, the Nafion membrane has been used as an electrolyte or separator. However, Nafion adsorbs and desorbs NH3, leading to erroneous measurements and making reproducibility extremely difficult. This study systematically investigates the interaction between NH3 and Nafion, underscoring the strength of the interaction between ammonium-ions (NH4+) and protons (H+). We found that minute quantities of synthesized NH3 are prone to persist within the membrane, albeit without affecting the ion conductivity and resistivity of Nafion. Consequently, the removal of NH3 from the membrane can occur under conditions where synthesis is not viable. The objective of this work is to heighten awareness regarding the interaction between NH3 and Nafion and contribute to the attainment of reliable and reproducible outcomes in eNRRs. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

17 pages, 2921 KiB  
Article
Coenzyme Q10 Enhances Resilience of Mitochondrial-like Membranes Against Amyloidogenic Peptides
by Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia and Neville Vassallo
Membranes 2025, 15(5), 148; https://doi.org/10.3390/membranes15050148 - 13 May 2025
Viewed by 150
Abstract
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide [...] Read more.
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer’s disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

12 pages, 2694 KiB  
Article
In-Situ Measurement of Gas Permeability for Membranes in Water Electrolysis
by Shuaimin Li, Chuan Song, Li Xu, Yuxin Wang and Wen Zhang
Membranes 2025, 15(5), 147; https://doi.org/10.3390/membranes15050147 - 13 May 2025
Viewed by 200
Abstract
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable [...] Read more.
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable measurement method has been developed for evaluating the gas barrier behavior of the membranes. Hence, an in-situ electrochemical method is developed to measure the gas permeability of membranes in the actual electrolysis environment, with the supersaturated state of H2 in the electrolyte and H2 bubbles during the electrolysis process. Four membranes, including Zirfon (a state-of-the-art alkaline WE membrane), polyphenylene sulfide fabric (PPS, a commercial alkaline WE membrane), FAA-3-PK-75 (a commercial anion-exchange membrane), and BILP-PE (a home-made composite membrane) were employed as the standard samples to perform the electrochemical measurement under different current densities, temperatures, and electrolyte concentrations. The results show that an increase in electrolytic current density or temperature or a decrease in KOH concentration can increase the H2 permeability of the membrane. The two porous membranes, Zirfon and PPS, are more affected by the current density and KOH concentration, while the dense FAA-3-PK-75 and BILP-PE membranes have a stronger ability to hinder H2 permeation. Under the conditions of 80 °C, 30 wt.% KOH, 101 kPa, and 400 mA·cm−2, the hydrogen permeability (×1010 L·cm·cm−2·s−1) of Zirfon, PPS, FAA, and BILP-PE are 263, 367, 28.3, and 5.32, respectively. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

17 pages, 3066 KiB  
Article
Polymer Inclusion Membranes Based on Sulfonic Acid Derivatives as Ion Carriers for Selective Separation of Pb(II) Ions
by Cezary Kozlowski and Iwona Zawierucha
Membranes 2025, 15(5), 146; https://doi.org/10.3390/membranes15050146 - 12 May 2025
Viewed by 223
Abstract
In this paper, polymer inclusion membranes (PIMs) were created using poly(vinyl chloride)-based alkyl sulfonic acid derivatives as ion carriers and dioctyl terephthalate as a plasticizer for the selective separation of Pb(II), Cu(II), and Cd(II) ions from aqueous nitrate solutions. The ion carriers were [...] Read more.
In this paper, polymer inclusion membranes (PIMs) were created using poly(vinyl chloride)-based alkyl sulfonic acid derivatives as ion carriers and dioctyl terephthalate as a plasticizer for the selective separation of Pb(II), Cu(II), and Cd(II) ions from aqueous nitrate solutions. The ion carriers were dinonylnaphthalenesulfonic acid (DNNSA) and nonylbenzenesulfonic acid (NBSA). The influence of the carrier and the plasticizer concentration in the membrane on the transport efficiency was investigated. For the PIM system, 15% wt. of carrier (DNNSA, NBSA), 20% wt. of plasticizer, and 65% wt. of polymer poly(vinyl chloride) PVC were the optimal proportions, with which the process was the most effective. Research on the transport kinetics has shown that the transport of Pb(II) ions through PIMs containing acidic carriers adheres to a first-order kinetics equation, which is characteristic of a facilitated transport mechanism. The activation parameter for these processes suggests that the high performance of these ion carriers is associated with the immobilization of the carrier within the membrane. It was found that PIMs based on DNNSA facilitate the selective separation of Pb(II)/Cu(II) and Pb(II)/Cd(II) mixtures, achieving high separation factors. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Inclusion Membranes)
Show Figures

Figure 1

13 pages, 4315 KiB  
Article
Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance
by Enling Tian, Yinping Bi and Yiwei Ren
Membranes 2025, 15(5), 145; https://doi.org/10.3390/membranes15050145 - 12 May 2025
Viewed by 214
Abstract
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the [...] Read more.
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the membrane, but it can also improve the filtration performance and shelf life of the polymer membrane. Graphene oxide/poly(meta-phenylene isophthalamide) (GO/PMIA) nanofiber membranes were prepared by means of an electrospinning technique. The effects of adding different amounts of GO on the PMIA nanofiber membranes were studied. The results indicated that the GO had a strong affinity with the PMIA matrix by forming hydrogen bonds. The composite nanofiber membranes exhibited better filtration and thermostability performance than those of the pristine membrane. As the loading amount of GO was 1.0 wt%, the air filtration efficiency of the composite nanofiber membrane was 97.79%, the pressure drop was 85.45 Pa and the glass transition temperature was 299.8 °C. Full article
(This article belongs to the Special Issue Prospects for Nanocomposite Membrane Applications)
Show Figures

Figure 1

29 pages, 10395 KiB  
Article
Performance Analysis of DCMD Modules Enhanced with 3D-Printed Turbulence Promoters of Various Hydraulic Diameters
by Chii-Dong Ho, Ming-Shen Chiang and Choon Aun Ng
Membranes 2025, 15(5), 144; https://doi.org/10.3390/membranes15050144 - 10 May 2025
Viewed by 177
Abstract
Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant [...] Read more.
Theoretical and experimental investigations were conducted to predict permeate flux in direct contact membrane distillation (DCMD) modules equipped with turbulence promoters. These DCMD modules operate at moderate temperatures (45 °C to 60 °C) using a hot saline feed stream while maintaining a constant temperature for the cold inlet stream. The temperature difference between the two streams creates a gradient across the membrane surfaces, leading to thermal energy dissipation due to temperature polarization effects. To address this challenge, 3D-printed turbulence promoters were incorporated into the DCMD modules. Acting as eddy promoters, these structures aim to reduce the temperature polarization effect, thereby enhancing permeate flux and improving pure water productivity. Various designs of promoter-filled channels—with differing array configurations and geometric shapes—were implemented to optimize flow characteristics and further mitigate polarization effects. Theoretical predictions were validated against experimental results across a range of process parameters, including inlet temperatures, volumetric flow rates, hydraulic diameters, and flow configurations, with deviations within 10%. The DCMD module with the inserted 3D-printed turbulence promoters in the flow channel could provide a relative permeate flux enhancement up to 91.73% under the descending diamond-type module in comparison with the module of using the no-promoter-filled channel. The modeling equations demonstrated technical feasibility, particularly with the use of both descending and ascending hydraulic diameters of 3D-printed turbulence promoters inserted into the saline feed stream, as compared to a module using an empty channel. Full article
(This article belongs to the Special Issue Solar-Assisted Thermal-Driven Membrane Distillation)
Show Figures

Figure 1

50 pages, 7741 KiB  
Article
X-Ray Crystal and Cryo-Electron Microscopy Structure Analysis Unravels How the Unique Thylakoid Lipid Composition Is Utilized by Cytochrome b6f for Driving Reversible Proteins’ Reorganization During State Transitions
by Radka Vladkova
Membranes 2025, 15(5), 143; https://doi.org/10.3390/membranes15050143 - 8 May 2025
Viewed by 290
Abstract
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease [...] Read more.
The rapid regulatory mechanism of light-induced state transitions (STs) in oxygenic photosynthesis is particularly appealing for membrane-based applications. This interest stems from the unique ability of the thylakoid membrane protein cytochrome b6f (cytb6f) to increase or decrease its hydrophobic thickness (dP) in parallel with the reduction or oxidation of the PQ pool induced by changes in light quality. This property appears to be the long-sought biophysical driver behind the reorganizations of membrane proteins during STs. This study decisively advances the hydrophobic mismatch (HMM) model for cytb6f-driven STs by thoroughly analyzing thirteen X-ray crystal and eight cryo-electron microscopy cytb6f structures. It uncovers the lipid nanoenvironments that cytb6f, with different hydrophobic thicknesses, selectively attracts. Under optimal, stationary conditions for photosynthesis in low light, when there is hydrophobic matching between the hydrophobic thicknesses of cytb6f dP and that of the bulk thylakoid lipid phase dL, dP = dL, cytb6f predominantly binds to anionic lipids—several phosphatidylglycerol (PG) molecules and one sulfoquinovosyldiacylglycerol (SQDG) molecule. Upon the induction of the transition to State 2, when dP increases and induces a positive HMM (dP > dL), the neutral, non-bilayer-forming lipid monogalactosyldiacylglycerol (MGDG) replaces some of the bound PGs. Upon the induction of the transition to State 1, when dP decreases and induces a negative HMM (dP < dL), PGs and SQDG detach from their binding sites, and two neutral, bilayer-forming lipids such as digalactosyldiacylglycerol (DGDG) occupy two sites. Additionally, this research uncovers two lipid-mediated signaling pathways from Chla to the center of flexibility, the Phe/Tyr124fg-loop-suIV residue—one of which involves β-carotene. This study identifies two novel types of lipid raft-like nanodomains that are devoid of typical components, such as sphingomyelin and cholesterol. These findings firmly validate the HMM model and underscore the STs as the first recognized functional process that fully utilizes the unique and evolutionarily conserved composition of just four thylakoid lipid classes. This research contributes to our understanding of membrane dynamics in general and STs in particular. It introduces a novel and simple approach for reversible protein reorganization driven purely by biophysical mechanisms, with promising implications for various membrane-based applications. Full article
Show Figures

Figure 1

15 pages, 4044 KiB  
Article
Development and Application of a Novel Ultrafiltration Membrane for Efficient Removal of Dibutyl Phthalate from Wastewater
by Qiang Zhou, Meiling Chen, Yushan Jiang, Linnan Zhang and Yanhong Wang
Membranes 2025, 15(5), 142; https://doi.org/10.3390/membranes15050142 - 7 May 2025
Viewed by 313
Abstract
This study successfully developed a novel molecularly imprinted ultrafiltration membrane (MIUM) for energy-efficient and selective removal of dibutyl phthalate (DBP) from wastewater. Guided by Gaussian simulations, methacrylic acid (MAA) was identified as the optimal functional monomer, achieving the strongest binding energy (ΔE = [...] Read more.
This study successfully developed a novel molecularly imprinted ultrafiltration membrane (MIUM) for energy-efficient and selective removal of dibutyl phthalate (DBP) from wastewater. Guided by Gaussian simulations, methacrylic acid (MAA) was identified as the optimal functional monomer, achieving the strongest binding energy (ΔE = −0.0698 a.u.) with DBP at a 1:6 molar ratio, providing a foundation for precise cavity construction. DBP-imprinted polymers (MIPs) synthesized via bulk polymerization were integrated into polysulfone membranes through phase inversion. The optimized MIUM (81.27% polymer content) exhibited exceptional performance under low-pressure operation (0.2 MPa), with a water flux of 111.49 L·m2·h−1 and 92.87% DBP rejection, representing a 43% energy saving compared to conventional nanofiber membranes requiring 0.4 MPa. Structural characterization confirmed synergistic effects between imprinted cavities and membrane transport properties as the key mechanism for efficient separation. Notably, MIUM demonstrated remarkable selectivity, achieving 91.57% retention for DBP while showing limited affinity for structurally analogous phthalates (e.g., diethyl/diisononyl phthalates). The membrane maintained > 70% retention after 10 elution cycles, highlighting robust reusability. These findings establish a paradigm for molecular simulation-guided design of selective membranes, offering an innovative solution for low-energy removal of endocrine disruptors. The work advances wastewater treatment technologies by balancing high permeability, targeted pollutant removal, and operational sustainability, with direct implications for mitigating environmental risks and improving water quality management. Full article
Show Figures

Figure 1

20 pages, 4427 KiB  
Article
Separation and Characterization of Heterogeneity Among Various Sizes of Outer Membrane Vesicles Derived from the Probiotic Escherichia coli Nissle 1917
by Ning Li, Hongbo Xin and Keyu Deng
Membranes 2025, 15(5), 141; https://doi.org/10.3390/membranes15050141 - 5 May 2025
Viewed by 401
Abstract
Outer membrane vesicles (OMVs) are extracellular vesicles secreted by Gram-negative bacteria with diameters of 20–250 nm. OMVs contain various biologically active substances from their parent bacteria, such as proteins, lipids, and nucleic acids. Escherichia coli Nissle 1917 (EcN) is a Gram-negative probiotic that [...] Read more.
Outer membrane vesicles (OMVs) are extracellular vesicles secreted by Gram-negative bacteria with diameters of 20–250 nm. OMVs contain various biologically active substances from their parent bacteria, such as proteins, lipids, and nucleic acids. Escherichia coli Nissle 1917 (EcN) is a Gram-negative probiotic that resides in the human intestine. EcN-derived OMVs are pivotal in modulating intestinal immune responses. However, few studies have addressed the heterogeneity of EcN-derived OMVs in terms of size, significantly limiting the research on their clinical applications. Currently, there are a lack of feasible methods for obtaining EcN-derived OMVs of different sizes. To address this knowledge gap, we developed a membrane filtration method to isolate EcN-derived OMVs of varying sizes. In this study, we first used gradient filtration to isolate high-purity EcN-derived OMVs and conducted a proteomic analysis. Subsequently, we used membrane filtration to separate the EcN-derived OMVs by size. We successfully obtained EcN-derived OMVs of three specific sizes: <50 nm, 50–100 nm, and 100–300 nm. We then performed proteomic analyses of these EcN-derived OMVs and compared their protein profiles. Finally, we compared the ability of each EcN-derived OMV type to induce RAW264.7 macrophages to secrete the pro-inflammatory factor interleukin (IL)-1β and the anti-inflammatory factor IL-10. The EcN-derived OMVs contained 646 different proteins overall; those of different sizes contained different protein types. Among them, the EcN-derived OMVs in the <50 nm group contained significantly fewer proteins (262 different types in total) than those in the 50–100 nm (1603 types) and 100–300 nm (1568 types) groups. Furthermore, the <50 nm group had fewer membrane proteins (40) than the 50–100 nm (215) and 100–300 nm (209) groups. We also found that RAW264.7 macrophages secreted different concentrations of IL-1β and IL-10 following co-incubation with the three EcN-derived OMV types. The 50–100 nm EcN-derived OMV group showed a stronger effect in terms of inducing inflammatory cytokine secretion compared to the other two groups. This study provides direct experimental evidence that EcN-derived OMVs of different sizes exhibit heterogeneous properties. Full article
Show Figures

Figure 1

16 pages, 546 KiB  
Review
Applications of Reverse Osmosis and Nanofiltration Membrane Process in Wine and Beer Industry
by Yogesh Kumar, Atul Khalangre, Rajat Suhag and Alfredo Cassano
Membranes 2025, 15(5), 140; https://doi.org/10.3390/membranes15050140 - 2 May 2025
Viewed by 394
Abstract
Reverse osmosis (RO) and nanofiltration (NF) membranes are traditionally employed in wine and beer production for concentration, clarification, and stabilization. Their applications now extend to dealcoholization, addressing rising demand for low-alcohol beverages. RO/NF selectively reduce ethanol while retaining volatile aromas and non-volatile flavors, [...] Read more.
Reverse osmosis (RO) and nanofiltration (NF) membranes are traditionally employed in wine and beer production for concentration, clarification, and stabilization. Their applications now extend to dealcoholization, addressing rising demand for low-alcohol beverages. RO/NF selectively reduce ethanol while retaining volatile aromas and non-volatile flavors, outperforming thermal methods that degrade sensory profiles. This review examines RO/NF roles in alcohol adjustment, sugar modification, and by-product recovery, emphasizing mechanisms and efficiency. Operational challenges such as membrane fouling (polysaccharides, polyphenols), selectivity–permeation flux trade-offs, and energy costs are assessed. By balancing tradition with innovation, RO/NF technologies offer transformative potential for meeting health and sustainability goals in beverage industries. However, gaps in standardization, sensory consistency, and cost-effectiveness necessitate targeted research to optimize industrial adoption and consumer acceptance. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

14 pages, 1767 KiB  
Article
Toluidine Blue for the Determination of Binding of Anionic Polysaccharides to Lipid Raft Domains by Absorption Spectroscopy
by Sandra Gębczyńska, Julia Gdowska, Agata Mikos, Iga Gawrońska, Teresa Janas, Aleksander Czogalla and Tadeusz Janas
Membranes 2025, 15(5), 139; https://doi.org/10.3390/membranes15050139 - 2 May 2025
Viewed by 272
Abstract
The complexes of negatively charged polysaccharides with lipid vesicles have been shown to have applications in medicine, bioremediation, water purification, and construction of nano-biosensors. This article presents research on the formation of these complexes based on the interactions between three types of liposomes, [...] Read more.
The complexes of negatively charged polysaccharides with lipid vesicles have been shown to have applications in medicine, bioremediation, water purification, and construction of nano-biosensors. This article presents research on the formation of these complexes based on the interactions between three types of liposomes, DOPC liposomes (which contain a lipid bilayer in the liquid-disordered (Ld) state), RAFT liposomes (which contain liquid-ordered (Lo) lipid raft domains surrounded by lipids in the Ld state) and SPH–CHL liposomes (which contain a lipid bilayer in the Lo state), and two selected anionic polysaccharides, polysialic acid (PSA) and polygalacturonic acid (PGA). The analysis was conducted using a toluidine blue (TB) probe and the absorption spectroscopy technique. In contrast to DOPC and SPH–CHL liposomes, binding of negatively charged PSA or PGA chains to RAFT liposomes induced a TB absorption maximum shift from 630 nm to 560 nm. The obtained results indicate that toluidine blue can be applied for monitoring the formation of these nano-complexes, and that the boundaries between Ld/Lo domains within membranes in RAFT liposomes can significantly enhance the binding affinity of negatively charged polysaccharides to the lipid bilayer surface. The observed metachromatic shift in TB absorption suggests that negatively charged PSA and PGA chains interact with the Ld/Lo boundaries within RAFT liposome membranes. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Graphical abstract

29 pages, 3853 KiB  
Review
Membrane Technology for Valuable Resource Recovery from Palm Oil Mill Effluent (POME): A Review
by Que Nguyen Ho, Woei Jye Lau, Juhana Jaafar, Mohd Hafiz Dzarfan Othman and Naoko Yoshida
Membranes 2025, 15(5), 138; https://doi.org/10.3390/membranes15050138 - 2 May 2025
Viewed by 455
Abstract
Palm oil mill effluent (POME), a byproduct of palm oil processing, has substantial resource recovery potential. Its rich biodegradable content supports methane (CH4) production via anaerobic digestion, enabling renewable energy generation. Additionally, the significant water content of POME can be reclaimed [...] Read more.
Palm oil mill effluent (POME), a byproduct of palm oil processing, has substantial resource recovery potential. Its rich biodegradable content supports methane (CH4) production via anaerobic digestion, enabling renewable energy generation. Additionally, the significant water content of POME can be reclaimed for use in boiler feed, irrigation, and drinking water. However, selecting appropriate technologies to recover valuable resources from POME is challenging, particularly for the purification and upgrading of biogas. Membrane technologies offer an effective approach for transforming POME treatment from an energy-intensive process into a resource recovery system, supporting the decarbonization of palm oil production and advancing global sustainability objectives. This technique is cost-effective and ecofriendly for biogas purification and water reclamation. For biogas purification and upgrading, membrane systems offer the lowest capital and operational costs at 5.654 USD/m3, compared to other technologies, such as 6.249 USD/m3 for water scrubbers and 6.999 USD/m3 for chemical absorbers. This review primarily explores the potential of membranes for gas purification from POME and examines their integration with other processes to develop advanced systems, such as ultrasonicated membrane anaerobic systems and membrane anaerobic systems, to enhance biogas production. In addition, water reclamation from POME is discussed, with ultrafiltration membranes emerging as the most promising candidates. Proton exchange membranes, such as Nafion, are used extensively in microbial fuel cells to improve electricity generation, and this is also summarized. Finally, challenges and future perspectives are highlighted, emphasizing the broader potential of membrane technology in POME wastewater resource recovery. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

14 pages, 4249 KiB  
Article
Effect of Microfiltration Membrane Configuration in Microplastics Recovery from Wastewater Treatment Effluent
by Rubén Rodríguez-Alegre, Sergi Durán-Videra, Laura Pérez Megías, Montserrat Pérez-Moya, Julia García-Montaño, Carlos Andecochea Saiz and Xialei You
Membranes 2025, 15(5), 137; https://doi.org/10.3390/membranes15050137 - 2 May 2025
Viewed by 350
Abstract
Water scarcity has driven the use of wastewater treatment plant (WWTP) effluents as reclaimed water, highlighting the need to overcome challenges such as the presence of emerging contaminants, particularly microplastics (MPs), which WWTPs are unable to effectively remove. Membrane-based processes, such as microfiltration, [...] Read more.
Water scarcity has driven the use of wastewater treatment plant (WWTP) effluents as reclaimed water, highlighting the need to overcome challenges such as the presence of emerging contaminants, particularly microplastics (MPs), which WWTPs are unable to effectively remove. Membrane-based processes, such as microfiltration, have demonstrated high efficiency in the removal of suspended solids, and their application for MP removal is currently under investigation. This study assesses the influence of microfiltration membrane spacer size (1 mil and 80 mil) and geometry—diamond and corrugated—on MP recovery performance, using synthetic wastewaters with varying MPs concentrations. The results indicate the superior performance of large corrugated and small diamond-shaped membranes, as both exhibited the highest and comparable permeate flux, with no MP retention within the membrane element. All microfiltration membranes achieved an 80% recovery of the influent as safe reclaimed water and demonstrated an MP recovery efficiency exceeding 99%, with 100% rejection for fragments and up to 98% rejection for fibres. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

12 pages, 3895 KiB  
Article
Electrodialysis Metathesis for the Production of Potassium Phosphate
by Shichang Xu, Zhen Zhang, Long Zhang, Lixin Xie and Wen Zhang
Membranes 2025, 15(5), 136; https://doi.org/10.3390/membranes15050136 - 1 May 2025
Viewed by 202
Abstract
Potassium phosphate (K3PO4) is a common inorganic compound with broad applications in agriculture and industry. Although the traditional thermal method of preparing K3PO4 by reacting phosphoric acid with potassium hydroxide can obtain high-quality products, it consumes [...] Read more.
Potassium phosphate (K3PO4) is a common inorganic compound with broad applications in agriculture and industry. Although the traditional thermal method of preparing K3PO4 by reacting phosphoric acid with potassium hydroxide can obtain high-quality products, it consumes a lot of energy and has high costs. This study explores the process of preparing K3PO4 by Electrodialysis metathesis (EDM). This process uses sodium phosphate (Na3PO4) and potassium chloride (KCl) as raw materials and can prepare K3PO4 continuously. Under the optimized conditions (operating voltage of 8 V, 0.35 mol/L Na3PO4 and 1.05 mol/L KCl in raw flow with the rate of 30 mL/min), the product purity of K3PO4 reaches more than 97%, the energy consumption is 1191 kW·h/t, and the cost is about 8314 CNY/ton. Compared with traditional methods, EDM has the advantages of low cost, simple operation, and high utilization rate. This study shows that EDM technology has significant potential in preparing K3PO4. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 16840 KiB  
Article
Hydrogen and Ammonia Co-Adsorption on M(1 1 1) and Pd3M(1 1 1) (M = Pd, Ru, Ag, Au, Cu) Surfaces
by Didrik R. Småbråten, Marie D. Strømsheim and Thijs A. Peters
Membranes 2025, 15(5), 135; https://doi.org/10.3390/membranes15050135 - 1 May 2025
Viewed by 312
Abstract
Ammonia (NH3) represents a promising zero-emission fuel in hydrogen fuel cells. Membrane reactors for NH3 decomposition based on Pd-alloys have demonstrated high NH3 conversion, high hydrogen diffusivity, and high hydrogen selectivity, which allows for the production of high-purity H [...] Read more.
Ammonia (NH3) represents a promising zero-emission fuel in hydrogen fuel cells. Membrane reactors for NH3 decomposition based on Pd-alloys have demonstrated high NH3 conversion, high hydrogen diffusivity, and high hydrogen selectivity, which allows for the production of high-purity H2 without the need for gas separation or purification. However, it is observed that Pd-alloy membranes are to a various degree prone to H2 flux inhibition in the presence of NH3. Hence, finding proper means to tailor the surface adsorption properties through, e.g., alloying is imperative to further improve the technology. In the current work, hydrogen and ammonia co-adsorption phenomena on M(1 1 1) and Pd3M(1 1 1) (M = Pd, Ru, Ag, Au, Cu) surfaces are studied using density functional theory calculations. It is shown that the surface adsorption properties are strongly dependent on the surface composition, which can be linked to the corresponding electronic structure at the membrane surface. Full article
Show Figures

Figure 1

13 pages, 3991 KiB  
Article
Effect of Folded Structures on Interfacial Solar-Driven Seawater Desalination
by Shufang Zhu, Yuke Niu and Xu Yan
Membranes 2025, 15(5), 134; https://doi.org/10.3390/membranes15050134 - 1 May 2025
Viewed by 249
Abstract
Currently, solar-driven interface evaporation for seawater desalination is believed to be an effective way to overcome freshwater shortage. To improve the efficiency of solar-driven interfacial evaporators, designing the evaporator’s structure is essential. In this study, we proposed a folded structure solar-driven interfacial evaporator [...] Read more.
Currently, solar-driven interface evaporation for seawater desalination is believed to be an effective way to overcome freshwater shortage. To improve the efficiency of solar-driven interfacial evaporators, designing the evaporator’s structure is essential. In this study, we proposed a folded structure solar-driven interfacial evaporator with electrospun recycled PET/carbon nanotube fibrous membranes. The as-spun membranes were folded into 4, 8, and 16 petals. The results suggested that F@8 (fold with eight petals) had the best solar-driven evaporation performance, with a photothermal conversion efficiency of 90.59% and an evaporation rate of 1.31 kg·m−2·h−1, due to its lower light projection area and greater light absorption. The evaporation performance remained stable after 10 cycles. In addition, the concentration of ions in the freshwater collected after desalination was 2~3 orders of magnitude lower than that before desalination. These results indicate that a properly designed folded structure can effectively enhance evaporators through changing the light projection area and absorption. This approach might provide an effective way to optimize the structure of interfacial solar-driven evaporators. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

9 pages, 2749 KiB  
Communication
Carbonation of Ammonium Diuranate Filtrate to Enhance Uranium Rejection by Nanofiltration
by Runci Wang, Zhongwei Yuan, Xiang Meng, Taihong Yan and Weifang Zheng
Membranes 2025, 15(5), 133; https://doi.org/10.3390/membranes15050133 - 1 May 2025
Viewed by 262
Abstract
A commercial polymeric nanofiltration membrane (NF270, DuPont) was employed for uranium removal from ammonium diuranate filtrate (ADUF). Carbonate supplementation through ammonium carbonate addition enhanced uranium rejection via formation of uranyl–carbonate coordination complexes. Systematic speciation analysis of uranium species in ADUF was conducted, coupled [...] Read more.
A commercial polymeric nanofiltration membrane (NF270, DuPont) was employed for uranium removal from ammonium diuranate filtrate (ADUF). Carbonate supplementation through ammonium carbonate addition enhanced uranium rejection via formation of uranyl–carbonate coordination complexes. Systematic speciation analysis of uranium species in ADUF was conducted, coupled with calculation of the concentration polarization modulus to optimize ammonium carbonate dosage. The experimental results demonstrated that with 680 mg/L ammonium carbonate addition, the permeate uranium concentration decreased from 1.2 mg/L to 0.64 mg/L. This study confirms the technical feasibility of ADUF carbonation pretreatment for improving uranium retention efficiency in nanofiltration processes, achieving 46.7% reduction in uranium permeation flux. Full article
Show Figures

Figure 1

32 pages, 1900 KiB  
Review
Development and Investigation of a New Polysulfone Dialyzer with Increased Membrane Hydrophilicity
by Adam M. Zawada, Bettina Griesshaber, Bertram Ottillinger, Ansgar Erlenkötter, Nathan Crook, Skyler Boyington, Manuela Stauss-Grabo, James P. Kennedy and Thomas Lang
Membranes 2025, 15(5), 132; https://doi.org/10.3390/membranes15050132 - 30 Apr 2025
Viewed by 492
Abstract
Innovation in dialysis care is fundamental to improve well-being and outcomes of patients with end-stage kidney disease. The dialyzer is the core element of dialysis treatments, as it largely defines which substances are removed from the patient’s body. Moreover, its large surface size [...] Read more.
Innovation in dialysis care is fundamental to improve well-being and outcomes of patients with end-stage kidney disease. The dialyzer is the core element of dialysis treatments, as it largely defines which substances are removed from the patient’s body. Moreover, its large surface size is the major place of interaction of the patient’s blood with artificial surfaces and thus may lead to undesired effects such as inflammation or coagulation. In the present article we summarize the development path for a new dialyzer, including in vitro and clinical evidence generation. We use the example of the novel FX CorAL dialyzer, which has recently entered European and US markets, to show which steps are needed to develop and characterize a new dialyzer. The FX CorAL dialyzer includes a new hydrophilic membrane, which features reduced protein adsorption, sustained performance, and an improved hemocompatibility profile, characterized in numerous in vitro and clinical studies. Safety evaluations revealed a favorable profile, with low incidences of adverse device effects. Insights gained from both in vitro and clinical studies contribute to the advancement of dialyzer development, ultimately leading to improved patient care. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Membranes—Preparation and Applications)
Show Figures

Figure 1

2 pages, 634 KiB  
Correction
Correction: Zahid et al. Fabrication and Characterization of Sulfonated Graphene Oxide-Doped Polymeric Membranes with Improved Anti-Biofouling Behavior. Membranes 2021, 11, 563
by Muhammad Zahid, Anum Rashid, Saba Akram, H. M. Fayzan Shakir, Zulfiqar Ahmad Rehan, Talha Javed, Rubab Shabbir and Mahmoud M. Hessien
Membranes 2025, 15(5), 131; https://doi.org/10.3390/membranes15050131 - 29 Apr 2025
Viewed by 212
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Microfluidics and MEMS Technology for Membranes)
Show Figures

Figure 5

16 pages, 4236 KiB  
Article
Halloysite-Nanotube-Mediated High-Flux γ-Al2O3 Ultrafiltration Membranes for Semiconductor Wastewater Treatment
by Shining Geng, Dazhi Chen, Zhenghua Guo, Qian Li, Manyu Wen, Jiahui Wang, Kaidi Guo, Jing Wang, Yu Wang, Liang Yu, Xinglong Li and Xiaohu Li
Membranes 2025, 15(5), 130; https://doi.org/10.3390/membranes15050130 - 27 Apr 2025
Viewed by 315
Abstract
The wastewater from Chemical Mechanical Polishing (CMP) generated in the semiconductor industry contains a significant concentration of suspended particles and necessitates rigorous treatment to meet environmental standards. Ceramic ultrafiltration membranes offer significant advantages in treating such high-solid wastewater, including a high separation efficiency, [...] Read more.
The wastewater from Chemical Mechanical Polishing (CMP) generated in the semiconductor industry contains a significant concentration of suspended particles and necessitates rigorous treatment to meet environmental standards. Ceramic ultrafiltration membranes offer significant advantages in treating such high-solid wastewater, including a high separation efficiency, environmental friendliness, and straightforward cleaning and maintenance. However, the preparation of high-precision ceramic ultrafiltration membranes with a smaller pore size (usually <20 nm) is very complicated, requiring the repeated construction of transition layers, which not only increases the time and economic costs of manufacturing but also leads to an elevated transport resistance. In this work, halloysite nanotubes (HNTs), characterized by their high aspect ratio and lumen structure, were utilized to create a high-porosity transition layer using a spray-coating technique, onto which a γ-Al2O3 ultrafiltration selective layer was subsequently coated. Compared to the conventional α-Al2O3 transition multilayers, the HNTs-derived transition layer not only had an improved porosity but also had a reduced pore size. As such, this strategy tended to simplify the preparation process for the ceramic membranes while reducing the transport resistance. The resulting high-flux γ-Al2O3 ultrafiltration membranes were used for the high-efficiency treatment of CMP wastewater, and the fouling behaviors were investigated. As expected, the HNTs-mediated γ-Al2O3 ultrafiltration membranes exhibited excellent water flux (126 LMH) and high rejection (99.4%) of inorganic particles in different solvent systems. In addition, such membranes demonstrated good operation stability and regeneration performance, showing promise for their application in the high-efficiency treatment of CMP wastewater in the semiconductor industry. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

13 pages, 2280 KiB  
Article
The Enrichment of Acetic Acid Using an Integrated Reverse Osmosis–Electrodialysis Process
by Shichang Xu, Long Zhang, Zhen Zhang, Lixin Xie and Wen Zhang
Membranes 2025, 15(5), 129; https://doi.org/10.3390/membranes15050129 - 27 Apr 2025
Viewed by 316
Abstract
In this study, the integrated process of reverse osmosis (RO) and electrodialysis (ED) is developed to concentrate the dilute solution of acetic acid (HAc). The key parameters, such as RO pressure, ED voltage, and ED volume ratio, were systematically evaluated and the operation [...] Read more.
In this study, the integrated process of reverse osmosis (RO) and electrodialysis (ED) is developed to concentrate the dilute solution of acetic acid (HAc). The key parameters, such as RO pressure, ED voltage, and ED volume ratio, were systematically evaluated and the operation conditions of the processes were optimized. Under an operating pressure of 5 MPa, RO can enrich low-concentration HAc from 1.5 wt.% to 6.5% wt.% and the energy consumption is 0.37 kW·h·kg−1. Next, RO-concentrated water was used as the ED feed and the first ED with a volume ratio of the concentrated to dilute chamber of 1:4 was carried out under the conditions of a flow rate of 30 L/h and an operating voltage of 12 V; the HAc concentration reached 12.50 wt.%. The second ED with a volume ratio of 1:5 made the final HAc concentration reach 19.02 wt.%. This study shows that using RO-concentrated water instead of initial water for the ED process can reduce water energy consumption and cost markedly, and the RO–ED integrated process can efficiently pre-enrich low-concentration HAc aqueous solution, and the enriched HAc concentration meets the requirements for the further distillation of HAc. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

15 pages, 4108 KiB  
Article
Improved CO2/CH4 Separation in Carbon Molecular Sieve Membranes via Copolymerization of Long-Chain Flexible Structures
by Yingxiu Wu, Haiyan Guo, Bingyu Zhao, Yuxiu Yu, Yaodong Liu and Shouchun Zhang
Membranes 2025, 15(5), 128; https://doi.org/10.3390/membranes15050128 - 27 Apr 2025
Viewed by 337
Abstract
Carbon molecular sieve (CMS) membranes demonstrate considerable advantages and significant potential in the separation of CO2 and CH4. Nevertheless, current research predominantly emphasizes the enhancement of CMS membranes through the incorporation of rigid structures and chain spatial stacking. The role [...] Read more.
Carbon molecular sieve (CMS) membranes demonstrate considerable advantages and significant potential in the separation of CO2 and CH4. Nevertheless, current research predominantly emphasizes the enhancement of CMS membranes through the incorporation of rigid structures and chain spatial stacking. The role of flexible structures in this context remains inadequately understood. To address this gap, we introduced long-chain polydimethylsiloxane (PDMS) and copolymerized it to synthesize polyimide that combines rigid and flexible frameworks. This approach enabled us to investigate the impact of flexible structures on the structure and properties of carbon membranes by varying the PDMS content. The findings indicated that flexible PDMS significantly influenced the thermal decomposition behavior of polyimide and facilitated in situ silicon doping within the carbon membranes, thereby modifying the pore characteristics of the carbon film. Specifically, with a 10% addition of PDMS, the CO2 permeability of the CMS membrane reached 9556 Barrer, representing an enhancement of 103.9% and surpassing the 2019 upper bound for CO2/CH4 separation. Furthermore, the effect of pyrolysis temperature was also examined. Ultimately, this study offers a novel perspective on regulating the structural and performance characteristics of carbon membranes through the integration of long-chain flexible structures. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
Show Figures

Figure 1

18 pages, 5086 KiB  
Article
Addressing Contaminants of Emerging Concern in Aquaculture: A Vacuum Membrane Distillation Approach
by Claudio Marcos Eugênio Malaghini, Jussara Garcez, Rodrigo Hoff, Alan Ambrosi and Katia Rezzadori
Membranes 2025, 15(5), 127; https://doi.org/10.3390/membranes15050127 - 24 Apr 2025
Viewed by 298
Abstract
The presence of contaminants of emerging concern (CECs) in agricultural and fisheries water has raised significant environmental and health concerns. Vacuum membrane distillation (VMD) has shown promise as an effective method for removing non-volatile contaminants, such as CECs, from water. This study presents [...] Read more.
The presence of contaminants of emerging concern (CECs) in agricultural and fisheries water has raised significant environmental and health concerns. Vacuum membrane distillation (VMD) has shown promise as an effective method for removing non-volatile contaminants, such as CECs, from water. This study presents a novel application of a bench-scale VMD unit to treat water from Lagoa da Conceição, Florianópolis, Brazil, using microporous membranes (0.22 µm) under the following optimized conditions: 75 °C, a flow rate of 24 L·h−1, and a vacuum pressure of −640 mmHg. The system demonstrated remarkable performance in removing several key antimicrobials, including sulfamethoxazole, ciprofloxacin, azithromycin, and clindamycin (500 μg·L−1), with rejection rates of 99.1%, 98%, 99.9%, and 99%, respectively, and an average flux of 7.08 L·m−2·h−1. Additionally, the VMD unit achieved a substantial 99.98% salt rejection. Ecotoxicity tests revealed low toxicity for sulfamethoxazole, ciprofloxacin, and azithromycin but high toxicity for clindamycin, while human risk assessment indicated moderate-to-high risks for ciprofloxacin and clindamycin. The findings highlight the potential of VMD as an effective and sustainable technology for the removal of CECs and biocompounds, enhancing water safety and reducing environmental hazards. This study offers a promising solution for addressing water contamination on a broader scale. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

Previous Issue
Back to TopTop