Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance
Abstract
:1. Introduction
2. Experimental Section and Methods
2.1. Materials and Chemicals
2.2. Preparation of Spinning Solution
2.3. Preparation of GO/PMIA Composite Nanofiber Membranes
2.4. Characterization of Composite Nanofiber Membranes
3. Results and Discussion
3.1. Structure of PMIA/GO Composite Nanofiber Membrane
3.2. Morphology of PMIA/GO Composite Nanofiber Membrane
3.3. Crystallinity of PMIA/GO Composite Nanofiber Membrane
3.4. Wettability of PMIA/GO Composite Nanofiber Membrane
3.5. Air Filtration Performance of PMIA/GO Composite Nanofiber Membrane
3.6. Thermal Performance of PMIA/GO Composite Nanofiber Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.Y.; Han, L.J.; Wei, H.Y.; Tan, X.R.; Zhou, W.Q.; Li, W.F.; Qian, Y.G. Linking urbanization and air quality together: A review and a perspective on the future sustainable urban development. J. Clean. Prod. 2022, 346, 130988. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Brook, R.D.; Salerno, P.R.V.O.; Bourges-Sevenier, B.; Landrigan, P.; Nieuwenhuijsen, M.J.; Munzel, T.; Deo, S.V.; Al-Kindi, S. Air pollution exposure and cardiometabolic risk. Lancet Diabetes Endocrinol. 2024, 12, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Al-Kindi, S.G.; Brook, R.D.; Biswal, S.; Rajagopalan, S. Environmental determinants of cardiovascular disease: Lessons learned from air pollution. Nat. Rev. Cardiol. 2020, 17, 656–672. [Google Scholar] [CrossRef]
- Pozzer, A.; Anenberg, S.C.; Dey, S.; Haines, A.; Lelieveld, J.; Chowdhury, S. Mortality attributable to ambient air pollution: A review of global estimates. Geohealth 2023, 7, e2022GH000711. [Google Scholar] [CrossRef]
- Bonfim, D.P.F.; Cruz, F.G.S.; Guerra, V.G.; Aguiar, M.L. Development of filter media by electrospinning for air filtration of nanoparticles from PET bottles. Membranes 2021, 11, 293. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.Y.; Li, X.; Iradukunda, Y.; Liu, F.S.; Li, Z.Q.; Gao, H.L.; Shi, G.F. Preparation of electrospun active molecules membrane application to atmospheric free radicals. Membranes 2022, 12, 480. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, L.; Chen, J.; Chen, X.; Niu, Z.; Lei, T.; Li, C.; Zhao, J. Chemical characteristics of PM 2.5 during haze episodes in the urban of Fuzhou, China. Particuology 2013, 11, 264–272. [Google Scholar] [CrossRef]
- Zhao, X.L.; Wang, S.; Yin, X.; Yu, J.Y.; Ding, B. Slip-effect functional air filter for efficient purification of PM2.5. Sci. Rep. 2016, 6, 35472. [Google Scholar] [CrossRef]
- Liu, H.; Cao, C.; Huang, J.; Chen, Z.; Chen, G.; Lai, Y. Progress on particulate matter filtration technology: Basic concepts, advanced materials, and performances. Nanoscale 2020, 12, 437–453. [Google Scholar] [CrossRef]
- Liang, W.; Xu, Y.; Li, X.; Wang, X.X.; Zhang, H.D.; Yu, M.; Ramakrishna, S.; Long, Y.Z. Transparent polyurethane nanofiber air filter for high-efficiency PM2.5 capture. Nanoscale Res. Lett. 2019, 14, 361. [Google Scholar] [CrossRef]
- Heidenreich, S. Hot gas filtration—A review. Fuel 2013, 104, 83–94. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.F.; Wang, L.C.; Nie, J.; Ma, G.P. Multilayer electrospun nanofibrous membranes with antibacterial property for air filtration. Appl. Surf. Sci. 2020, 515, 145962. [Google Scholar] [CrossRef]
- Muller, A.K.; Xu, Z.K.; Greiner, A. Preparation and performance assessment of low-pressure affinity membranes based on functionalized, electrospun polyacrylates for gold nanoparticle filtration. ACS Appl. Mater. Interfaces 2021, 13, 15659–15667. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Liu, T.X.; Zhou, X.P.; Tjiu, W.C. Electrospinning fabrication of high strength and toughness polyimide nanofiber membranes containing multiwalled carbon nanotubes. Phys. Chem. B 2009, 113, 9741–9748. [Google Scholar] [CrossRef]
- Vieille, B.; Aucher, J.; Taleb, L. Influence of temperature on the behavior of carbon fiber fabrics reinforced PPS laminates. Mater. Sci. Eng. A 2009, 517, 51–60. [Google Scholar] [CrossRef]
- van Rooyen, L.J.; Bissett, H.; Khoathane, M.C.; Karger-Kocsis, J. Preparation of PTFE/graphene nanocomposites by compression moulding and free sintering: A guideline. J. Appl. Polym. Sci. 2016, 133, 43369. [Google Scholar] [CrossRef]
- Liu, Y.L.; Chen, W.D.; Yu, Z.; Fang, Y.J.; Zhou, X.Y.; Wang, Y.; Tang, Z.B. In situ enhancive and closed-loop chemical recyclable high-performance aromatic polyamides from lignin-derived ferulic acid. ACS Sustain. Chem. Eng. 2025, 13, 1106–1117. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, Y.; Xie, J.; Jiang, Q.; Qiu, Y. Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM 2.5 particles. Powder Technol. 2016, 292, 54–63. [Google Scholar] [CrossRef]
- Wang, S.H.; Sun, L.G.; Zhang, B.; Wang, C.; Li, Z.W.; He, J.Z.; Zhang, J.; Xie, Y. Preparation of monodispersed silica spheres and electrospinning of poly(vinyl alcohol)/silica composite nanofibers. Polym. Compos. 2011, 32, 347–352. [Google Scholar] [CrossRef]
- Chen, L.C.; Lei, S.; Wang, M.Z.; Yang, J.; Ge, X.W. Fabrication of macroporous polystyrene/graphene oxide composite monolith and its adsorption property for tetracycline. Chin. Chem. Lett. 2016, 27, 511–517. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 2010, 43, 2357–2363. [Google Scholar] [CrossRef]
- Chen, D.; Wang, R.; Tjiu, W.W.; Liu, T. High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers. Compos. Sci. Technol. 2011, 71, 1556–1562. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, X.; Ding, B.; Lin, J.; Hu, J.; Si, Y.; Yu, J.; Sun, G. Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties. RSC Adv. 2011, 1, 1482. [Google Scholar] [CrossRef]
- Sotto, A.; Boromand, A.; Zhang, R.; Luis, P.; Arsuaga, J.M.; Kim, J.; Van der Bruggen, B. Effect of nanoparticle aggregation at low concentrations of TiO2 on the hydrophilicity, morphology, and fouling resistance of PES-TiO2 membranes. J. Colloid Interface Sci. 2011, 363, 540–550. [Google Scholar] [CrossRef]
- Niu, X.J.; Li, Q.B.; Hu, Y.; Tan, Y.S.; Liu, C.F. Properties of cement-based materials incorporating nano-clay and calcined nano-clay: A review. Constr. Build. Mater. 2021, 284, 122820. [Google Scholar] [CrossRef]
- Zinadini, S.; Zinatizadeh, A.A.; Rahimi, M.; Vatanpour, V.; Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301. [Google Scholar] [CrossRef]
- Trabelsi, M.; Kharrat, M.; Dammak, M. On the friction and wear behaviors of PTFE based composites filled with MoS2 and/or bronze particles. Trans. Indian Inst. Met. 2015, 69, 1119–1128. [Google Scholar] [CrossRef]
- Zhang, X.; Loo, L.S. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites. Macromolecules 2009, 42, 5196–5207. [Google Scholar] [CrossRef]
- Khabibrakhmanov, A.I.; Sorokin, P.B. Electronic properties of graphene oxide: Nanoroads towards novel applications. Nanoscale 2022, 14, 4131–4144. [Google Scholar] [CrossRef]
- Wang, K.; Han, P.J.; Liu, S.M.; Han, R.K.; Niu, J.Y.; Liu, F.; Yu, H.Q.; Cao, L.; Li, X.; Cao, Y.; et al. Polystyrene/polymethylhydrosiloxane multiscale electrospun nanofiber membranes for air filtration. ACS Appl. Nano Mater. 2023, 6, 21293–21302. [Google Scholar] [CrossRef]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Tian, F.; Ding, B.; Yu, J.; Wang, J.; Raza, A. Facile synthesis of robust amphiphobic nanofibrous membranes. Appl. Surf. Sci. 2013, 276, 750–755. [Google Scholar] [CrossRef]
- Aditya Kiran, S.; Lukka Thuyavan, Y.; Arthanareeswaran, G.; Matsuura, T.; Ismail, A.F. Impact of graphene oxide embedded polyethersulfone membranes for the effective treatment of distillery effluent. Chem. Eng. J. 2016, 286, 528–537. [Google Scholar] [CrossRef]
- Wen, Y.Y.; Hu, Q.; Wang, X.Y.; Zhang, W.; Chen, M.X. Electrospun poly(m-phenyleneisophthalamide)/TiO2 nanofiber membranes for particulate matter removal under hightemperature conditions. ACS Appl. Polym. Mater. 2024, 6, 1633–1644. [Google Scholar] [CrossRef]
- Liu, C.Y.; Du, G.C.; Guo, Q.Q.; Li, R.G.; He, H.W.; Li, C.M. Synergistic antibacterial performance of rosemarinic acid-graphene oxide in electrospun polylactic acid membranes for air filtration. J. Polym. Res. 2023, 30, 448. [Google Scholar] [CrossRef]
- Bae, J.; Kim, H.; Kim, K.S.; Choi, H. Effect of asymmetric wettability in nanofiber membrane by electrospinning technique on separation of oil/water emulsion. Chemosphere 2018, 204, 235–242. [Google Scholar] [CrossRef]
- Liu, H.L.; Hu, W.X.; Sun, Y.M.; Xiong, H.Y.; Huang, Q.L.; Chen, K.K. Structural design of CA/SiO2 hybrid nanofiber membranes with semi-interpenetrating structure and switching wettability. Sep. Purif. Technol. 2024, 349, 127750. [Google Scholar] [CrossRef]
- Liu, L.; Kong, L.; Wang, H.; Niu, R.; Shi, H. Effect of graphene oxide nanoplatelets on the thermal characteristics and shape-stabilized performance of poly(styrene-co-maleic anhydride)-g-octadecanol comb-like polymeric phase change materials. Sol. Energy Mater. Sol. Cells 2016, 149, 40–48. [Google Scholar] [CrossRef]
- Lin, J.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S.S. Mechanical robust and thermal tolerant nanofibrous membrane for nanoparticles removal from aqueous solution. Mater. Lett. 2012, 69, 82–85. [Google Scholar] [CrossRef]
- Villar-Rodil, S.; Paredes, J.I.; Martínez-Alonso, A.; Tascón, J.M.D. Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of nomex aramid fibers. Chem. Mater. 2001, 13, 4297–4304. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Y.X.; Sun, J.P.; Xiao, H.; Shi, M.W.; Long, J.J. Investigation of the influence of supercritical carbon dioxide treatment on meta-aramid fiber: Thermal decomposition behavior and kinetics. J. CO2 Util. 2020, 37, 85–96. [Google Scholar] [CrossRef]
- Chat, K.; Tu, W.K.; Unni, A.B.; Adrjanowicz, K. Influence of tacticity on the glass-transition dynamics of poly(methylmethacrylate) (PMMA) under elevated pressure and geometrical nanoconfinement. Macromolecules 2021, 54, 8526–8537. [Google Scholar] [CrossRef]
- Lu, H.; Nutt, S. Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 2003, 36, 4010–4016. [Google Scholar] [CrossRef]
- Dai, X.; Xu, J.; Guo, X.; Lu, Y.; Shen, D.; Zhao, N.; Luo, X.; Zhang, X. Study on structure and orientation action of polyurethane nanocomposites. Macromolecules 2004, 37, 5615–5623. [Google Scholar] [CrossRef]
- Li, Y.; Ishida, H. A study of morphology and intercalation kinetics of polystyrene-organoclay nanocomposites. Macromolecules 2005, 38, 6513–6519. [Google Scholar] [CrossRef]
Membrane Code. | PMIA ɑ (wt%) | DMAc ɑ (wt%) | LiCl ɑ (wt%) | GO β (wt%) |
---|---|---|---|---|
PG0 | 10 | 88 | 2 | 0 |
PG1 | 9.9960 | 87.9648 | 1.9992 | 0.4 |
PG2 | 9.9900 | 87.9121 | 1.9980 | 1.0 |
PG3 | 9.9800 | 87.8244 | 1.9960 | 2.0 |
PG4 | 9.9701 | 87.7368 | 1.9940 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, E.; Bi, Y.; Ren, Y. Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance. Membranes 2025, 15, 145. https://doi.org/10.3390/membranes15050145
Tian E, Bi Y, Ren Y. Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance. Membranes. 2025; 15(5):145. https://doi.org/10.3390/membranes15050145
Chicago/Turabian StyleTian, Enling, Yinping Bi, and Yiwei Ren. 2025. "Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance" Membranes 15, no. 5: 145. https://doi.org/10.3390/membranes15050145
APA StyleTian, E., Bi, Y., & Ren, Y. (2025). Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance. Membranes, 15(5), 145. https://doi.org/10.3390/membranes15050145