Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Fabrication of HCNTs-SiC Separation Membrane
2.3. Characterization
2.4. Separation Performance
3. Results and Discussion
3.1. Effect of Fabrication Parameters on HCNTs’ Growth
3.2. Microstructure of HCNTs
3.3. Surface Parameters of HCNTs-SiC Composite Membrane
3.4. Membrane Structure of HCNTs-SiC Composite Membrane
3.5. Separation Performance of the HCNTs-SiC Membrane
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, E.R.; Bierkens, M.F.P.; van Vliet, M.T.H. Current and future global water scarcity intensifies when accounting for surface water quality. Nat. Clim. Change 2024, 14, 629–635. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Chen, H.; Wang, H.; Wada, Y.; Kummu, M.; Gosling, S.N.; Yang, H.; Pokhrel, Y.; Ciais, P. Timing the first emergence and disappearance of global water scarcity. Nat. Commun. 2024, 15, 7129–7140. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.A.; Goh, P.S.; Karim, Z.A.; Ismail, A.F. Thin film composite membrane for oily waste water treatment: Recent advances and challenges. Membranes 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhou, J.; He, C.; He, L.; Li, X.; Sui, H. The formation, stabilization and separation of oil–water emulsions: A review. Processes 2022, 10, 738. [Google Scholar] [CrossRef]
- Pang, Y.; Yu, Z.; Chen, H.; Xiang, Q.; Wang, Q.; Xie, C.; Liu, Y. Superhydrophobic polyurethane sponge based on sepiolite for efficient oil/water separation. J. Hazard. Mater. 2022, 434, 128833–128848. [Google Scholar] [CrossRef]
- Deng, Y.; Dai, M.; Wu, Y.; Peng, C. Emulsion system, demulsification and membrane technology in oil–water emulsion separation: A comprehensive review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1254–1278. [Google Scholar] [CrossRef]
- Samuel, O.; Othman, M.H.D.; Kamaludin, R.; Kurniawan, T.A.; Li, T.; Dzinun, H.; Imtiaz, A. Treatment of oily wastewater using photocatalytic membrane reactors: A critical review. J. Environ. Chem. Eng. 2022, 10, 108539–108565. [Google Scholar] [CrossRef]
- Zacharias, D.C.; Lemos, A.T.; Keramea, P.; Dantas, R.C.; da Rocha, R.P.; Crespo, N.M.; Sylaios, G.; Jovane, L.; Santos, I.G.d.S.; Montone, R.C.; et al. Offshore oil spills in brazil: An extensive review and further development. Mar. Pollut. Bull. 2024, 205, 116663–116680. [Google Scholar] [CrossRef]
- Cao, Z.; Hao, T.; Wang, P.; Zhang, Y.; Cheng, B.; Yuan, T.; Meng, J. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation. Chem. Eng. J. 2017, 309, 30–40. [Google Scholar] [CrossRef]
- Wong, S.; Lim, J.; Dol, S. Crude oil emulsion: A review on formation, classification and stability of water-in-oil emulsions. J. Pet. Sci. Eng. 2015, 135, 498–504. [Google Scholar] [CrossRef]
- Ramanamane, N.; Pita, M.; Sob, B. Advanced low-cost natural materials for high-performance oil-water filtration membranes: Achievements, challenges, and future directions. Membranes 2024, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yang, X.; Wang, Y.; Qi, Y.; Zhang, Y.; Luo, J.; Cui, P.; Jiang, W. A review on oil/water emulsion separation membrane material. J. Environ. Chem. Eng. 2022, 10, 107257–107280. [Google Scholar] [CrossRef]
- Chen, C.; Jiang, R.; Guo, Z. Bionic functional membranes for separation of oil-in-water emulsions. Friction 2024, 12, 1909–1928. [Google Scholar] [CrossRef]
- Zolfaghari, R.; Fakhru’l-Razi, A.; Abdullah, L.C.; Elnashaie, S.S.; Pendashteh, A. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep. Purif. Technol. 2016, 170, 377–407. [Google Scholar] [CrossRef]
- Demirbas, A.; Bamufleh, H.S.; Edris, G.; Alalayah, W.M. Treatment of contaminated wastewater. Pet. Sci. Technol. 2017, 35, 883–889. [Google Scholar] [CrossRef]
- Sanghamitra, P.; Mazumder, D.; Mukherjee, S. Treatment of wastewater containing oil and grease by biological method- a review. J. Environ. Sci. Health A 2021, 56, 394–412. [Google Scholar] [CrossRef]
- Wang, J.; Liu, T.; Lu, C.; Gong, C.; Miao, M.; Wei, Z.; Wang, Y. Efficient oil-in-water emulsion separation in the low-cost bauxite ceramic membranes with hierarchically oriented straight pores. Sep. Purif. Technol. 2022, 303, 122244–1222254. [Google Scholar] [CrossRef]
- Kuang, C.; Li, Y.; Liu, D.; Li, Y.; Sun, D.; Chen, J.; Ding, D.; Xiao, G. An Al2O3@ZnO membrane for oil-in-water emulsion separation with photocatalytic regeneration prepared via a simple deposition route. J. Water Process. Eng. 2024, 67, 106254–106264. [Google Scholar] [CrossRef]
- Rashad, M.; Logesh, G.; Sabu, U.; Balasubramanian, M. A novel monolithic mullite microfiltration membrane for oil-in-water emulsion separation. J. Membr. Sci. 2021, 620, 118857–118868. [Google Scholar] [CrossRef]
- Shi, L.; Lei, Y.; Huang, J.; Shi, Y.; Yi, K.; Zhou, H. Ultrafiltration of oil-in-water emulsions using ceramic membrane: Roles played by stabilized surfactants. Colloids Surf. A 2019, 583, 123948–123958. [Google Scholar] [CrossRef]
- Bolto, B.; Zhang, J.; Wu, X.; Xie, Z. A review on current development of membranes for oil removal from wastewaters. Membranes 2020, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Sayegh, A.; Merkert, S.; Zimmermann, J.; Horn, H.; Saravia, F. Treatment of hydrothermal-liquefaction wastewater with crossflow UF for oil and particle removal. Membranes 2022, 12, 255. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, G.; Gu, X.; Zhao, P.; Gao, Y. Recycling of waste attapulgite to prepare ceramic membranes for efficient oil-in-water emulsion separation. J. Eur. Ceram. Soc. 2022, 42, 2505–2515. [Google Scholar] [CrossRef]
- Xu, M.; Xu, C.; Rakesh, K.P.; Cui, Y.; Yin, J.; Chen, C.; Wang, S.; Chen, B.; Zhu, L. Hydrophilic sic hollow fiber membranes for low fouling separation of oil-in-water emulsions with high flux. RSC Adv. 2020, 10, 4832–4839. [Google Scholar] [CrossRef]
- Hua, F.L.; Tsang, Y.F.; Wang, Y.J.; Chan, S.Y.; Chua, H.; Sin, S.N. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem. Eng. J. 2007, 128, 169–175. [Google Scholar] [CrossRef]
- Gao, S.J.; Shi, Z.; Bin Zhang, W.; Zhang, F.; Jin, J. Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions. ACS Nano 2014, 8, 6344–6352. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Xu, H.; Yu, X.; Jiang, L.; Wang, X. Multifunctional PVDF nanofiber materials for high efficiency dual separation of emulsions and unidirectional water penetration. Appl. Surf. Sci. 2023, 636, 157808–157819. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Zhang, T.C.; Ouyang, L.; Yuan, S. Switchable superlyophobic PAN@Co-MOF membrane for on-demand emulsion separation and efficient soluble dye degradation. Sep. Purif. Technol. 2024, 331, 12573–12582. [Google Scholar] [CrossRef]
- Yin, X.; He, Y.; Li, H.; Ma, X.; Zhou, L.; He, T.; Li, S. One-step in-situ fabrication of carbon nanotube/stainless steel mesh membrane with excellent anti-fouling properties for effective gravity-driven filtration of oil-in-water emulsions. J. Colloid Interface Sci. 2021, 592, 87–94. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, X.; Xu, M.; Yang, F.; Guiver, M.D.; Dong, Y. Fabrication of mullite ceramic-supported carbon nanotube composite membranes with enhanced performance in direct separation of high-temperature emulsified oil droplets. J. Membr. Sci. 2019, 582, 140–150. [Google Scholar] [CrossRef]
- Gu, J.; Ji, L.; Xiao, P.; Zhang, C.; Li, J.; Yan, L.; Chen, T. Recent progress in superhydrophilic carbon-based composite membranes for oil/water emulsion separation. ACS Appl. Mater. Interfaces 2021, 13, 36679–36696. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sun, F.; Zeng, P.; Su, Y. Recent development of special wettability filtration membrane for selective oil/water separation applications: A review. Prog. Org. Coat. 2025, 198, 108885–108910. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Kurnia, K.A.; Siagian, U.W.; Ismadji, S.; Wenten, I.G. Membrane fouling and fouling mitigation in oil–water separation: A review. J. Environ. Chem. Eng. 2022, 10, 107532–107555. [Google Scholar] [CrossRef]
- Peng, Y.; Guo, Z. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. J. Mater. Chem. 2016, 4, 15749–15770. [Google Scholar] [CrossRef]
- Wang, D.-C.; Lei, Y.; Jiao, W.; Liu, Y.-F.; Mu, C.-H.; Jian, X. A review of helical carbon materials structure, synthesis and applications. Rare Met. 2021, 40, 3–19. [Google Scholar] [CrossRef]
- Wu, J.; He, J.; Odegard, G.M.; Nagao, S.; Zheng, Q.; Zhang, Z. Giant stretchability and reversibility of tightly wound helical carbon nanotubes. J. Am. Chem. Soc. 2013, 135, 13775–13785. [Google Scholar] [CrossRef]
- Zhang, J.-C.; Tang, Y.-J.; Yi, Y.; Ma, K.-F.; Zhou, M.-J.; Wu, W.-D.; Wang, C.-Y. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays. New Carbon Mater. 2016, 31, 568–573. [Google Scholar] [CrossRef]
- Sang, Y.; Zhao, Y.; Hao, W.; Miao, L.; Li, J.; Zhao, G.; Li, J.; Sui, C.; He, X.; Wang, C. Ultrastretchable helical carbon nanotube-woven film. ACS Appl. Mater. Interfaces 2024, 16, 10475–10484. [Google Scholar] [CrossRef]
- Vijayan, R.; Ghazinezami, A.; Taklimi, S.R.; Khan, M.Y.; Askari, D. The geometrical advantages of helical carbon nanotubes for high-performance multifunctional polymeric nanocomposites. Compos. Part B-Eng. 2019, 156, 28–42. [Google Scholar] [CrossRef]
- Sharifian, A.; Fareghi, P.; Baghani, M.; Odegard, G.M.; van Duin, A.C.; Rajabpour, A.; Wu, J.; Baniassadi, M. Unveiling novel structural complexity of spiral carbon nanomaterials: Review on mechanical, thermal, and interfacial behaviors via molecular dynamics. J. Mol. Struct. 2025, 1321, 139837–139860. [Google Scholar] [CrossRef]
- Poli, A.; Sfeir, R.; Santos, A.F.; Jacob, M.; Andrey, P.; Batiot-Dupeyrat, C.; Teychene, B. Backwashable dynamic membrane made of anchored CNT on SiC microfiltration membranes applied to oil in water emulsion filtration. Sep. Purif. Technol. 2021, 278, 119566. [Google Scholar] [CrossRef]
- Li, G.; Li, Z.; Xu, C.; Hou, Z.; Hu, Z. Thermal annealing-enhanced bioelectrocatalysis in membraneless glucose/oxygen biofuel cell based on hydrophilic carbon fibers. Chem. Electro. Chem. 2021, 8, 4529–4536. [Google Scholar] [CrossRef]
- Han, F.; Xu, C.; Wei, W.; Zhang, F.; Xu, P.; Zhong, Z.; Xing, W. Corrosion behaviors of porous reaction-bonded silicon carbide ceramics incorporated with Cao. Ceram. Int. 2018, 44, 12225–12232. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Baykal, A.; Senel, M.; Unal, B.; Karaoğlu, E.; Sözeri, H.; Toprak, M.S. Acid functionalized multiwall carbon nanotube/magnetite (MWCNT)-COOH/Fe3O4 hybrid: Synthesis, characterization and conductivity evaluation. J. Inorg. Organomet. Polym. Mater. 2013, 23, 726–735. [Google Scholar] [CrossRef]
- Chen, X.; Hong, L.; Xu, Y.; Ong, Z.W. Ceramic pore channels with inducted carbon nanotubes for removing oil from water. ACS Appl. Mater. Interfaces 2012, 4, 1909–1918. [Google Scholar] [CrossRef]
Sample | Flexural Strength (MPa) | Mass (g) |
---|---|---|
SiC support without treatment | 18.8 ± 0.5 | 3.21 ± 0.5 |
HCNTs-SiC without treatment | 19.5 ± 0.4 | 3.66 ± 0.4 |
HCNTs-SiC after 15 min of ultrasonic treatment | 19.5 ± 0.4 | 3.63 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, K.; Chen, R.; Zeng, Y. Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation. Membranes 2025, 15, 150. https://doi.org/10.3390/membranes15050150
Yuan K, Chen R, Zeng Y. Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation. Membranes. 2025; 15(5):150. https://doi.org/10.3390/membranes15050150
Chicago/Turabian StyleYuan, Kai, Rizhi Chen, and Yiqing Zeng. 2025. "Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation" Membranes 15, no. 5: 150. https://doi.org/10.3390/membranes15050150
APA StyleYuan, K., Chen, R., & Zeng, Y. (2025). Fabrication of Composite Membrane by Constructing Helical Carbon Nanotubes in Ceramic Support Channels for Efficient Emulsion Separation. Membranes, 15(5), 150. https://doi.org/10.3390/membranes15050150