Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Fabrication of HCNTs-SiC Separation Membrane
2.3. Characterization
2.4. Separation Performance
3. Results and Discussion
3.1. Effect of Fabrication Parameters on HCNTs’ Growth
3.2. Microstructure of HCNTs
3.3. Surface Parameters of HCNTs-SiC Composite Membrane
3.4. Membrane Structure of HCNTs-SiC Composite Membrane
3.5. Separation Performance of the HCNTs-SiC Membrane
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, E.R.; Bierkens, M.F.P.; van Vliet, M.T.H. Current and future global water scarcity intensifies when accounting for surface water quality. Nat. Clim. Change 2024, 14, 629–635. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Chen, H.; Wang, H.; Wada, Y.; Kummu, M.; Gosling, S.N.; Yang, H.; Pokhrel, Y.; Ciais, P. Timing the first emergence and disappearance of global water scarcity. Nat. Commun. 2024, 15, 7129–7140. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.A.; Goh, P.S.; Karim, Z.A.; Ismail, A.F. Thin film composite membrane for oily waste water treatment: Recent advances and challenges. Membranes 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, J.; He, C.; He, L.; Li, X.; Sui, H. The formation, stabilization and separation of oil–water emulsions: A review. Processes 2022, 10, 738. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, Z.; Chen, H.; Xiang, Q.; Wang, Q.; Xie, C.; Liu, Y. Superhydrophobic polyurethane sponge based on sepiolite for efficient oil/water separation. J. Hazard. Mater. 2022, 434, 128833–128848. [Google Scholar] [CrossRef]
- Deng, Y.; Dai, M.; Wu, Y.; Peng, C. Emulsion system, demulsification and membrane technology in oil–water emulsion separation: A comprehensive review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1254–1278. [Google Scholar] [CrossRef]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Kurniawan, T.A.; Li, T.; Dzinun, H.; Imtiaz, A. Treatment of oily wastewater using photocatalytic membrane reactors: A critical review. J. Environ. Chem. Eng. 2022, 10, 108539–108565. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Lemos, A.T.; Keramea, P.; Dantas, R.C.; da Rocha, R.P.; Crespo, N.M.; Sylaios, G.; Jovane, L.; Santos, I.G.d.S.; Montone, R.C.; et al. Offshore oil spills in brazil: An extensive review and further development. Mar. Pollut. Bull. 2024, 205, 116663–116680. [Google Scholar] [CrossRef]
- Cao, Z.; Hao, T.; Wang, P.; Zhang, Y.; Cheng, B.; Yuan, T.; Meng, J. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation. Chem. Eng. J. 2017, 309, 30–40. [Google Scholar] [CrossRef]
- Wong, S.; Lim, J.; Dol, S. Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions. J. Pet. Sci. Eng. 2015, 135, 498–504. [Google Scholar] [CrossRef]
- Ramanamane, N.; Pita, M.; Sob, B. Advanced low-cost natural materials for high-performance oil-water filtration membranes: Achievements, challenges, and future directions. Membranes 2024, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yang, X.; Wang, Y.; Qi, Y.; Zhang, Y.; Luo, J.; Cui, P.; Jiang, W. A review on oil/water emulsion separation membrane material. J. Environ. Chem. Eng. 2022, 10, 107257–107280. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, R.; Guo, Z. Bionic functional membranes for separation of oil-in-water emulsions. Friction 2024, 12, 1909–1928. [Google Scholar] [CrossRef]
- Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.; Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep. Purif. Technol. 2016, 170, 377–407. [Google Scholar] [CrossRef]
- Demirbas, A.; Bamufleh, H.S.; Edris, G.; Alalayah, W.M. Treatment of contaminated wastewater. Pet. Sci. Technol. 2017, 35, 883–889. [Google Scholar] [CrossRef]
- Sanghamitra, P.; Mazumder, D.; Mukherjee, S. Treatment of wastewater containing oil and grease by biological method- a review. J. Environ. Sci. Health A 2021, 56, 394–412. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T.; Lu, C.; Gong, C.; Miao, M.; Wei, Z.; Wang, Y. Efficient oil-in-water emulsion separation in the low-cost bauxite ceramic membranes with hierarchically oriented straight pores. Sep. Purif. Technol. 2022, 303, 122244–1222254. [Google Scholar] [CrossRef]
- Kuang, C.; Li, Y.; Liu, D.; Li, Y.; Sun, D.; Chen, J.; Ding, D.; Xiao, G. An Al2O3@ZnO membrane for oil-in-water emulsion separation with photocatalytic regeneration prepared via a simple deposition route. J. Water Process. Eng. 2024, 67, 106254–106264. [Google Scholar] [CrossRef]
- Rashad, M.; Logesh, G.; Sabu, U.; Balasubramanian, M. A novel monolithic mullite microfiltration membrane for oil-in-water emulsion separation. J. Membr. Sci. 2021, 620, 118857–118868. [Google Scholar] [CrossRef]
- Shi, L.; Lei, Y.; Huang, J.; Shi, Y.; Yi, K.; Zhou, H. Ultrafiltration of oil-in-water emulsions using ceramic membrane: Roles played by stabilized surfactants. Colloids Surf. A 2019, 583, 123948–123958. [Google Scholar] [CrossRef]
- Bolto, B.; Zhang, J.; Wu, X.; Xie, Z. A review on current development of membranes for oil removal from wastewaters. Membranes 2020, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Sayegh, A.; Merkert, S.; Zimmermann, J.; Horn, H.; Saravia, F. Treatment of hydrothermal-liquefaction wastewater with crossflow UF for oil and particle removal. Membranes 2022, 12, 255. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, G.; Gu, X.; Zhao, P.; Gao, Y. Recycling of waste attapulgite to prepare ceramic membranes for efficient oil-in-water emulsion separation. J. Eur. Ceram. Soc. 2022, 42, 2505–2515. [Google Scholar] [CrossRef]
- Xu, M.; Xu, C.; Rakesh, K.P.; Cui, Y.; Yin, J.; Chen, C.; Wang, S.; Chen, B.; Zhu, L. Hydrophilic sic hollow fiber membranes for low fouling separation of oil-in-water emulsions with high flux. RSC Adv. 2020, 10, 4832–4839. [Google Scholar] [CrossRef]
- Hua, F.L.; Tsang, Y.F.; Wang, Y.J.; Chan, S.Y.; Chua, H.; Sin, S.N. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem. Eng. J. 2007, 128, 169–175. [Google Scholar] [CrossRef]
- Gao, S.J.; Shi, Z.; Bin Zhang, W.; Zhang, F.; Jin, J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 2014, 8, 6344–6352. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Xu, H.; Yu, X.; Jiang, L.; Wang, X. Multifunctional PVDF nanofiber materials for high efficiency dual separation of emulsions and unidirectional water penetration. Appl. Surf. Sci. 2023, 636, 157808–157819. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, T.C.; Ouyang, L.; Yuan, S. Switchable superlyophobic PAN@Co-MOF membrane for on-demand emulsion separation and efficient soluble dye degradation. Sep. Purif. Technol. 2024, 331, 12573–12582. [Google Scholar] [CrossRef]
- Yin, X.; He, Y.; Li, H.; Ma, X.; Zhou, L.; He, T.; Li, S. One-step in-situ fabrication of carbon nanotube/stainless steel mesh membrane with excellent anti-fouling properties for effective gravity-driven filtration of oil-in-water emulsions. J. Colloid Interface Sci. 2021, 592, 87–94. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, X.; Xu, M.; Yang, F.; Guiver, M.D.; Dong, Y. Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets. J. Membr. Sci. 2019, 582, 140–150. [Google Scholar] [CrossRef]
- Gu, J.; Ji, L.; Xiao, P.; Zhang, C.; Li, J.; Yan, L.; Chen, T. Recent progress in superhydrophilic carbon-based composite membranes for oil/water emulsion separation. ACS Appl. Mater. Interfaces 2021, 13, 36679–36696. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, F.; Zeng, P.; Su, Y. Recent development of special wettability filtration membrane for selective oil/water separation applications: A review. Prog. Org. Coat. 2025, 198, 108885–108910. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Kurnia, K.A.; Siagian, U.W.; Ismadji, S.; Wenten, I.G. Membrane fouling and fouling mitigation in oil–water separation: A review. J. Environ. Chem. Eng. 2022, 10, 107532–107555. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J. Mater. Chem. 2016, 4, 15749–15770. [Google Scholar] [CrossRef]
- Wang, D.-C.; Lei, Y.; Jiao, W.; Liu, Y.-F.; Mu, C.-H.; Jian, X. A review of helical carbon materials structure, synthesis and applications. Rare Met. 2021, 40, 3–19. [Google Scholar] [CrossRef]
- Wu, J.; He, J.; Odegard, G.M.; Nagao, S.; Zheng, Q.; Zhang, Z. Giant stretchability and reversibility of tightly wound helical carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 13775–13785. [Google Scholar] [CrossRef]
- Zhang, J.-C.; Tang, Y.-J.; Yi, Y.; Ma, K.-F.; Zhou, M.-J.; Wu, W.-D.; Wang, C.-Y. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays. New Carbon Mater. 2016, 31, 568–573. [Google Scholar] [CrossRef]
- Sang, Y.; Zhao, Y.; Hao, W.; Miao, L.; Li, J.; Zhao, G.; Li, J.; Sui, C.; He, X.; Wang, C. Ultrastretchable helical carbon nanotube-woven film. ACS Appl. Mater. Interfaces 2024, 16, 10475–10484. [Google Scholar] [CrossRef]
- Vijayan, R.; Ghazinezami, A.; Taklimi, S.R.; Khan, M.Y.; Askari, D. The geometrical advantages of helical carbon nanotubes for high-performance multifunctional polymeric nanocomposites. Compos. Part B-Eng. 2019, 156, 28–42. [Google Scholar] [CrossRef]
- Sharifian, A.; Fareghi, P.; Baghani, M.; Odegard, G.M.; van Duin, A.C.; Rajabpour, A.; Wu, J.; Baniassadi, M. Unveiling novel structural complexity of spiral carbon nanomaterials: Review on mechanical, thermal, and interfacial behaviors via molecular dynamics. J. Mol. Struct. 2025, 1321, 139837–139860. [Google Scholar] [CrossRef]
- Poli, A.; Sfeir, R.; Santos, A.F.; Jacob, M.; Andrey, P.; Batiot-Dupeyrat, C.; Teychene, B. Backwashable dynamic membrane made of anchored CNT on SiC microfiltration membranes applied to oil in water emulsion filtration. Sep. Purif. Technol. 2021, 278, 119566. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Xu, C.; Hou, Z.; Hu, Z. Thermal annealing-enhanced bioelectrocatalysis in membraneless glucose/oxygen biofuel cell based on hydrophilic carbon fibers. Chem. Electro. Chem. 2021, 8, 4529–4536. [Google Scholar] [CrossRef]
- Han, F.; Xu, C.; Wei, W.; Zhang, F.; Xu, P.; Zhong, Z.; Xing, W. Corrosion behaviors of porous reaction-bonded silicon carbide ceramics incorporated with Cao. Ceram. Int. 2018, 44, 12225–12232. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Baykal, A.; Senel, M.; Unal, B.; Karaoğlu, E.; Sözeri, H.; Toprak, M.S. Acid functionalized multiwall carbon nanotube/magnetite (MWCNT)-COOH/Fe3O4 hybrid: Synthesis, characterization and conductivity evaluation. J. Inorg. Organomet. Polym. Mater. 2013, 23, 726–735. [Google Scholar] [CrossRef]
- Chen, X.; Hong, L.; Xu, Y.; Ong, Z.W. Ceramic pore channels with inducted carbon nanotubes for removing oil from water. ACS Appl. Mater. Interfaces 2012, 4, 1909–1918. [Google Scholar] [CrossRef]
Sample | Flexural Strength (MPa) | Mass (g) |
---|---|---|
SiC support without treatment | 18.8 ± 0.5 | 3.21 ± 0.5 |
HCNTs-SiC without treatment | 19.5 ± 0.4 | 3.66 ± 0.4 |
HCNTs-SiC after 15 min of ultrasonic treatment | 19.5 ± 0.4 | 3.63 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, K.; Chen, R.; Zeng, Y. Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation. Membranes 2025, 15, 150. https://doi.org/10.3390/membranes15050150
Yuan K, Chen R, Zeng Y. Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation. Membranes. 2025; 15(5):150. https://doi.org/10.3390/membranes15050150
Chicago/Turabian StyleYuan, Kai, Rizhi Chen, and Yiqing Zeng. 2025. "Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation" Membranes 15, no. 5: 150. https://doi.org/10.3390/membranes15050150
APA StyleYuan, K., Chen, R., & Zeng, Y. (2025). Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation. Membranes, 15(5), 150. https://doi.org/10.3390/membranes15050150