Previous Issue
Volume 12, July

Micromachines, Volume 12, Issue 8 (August 2021) – 39 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Entropy Generation Analysis and Radiated Heat Transfer in MHD (Al2O3-Cu/Water) Hybrid Nanofluid Flow
Micromachines 2021, 12(8), 887; https://doi.org/10.3390/mi12080887 - 27 Jul 2021
Abstract
This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow [...] Read more.
This research concerns the heat transfer and entropy generation analysis in the MHD axisymmetric flow of Al2O3-Cu/H2O hybrid nanofluid. The magnetic induction effect is considered for large magnetic Reynolds number. The influences of thermal radiations, viscous dissipation and convective temperature conditions over flow are studied. The problem is modeled using boundary layer theory, Maxwell’s equations and Fourier’s conduction law along with defined physical factors. Similarity transformations are utilized for model simplification which is analytically solved with the homotopy analysis method. The h-curves upto 20th order for solutions establishes the stability and convergence of the adopted computational method. Rheological impacts of involved parameters on flow variables and entropy generation number are demonstrated via graphs and tables. The study reveals that entropy in system of hybrid nanofluid affected by magnetic induction declines for [...] Full article
(This article belongs to the Special Issue Non-Newtonian Microfluidics)
Article
Gate-Stack Engineering to Improve the Performance of 28 nm Low-Power High-k/Metal-Gate Device
Micromachines 2021, 12(8), 886; https://doi.org/10.3390/mi12080886 - 27 Jul 2021
Abstract
In this study, a gate-stack engineering technique is proposed as a means of improving the performance of a 28 nm low-power (LP) high-k/metal-gate (HK/MG) device. In detail, it was experimentally verified that HfSiO thin films can replace HfSiON congeners, where the latter are [...] Read more.
In this study, a gate-stack engineering technique is proposed as a means of improving the performance of a 28 nm low-power (LP) high-k/metal-gate (HK/MG) device. In detail, it was experimentally verified that HfSiO thin films can replace HfSiON congeners, where the latter are known to have a good thermal budget and/or electrical characteristics, to boost the device performance under a limited thermal budget. TiN engineering for the gate-stack in the 28 nm LP HK/MG device was used to suppress the gate leakage current. Using the proposed fabrication method, the on/off current ratio (Ion/Ioff) was improved for a given target Ion, and the gate leakage current was appropriately suppressed. Comparing the process-of-record device against the 28 nm LP HK/MG device, the thickness of the electrical oxide layer in the new device was reduced by 3.1% in the case of n-type field effect transistors and by 10% for p-type field effect transistors. In addition, the reliability (e.g., bias temperature instability, hot carrier injury, and time-dependent dielectric breakdown) of the new device was evaluated, and it was observed that there was no conspicuous risk. Therefore, the HfSiO film can afford reliable performance enhancement when employed in the 28 nm LP HK/MG device with a limited thermal budget. Full article
(This article belongs to the Special Issue Design, Fabrication and Reliability of Semiconductor Devices)
Article
SMILE Platform: An Innovative Microfluidic Approach for On-Chip Sample Manipulation and Analysis in Oral Cancer Diagnosis
Micromachines 2021, 12(8), 885; https://doi.org/10.3390/mi12080885 - 27 Jul 2021
Abstract
Oral cancer belongs to the group of head and neck cancers, and, despite its large diffusion, it suffers from low consideration in terms of prevention and early diagnosis. The main objective of the SMILE platform is the development of a low-cost device for [...] Read more.
Oral cancer belongs to the group of head and neck cancers, and, despite its large diffusion, it suffers from low consideration in terms of prevention and early diagnosis. The main objective of the SMILE platform is the development of a low-cost device for oral cancer early screening with features of high sensitivity, specificity, and ease of use, with the aim of reaching a large audience of possible users and realizing real prevention of the disease. To achieve this goal, we realized two microfluidic devices exploiting low-cost materials and processes. They can be used in combination or alone to obtain on-chip sample preparation and/or detection of circulating tumor cells, selected as biomarkers of oral cancer. The realized devices are completely transparent with plug-and-play features, obtained thanks to a highly customized architecture which enables users to easily use them, with potential for a common use among physicians or dentists with minimal training. Full article
Review
Modelling the Human Placental Interface In Vitro—A Review
Micromachines 2021, 12(8), 884; https://doi.org/10.3390/mi12080884 - 27 Jul 2021
Abstract
Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout [...] Read more.
Acting as the primary link between mother and fetus, the placenta is involved in regulating nutrient, oxygen, and waste exchange; thus, healthy placental development is crucial for a successful pregnancy. In line with the increasing demands of the fetus, the placenta evolves throughout pregnancy, making it a particularly difficult organ to study. Research into placental development and dysfunction poses a unique scientific challenge due to ethical constraints and the differences in morphology and function that exist between species. Recently, there have been increased efforts towards generating in vitro models of the human placenta. Advancements in the differentiation of human induced pluripotent stem cells (hiPSCs), microfluidics, and bioprinting have each contributed to the development of new models, which can be designed to closely match physiological in vivo conditions. By including relevant placental cell types and control over the microenvironment, these new in vitro models promise to reveal clues to the pathogenesis of placental dysfunction and facilitate drug testing across the maternal–fetal interface. In this minireview, we aim to highlight current in vitro placental models and their applications in the study of disease and discuss future avenues for these in vitro models. Full article
(This article belongs to the Special Issue Microfluidics and Bioprinting Technologies for 3D Vascularized Tissue)
Article
Liquid Flow and Mass Transfer Behaviors in a Butterfly-Shaped Microreactor
Micromachines 2021, 12(8), 883; https://doi.org/10.3390/mi12080883 - 27 Jul 2021
Abstract
Based on the split-and-recombine principle, a millimeter-scale butterfly-shaped microreactor was designed and fabricated through femtosecond laser micromachining. The velocity fields, streamlines and pressure fields of the single-phase flow in the microreactor were obtained by a computational fluid dynamics simulation, and the influence of [...] Read more.
Based on the split-and-recombine principle, a millimeter-scale butterfly-shaped microreactor was designed and fabricated through femtosecond laser micromachining. The velocity fields, streamlines and pressure fields of the single-phase flow in the microreactor were obtained by a computational fluid dynamics simulation, and the influence of flow rates on the homogeneous mixing efficiency was quantified by the mixing index. The flow behaviors in the microreactor were investigated using water and n-butanol, from which schematic diagrams of various flow patterns were given and a flow pattern map was established for regulating the flow behavior via controlling the flow rates of the two-phase flow. Furthermore, effects of the two-phase flow rates on the droplet flow behavior (droplet number, droplet size and standard deviation) in the microreactor were investigated. In addition, the interfacial mass transfer behaviors of liquid–liquid flow were evaluated using the standard low interfacial tension system of “n-butanol/succinic acid/water”, where the dependence between the flow pattern and mass transfer was discussed. The empirical relationship between the volumetric mass transfer coefficient and Reynold number was established with prediction error less than 20%. Full article
(This article belongs to the Special Issue Micromachines for Chemical Process Intensification)
Show Figures

Figure 1

Article
Design and Adoption of Low-Cost Point-of-Care Diagnostic Devices: Syrian Case
Micromachines 2021, 12(8), 882; https://doi.org/10.3390/mi12080882 - 27 Jul 2021
Abstract
Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm [...] Read more.
Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Materials and Processing 2021)
Show Figures

Figure 1

Article
Experimental Study and Mechanism Analysis of the Flow Boiling and Heat Transfer Characteristics in Microchannels with Different Surface Wettability
Micromachines 2021, 12(8), 881; https://doi.org/10.3390/mi12080881 - 27 Jul 2021
Abstract
In this paper experiments have been conducted to investigate the flow boiling and heat transfer characteristics in microchannels with three different surface wettability. Three types of microchannels with a super-hydrophilic surface (θ ≈ 0°), a hydrophilic surface (θ = 43°) and an untreated [...] Read more.
In this paper experiments have been conducted to investigate the flow boiling and heat transfer characteristics in microchannels with three different surface wettability. Three types of microchannels with a super-hydrophilic surface (θ ≈ 0°), a hydrophilic surface (θ = 43°) and an untreated surface (θ = 70°) were prepared. The results show that the average heat transfer coefficient of a super-hydrophilic surface microchannel is significantly higher than that of an untreated surface microchannel, especially when the mass flux is high. The visualization of the flow patterns states that the number of bubble nucleation generated in the super-hydrophilic microchannel at the beginning of the flow boiling is significantly more than that in the untreated microchannel. Through detailed analysis of the experimental data, flow patterns and microchannel surface SEM images, it can be inferred that the super-hydrophilic surface microchannel has more active nucleation cavities, a high nucleation rate and a large nucleation number, a small bubble departure diameter and a fast departure frequency, thereby promoting the flow and heat transfer in the microchannel. In addition, through the force analysis of the vapor-liquid interface, the mechanism that the super-hydrophilic microchannel without dryout under high heat flux conditions is clarified. Full article
Show Figures

Figure 1

Article
Efficient Optomechanical Mode-Shape Mapping of Micromechanical Devices
Micromachines 2021, 12(8), 880; https://doi.org/10.3390/mi12080880 - 27 Jul 2021
Viewed by 109
Abstract
Visualizing eigenmodes is crucial in understanding the behavior of state-of-the-art micromechanical devices. We demonstrate a method to optically map multiple modes of mechanical structures simultaneously. The fast and robust method, based on a modified phase-lock loop, is demonstrated on a silicon nitride membrane [...] Read more.
Visualizing eigenmodes is crucial in understanding the behavior of state-of-the-art micromechanical devices. We demonstrate a method to optically map multiple modes of mechanical structures simultaneously. The fast and robust method, based on a modified phase-lock loop, is demonstrated on a silicon nitride membrane and shown to outperform three alternative approaches. Line traces and two-dimensional maps of different modes are acquired. The high quality data enables us to determine the weights of individual contributions in superpositions of degenerate modes. Full article
Show Figures

Figure 1

Article
Artificial Neural Network Assisted Error Correction for MLC NAND Flash Memory
Micromachines 2021, 12(8), 879; https://doi.org/10.3390/mi12080879 - 27 Jul 2021
Viewed by 138
Abstract
The multilevel per cell technology and continued scaling down process technology significantly improves the storage density of NAND flash memory but also brings about a challenge in that data reliability degrades due to the serious noise. To ensure the data reliability, many noise [...] Read more.
The multilevel per cell technology and continued scaling down process technology significantly improves the storage density of NAND flash memory but also brings about a challenge in that data reliability degrades due to the serious noise. To ensure the data reliability, many noise mitigation technologies have been proposed. However, they only mitigate one of the noises of the NAND flash memory channel. In this paper, we consider all the main noises and present a novel neural network-assisted error correction (ANNAEC) scheme to increase the reliability of multi-level cell (MLC) NAND flash memory. To avoid using retention time as an input parameter of the neural network, we propose a relative log-likelihood ratio (LLR) to estimate the actual LLR. Then, we transform the bit detection into a clustering problem and propose to employ a neural network to learn the error characteristics of the NAND flash memory channel. Therefore, the trained neural network has optimized performances of bit error detection. Simulation results show that our proposed scheme can significantly improve the performance of the bit error detection and increase the endurance of NAND flash memory. Full article
(This article belongs to the Special Issue Flash Memory Devices)
Show Figures

Figure 1

Article
Modified Hexagonal Split Ring Resonator Based on an Epsilon-Negative Metamaterial for Triple-Band Satellite Communication
Micromachines 2021, 12(8), 878; https://doi.org/10.3390/mi12080878 - 26 Jul 2021
Viewed by 185
Abstract
A triple-band epsilon-negative (ENG) metamaterial based on a split ring resonator (SSR) with a modified hexagonal-shaped metal strip proposed in this study is a new combination of a single slit square resonator and a modified hexagonal-shaped metal strip. The desired unit cell FR-4 [...] Read more.
A triple-band epsilon-negative (ENG) metamaterial based on a split ring resonator (SSR) with a modified hexagonal-shaped metal strip proposed in this study is a new combination of a single slit square resonator and a modified hexagonal-shaped metal strip. The desired unit cell FR-4 (lossy) that was selected as the substrate was 1.6 mm thick. Following the assessment of the unit cell, a high-frequency electromagnetic simulator like the computer simulation technology (CST) microwave studio was applied to assess the S-parameters. The proposed design exhibited resonance at 2.89, 9.42, and 15.16 GHz. The unit cell also demonstrated negative permittivity in the frequency ranges 2.912–3.728 GHz, 9.552–10.144 GHz, and 15.216–17.328 GHz, along with a negative refractive index. An effective medium ratio (EMR) of 11.53 is an indicator of the goodness of the metamaterial unit cell. It is deliberate at the lowermost resonance frequency of 2.89 GHz. Moreover, the simulated results that were validated using HFSS and equivalent circuit model indicated slight variations. The proposed design was finalised based on several parametric studies, including design optimisation, different unit cell sizes, various substrate materials, and different electromagnetic (EM) field propagations. The proposed triple band (S, X, and Ku bands) negative permittivity metamaterial unit cell can be utilised for various wireless applications, such as microwave communication, satellite communication, and long-distance radio communication. Full article
(This article belongs to the Special Issue Miniaturized Microwave Components and Devices)
Show Figures

Figure 1

Article
Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood
Micromachines 2021, 12(8), 877; https://doi.org/10.3390/mi12080877 - 26 Jul 2021
Viewed by 128
Abstract
Circulating tumor cells (CTCs) isolation from a blood sample plays an important role in cancer diagnosis and treatment. Microfluidics offers a great potential for cancer cell separation from the blood. Among the microfluidic-based methods for CTC separation, the inertial method as a passive [...] Read more.
Circulating tumor cells (CTCs) isolation from a blood sample plays an important role in cancer diagnosis and treatment. Microfluidics offers a great potential for cancer cell separation from the blood. Among the microfluidic-based methods for CTC separation, the inertial method as a passive method and magnetic method as an active method are two efficient well-established methods. Here, we investigated the combination of these two methods to separate CTCs from a blood sample in a single chip. Firstly, numerical simulations were performed to analyze the fluid flow within the proposed channel, and the particle trajectories within the inertial cell separation unit were investigated to determine/predict the particle trajectories within the inertial channel in the presence of fluid dynamic forces. Then, the designed device was fabricated using the soft-lithography technique. Later, the CTCs were conjugated with magnetic nanoparticles and Ep-CAM antibodies to improve the magnetic susceptibility of the cells in the presence of a magnetic field by using neodymium permanent magnets of 0.51 T. A diluted blood sample containing nanoparticle-conjugated CTCs was injected into the device at different flow rates to analyze its performance. It was found that the flow rate of 1000 µL/min resulted in the highest recovery rate and purity of ~95% and ~93% for CTCs, respectively. Full article
(This article belongs to the Special Issue Versatile Organ-on-a-Chip Devices)
Show Figures

Figure 1

Review
Ultrasonic Particle Manipulation in Glass Capillaries: A Concise Review
Micromachines 2021, 12(8), 876; https://doi.org/10.3390/mi12080876 - 26 Jul 2021
Viewed by 123
Abstract
Ultrasonic particle manipulation (UPM), a non-contact and label-free method that uses ultrasonic waves to manipulate micro- or nano-scale particles, has recently gained significant attention in the microfluidics community. Moreover, glass is optically transparent and has dimensional stability, distinct acoustic impedance to water and [...] Read more.
Ultrasonic particle manipulation (UPM), a non-contact and label-free method that uses ultrasonic waves to manipulate micro- or nano-scale particles, has recently gained significant attention in the microfluidics community. Moreover, glass is optically transparent and has dimensional stability, distinct acoustic impedance to water and a high acoustic quality factor, making it an excellent material for constructing chambers for ultrasonic resonators. Over the past several decades, glass capillaries are increasingly designed for a variety of UPMs, e.g., patterning, focusing, trapping and transporting of micron or submicron particles. Herein, we review established and emerging glass capillary-transducer devices, describing their underlying mechanisms of operation, with special emphasis on the application of glass capillaries with fluid channels of various cross-sections (i.e., rectangular, square and circular) on UPM. We believe that this review will provide a superior guidance for the design of glass capillary-based UPM devices for acoustic tweezers-based research. Full article
(This article belongs to the Special Issue Miniature Ultrasonic Devices and Their Applications)
Show Figures

Figure 1

Editorial
Editorial for the Special Issue on Micro/Nanofluidic Devices for Single Cell Analysis, Volume II
Micromachines 2021, 12(8), 875; https://doi.org/10.3390/mi12080875 - 26 Jul 2021
Viewed by 114
Abstract
The functional, genetic, or compositional heterogeneity of healthy and diseased tissues promotes significant challenges to drug discovery and development [...] Full article
(This article belongs to the Special Issue Micro/Nanofluidic Devices for Single Cell Analysis, Volume II)
Show Figures

Figure 1

Article
Characterization and Evaluation of 3D-Printed Connectors for Microfluidics
Micromachines 2021, 12(8), 874; https://doi.org/10.3390/mi12080874 - 26 Jul 2021
Viewed by 218
Abstract
3D printing is regarded as a useful tool for the fabrication of microfluidic connectors to overcome the challenges of time consumption, clogging, poor alignment and bulky fixtures existing for current interconnections. 3D-printed connectors without any additional components can be directly printed to substrate [...] Read more.
3D printing is regarded as a useful tool for the fabrication of microfluidic connectors to overcome the challenges of time consumption, clogging, poor alignment and bulky fixtures existing for current interconnections. 3D-printed connectors without any additional components can be directly printed to substrate with an orifice by UV-assisted coaxial printing. This paper further characterized and evaluated 3D-printed connectors fabricated by the proposed method. A process window with an operable combination of flow rates was identified. The outer flow rate could control the inner channel dimensions of 3D-printed connectors, which were expected to achieve less geometric mismatch of flow paths in microfluidic interfaces. The achieved smallest inner channel diameter was around 120 µm. Furthermore, the withstood pressure of 3D-printed connectors was evaluated to exceed 450 kPa, which could enable microfluidic chips to work at normal pressure. Full article
(This article belongs to the Special Issue 3D Printed Micro-/Nano Devices)
Show Figures

Figure 1

Article
Slotted E-Shaped Meta-Material Decoupling Slab for Densely Packed MIMO Antenna Arrays
Micromachines 2021, 12(8), 873; https://doi.org/10.3390/mi12080873 - 25 Jul 2021
Viewed by 220
Abstract
In contemporary wireless communication systems, the multiple-input and multiple-output systems are extensively utilized due to their enhanced spectral efficiency and diversity. Densely packed antenna arrays play an important role in such systems to enhance their spatial diversity, array gain, and beam scanning capabilities. [...] Read more.
In contemporary wireless communication systems, the multiple-input and multiple-output systems are extensively utilized due to their enhanced spectral efficiency and diversity. Densely packed antenna arrays play an important role in such systems to enhance their spatial diversity, array gain, and beam scanning capabilities. In this article, a slotted meta-material decoupling slab (S-MTM-DS) with dual reflexes slotted E-shapes and an inductive stub is proposed. Its function was validated when located between two microstrip patch antenna elements to reduce the inter-element spacing, the mutual coupling, the return losses, and manufacturing costs due to size reduction. A prototype is simply fabricated in a volume of 67.41 × 33.49 × 1.6 mm3 and frequency-span measured from 8.4:11 GHz. At 9.4 GHz frequency, the spaces between the transmitting elements are decreased to 0.57 of the free space wavelength. When the proposed isolation S-MTM-DS is applied, the average isolation among them is measured to be −36 dB, the operational bandwidth is enhanced to be 1.512 GHz, the fractional bandwidth improved to be 16.04%, and the return losses are decreased to be −26.5 dB at 9.4 GHz center frequency. Consequently, the proposed design has the potential to be implemented simply in wireless contemporary communication schemes. Full article
(This article belongs to the Special Issue Miniaturized Microwave Components and Devices)
Show Figures

Figure 1

Article
Modeling, Validation, and Performance of Two Tandem Cylinder Piezoelectric Energy Harvesters in Water Flow
Micromachines 2021, 12(8), 872; https://doi.org/10.3390/mi12080872 - 25 Jul 2021
Viewed by 197
Abstract
This paper studies a novel enhanced energy-harvesting method to harvest water flow-induced vibration with a tandem arrangement of two piezoelectric energy harvesters (PEHs) in the direction of flowing water, through simulation modeling and experimental validation. A mathematical model is established by two individual-equivalent [...] Read more.
This paper studies a novel enhanced energy-harvesting method to harvest water flow-induced vibration with a tandem arrangement of two piezoelectric energy harvesters (PEHs) in the direction of flowing water, through simulation modeling and experimental validation. A mathematical model is established by two individual-equivalent single-degree-of-freedom models, coupled with the hydrodynamic force obtained by computational fluid dynamics. Through the simulation analysis, the variation rules of vibration frequency, vibration amplitude, power generation and the distribution of flow field are obtained. And experimental tests are performed to verify the numerical calculation. The experimental and simulation results show that the upstream piezoelectric energy harvester (UPEH) is excited by the vortex-induced vibration, and the maximum value of performance is achieved when the UPEH and the vibration are resonant. As the vortex falls off from the UPEH, the downstream piezoelectric energy harvester (DPEH) generates a responsive beat frequency vibration. Energy-harvesting performance of the DPEH is better than that of the UPEH, especially at high speed flows. The maximum output power of the DPEH (371.7 μW) is 2.56 times of that of the UPEH (145.4 μW), at a specific spacing between the UPEN and the DPEH. Thereupon, the total output power of the two tandem piezoelectric energy harvester systems is significantly greater than that of the common single PEH, which provides a good foreground for further exploration of multiple piezoelectric energy harvesters system. Full article
(This article belongs to the Special Issue Energy Harvesters and Self-powered Sensors for Smart Electronics)
Show Figures

Figure 1

Article
Beam Formation and Vernier Steering Off of a Rough Surface
Micromachines 2021, 12(8), 871; https://doi.org/10.3390/mi12080871 - 24 Jul 2021
Viewed by 177
Abstract
Wavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight [...] Read more.
Wavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight could be illuminated. In this paper, we demonstrate the superior performance of a genetic algorithm compared to other iterative feedback-based wavefront shaping algorithms in achieving reflective inverse diffusion for a focal plane system. Next, the ability to control the pointing direction of the refocused beam with high precision over a narrow angular range is demonstrated, though the challenge of increasing the overall scanning range of the refocused beam remains. The method of beam steering demonstrated in this paper could act as a vernier adjustment to a coarse adjustment offered by another method. Full article
(This article belongs to the Special Issue Beam Steering via Arrayed Micromachines)
Show Figures

Figure 1

Article
Design and Development of an Upper Limb Rehabilitative Robot with Dual Functionality
Micromachines 2021, 12(8), 870; https://doi.org/10.3390/mi12080870 (registering DOI) - 24 Jul 2021
Viewed by 200
Abstract
The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need [...] Read more.
The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot. Full article
(This article belongs to the Special Issue Wearable Robotics)
Show Figures

Figure 1

Review
Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics
Micromachines 2021, 12(8), 869; https://doi.org/10.3390/mi12080869 - 24 Jul 2021
Viewed by 181
Abstract
Fiber-based thermoelectric materials and devices have the characteristics of light-weight, stability, and flexibility, which can be used in wearable electronics, attracting the wide attention of researchers. In this work, we present a review of state-of-the-art fiber-based thermoelectric material fabrication, device assembling, and its [...] Read more.
Fiber-based thermoelectric materials and devices have the characteristics of light-weight, stability, and flexibility, which can be used in wearable electronics, attracting the wide attention of researchers. In this work, we present a review of state-of-the-art fiber-based thermoelectric material fabrication, device assembling, and its potential applications in temperature sensing, thermoelectric generation, and temperature management. In this mini review, we also shine some light on the potential application in the next generation of wearable electronics, and discuss the challenges and opportunities. Full article
(This article belongs to the Special Issue Advanced Energy Conversion and Storage Microdevices)
Show Figures

Figure 1

Article
Numerical Study on the Fluid Flow and Heat Transfer Characteristics of Al2O3-Water Nanofluids in Microchannels of Different Aspect Ratio
Micromachines 2021, 12(8), 868; https://doi.org/10.3390/mi12080868 - 24 Jul 2021
Viewed by 185
Abstract
The study of the influence of the nanoparticle volume fraction and aspect ratio of microchannels on the fluid flow and heat transfer characteristics of nanofluids in microchannels is important in the optimal design of heat dissipation systems with high heat flux. In this [...] Read more.
The study of the influence of the nanoparticle volume fraction and aspect ratio of microchannels on the fluid flow and heat transfer characteristics of nanofluids in microchannels is important in the optimal design of heat dissipation systems with high heat flux. In this work, the computational fluid dynamics method was adopted to simulate the flow and heat transfer characteristics of two types of water-Al2O3 nanofluids with two different volume fractions and five types of microchannel heat sinks with different aspect ratios. Results showed that increasing the nanoparticle volume fraction reduced the average temperature of the heat transfer interface and thereby improved the heat transfer capacity of the nanofluids. Meanwhile, the increase of the nanoparticle volume fraction led to a considerable increase in the pumping power of the system. Increasing the aspect ratio of the microchannel effectively improved the heat transfer capacity of the heat sink. Moreover, increasing the aspect ratio effectively reduced the average temperature of the heating surface of the heat sink without significantly increasing the flow resistance loss. When the aspect ratio exceeded 30, the heat transfer coefficient did not increase with the increase of the aspect ratio. The results of this work may offer guiding significance for the optimal design of high heat flux microchannel heat sinks. Full article
(This article belongs to the Special Issue Heat and Mass Transfer in MicroNano-Systems)
Show Figures

Figure 1

Review
Emerging Topochemical Strategies for Designing Two-Dimensional Energy Materials
Micromachines 2021, 12(8), 867; https://doi.org/10.3390/mi12080867 - 23 Jul 2021
Viewed by 145
Abstract
The unique properties of two-dimensional (2D) materials make them increasingly attractive in various fields, especially for energy harvesting, conversion, or storage. Simultaneously, numerous synthetic methods have been rapidly developed. Recently, topochemical strategies were demonstrated, and they show tremendous promising potential for synthesizing 2D [...] Read more.
The unique properties of two-dimensional (2D) materials make them increasingly attractive in various fields, especially for energy harvesting, conversion, or storage. Simultaneously, numerous synthetic methods have been rapidly developed. Recently, topochemical strategies were demonstrated, and they show tremendous promising potential for synthesizing 2D materials due to their simplicity, scalability, and high efficiency. Considering the suitability of material structures and their synthesis methods, as well as the relationship between material properties and applications, it is necessary for researchers to comprehensively review and determine the prospects of 2D materials based on topological chemical synthesis methods and their related applications. Therefore, in this review, we systematically summarize and analyze the representative topochemical strategies for synthesizing 2D materials, including salt-templating methods for non-layered 2D materials, molten Lewis acid etching strategy for novel MXenes, and the chalcogen vapors etching and substituting strategy for phase-controlled 2D materials and so on, with the application of these 2D materials in energy-related fields including batteries, supercapacitors, and electrocatalysis. At the end of the paper, the corresponding perspective was also illustrated, and we expect that this could provide a reference for the future research in the field. Full article
(This article belongs to the Special Issue Nanomaterials-Based Energy Storage Devices)
Show Figures

Figure 1

Article
Porous PLAs with Controllable Density by FDM 3D Printing and Chemical Foaming Agent
Micromachines 2021, 12(8), 866; https://doi.org/10.3390/mi12080866 - 23 Jul 2021
Viewed by 152
Abstract
This paper shows how fused decomposition modeling (FDM), as a three-dimensional (3D) printing technology, can engineer lightweight porous foams with controllable density. The tactic is based on the 3D printing of Poly Lactic Acid filaments with a chemical blowing agent, as well as [...] Read more.
This paper shows how fused decomposition modeling (FDM), as a three-dimensional (3D) printing technology, can engineer lightweight porous foams with controllable density. The tactic is based on the 3D printing of Poly Lactic Acid filaments with a chemical blowing agent, as well as experiments to explore how FDM parameters can control material density. Foam porosity is investigated in terms of fabrication parameters such as printing temperature and flow rate, which affect the size of bubbles produced during the layer-by-layer fabrication process. It is experimentally shown that printing temperature and flow rate have significant effects on the bubbles’ size, micro-scale material connections, stiffness and strength. An analytical equation is introduced to accurately simulate the experimental results on flow rate, density, and mechanical properties in terms of printing temperature. Due to the absence of a similar concept, mathematical model and results in the specialized literature, this paper is likely to advance the state-of-the-art lightweight foams with controllable porosity and density fabricated by FDM 3D printing technology. Full article
(This article belongs to the Special Issue 3D/4D Printing of Metamaterials and Multifunctional Structures)
Show Figures

Figure 1

Article
Bioprinting of Adult Dorsal Root Ganglion (DRG) Neurons Using Laser-Induced Side Transfer (LIST)
Micromachines 2021, 12(8), 865; https://doi.org/10.3390/mi12080865 - 23 Jul 2021
Viewed by 162
Abstract
Cell bioprinting technologies aim to fabricate tissuelike constructs by delivering biomaterials layer-by-layer. Bioprinted constructs can reduce the use of animals in drug development and hold promise for addressing the shortage of organs for transplants. Here, we sought to validate the feasibility of bioprinting [...] Read more.
Cell bioprinting technologies aim to fabricate tissuelike constructs by delivering biomaterials layer-by-layer. Bioprinted constructs can reduce the use of animals in drug development and hold promise for addressing the shortage of organs for transplants. Here, we sought to validate the feasibility of bioprinting primary adult sensory neurons using a newly developed laser-assisted cell bioprinting technology, known as Laser-Induced Side Transfer (LIST). We used dorsal root ganglion neurons (DRG; cell bodies of somatosensory neurons) to prepare our bioink. DRG-laden- droplets were printed on fibrin-coated coverslips and their viability, calcium kinetics, neuropeptides release, and neurite outgrowth were measured. The transcriptome of the neurons was sequenced. We found that LIST-printed neurons maintain high viability (Printed: 86%, Control: 87% on average) and their capacity to release neuropeptides (Printed CGRP: 130 pg/mL, Control CGRP: 146 pg/mL). In addition, LIST-printed neurons do not show differences in the expressed genes compared to control neurons. However, in printed neurons, we found compromised neurite outgrowth and lower sensitivity to the ligand of the TRPV1 channel, capsaicin. In conclusion, LIST-printed neurons maintain high viability and marginal functionality losses. Overall, this work paves the way for bioprinting functional 2D neuron assays. Full article
(This article belongs to the Special Issue Advanced Laser Bio-Printing)
Show Figures

Figure 1

Article
Effects of Proton Irradiation on the Current Characteristics of SiN-Passivated AlGaN/GaN MIS-HEMTs Using a TMAH-Based Surface Pre-Treatment
Micromachines 2021, 12(8), 864; https://doi.org/10.3390/mi12080864 - 23 Jul 2021
Viewed by 166
Abstract
This study investigated the combined effects of proton irradiation and surface pre-treatment on the current characteristics of Gallium Nitride (GaN)-based metal-insulator-semiconductor high-electron-mobility-transistors (MIS-HEMTs) to evaluate the radiation hardness involved with the Silicon Nitride (SiN) passivation/GaN cap interface. The impact of proton irradiation on [...] Read more.
This study investigated the combined effects of proton irradiation and surface pre-treatment on the current characteristics of Gallium Nitride (GaN)-based metal-insulator-semiconductor high-electron-mobility-transistors (MIS-HEMTs) to evaluate the radiation hardness involved with the Silicon Nitride (SiN) passivation/GaN cap interface. The impact of proton irradiation on the static and dynamic current characteristics of devices with and without pre-treatment were analyzed with 5 MeV proton irradiation. In terms of transfer characteristics before and after the proton irradiation, the drain current of the devices without and with pre-treatment were reduced by an increase in sheet and contact resistances after the proton irradiation. In contrast with the static current characteristics, the gate-lag characteristics of the device with pre-treatment were significantly degenerated. In the device with pre-treatment, the hydrogen passivation for surface states of the GaN cap was formed by the pre-treatment and SiN deposition processes. Since the hydrogen passivation was removed by the proton irradiation, the newly created vacancies resulted in the degeneration of gate-lag characteristics. After nine months in an ambient atmosphere, the gate-lag characteristics of the device with pre-treatment were recovered because of the hydrogen recombination. These results demonstrated that the radiation hardness of MIS-HEMTs was affected by the SiN/GaN interface quality. Full article
(This article belongs to the Special Issue GaN-Based Semiconductor Devices)
Show Figures

Figure 1

Review
Droplet Microfluidics for Food and Nutrition Applications
Micromachines 2021, 12(8), 863; https://doi.org/10.3390/mi12080863 - 23 Jul 2021
Viewed by 175
Abstract
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still [...] Read more.
Droplet microfluidics revolutionizes the way experiments and analyses are conducted in many fields of science, based on decades of basic research. Applied sciences are also impacted, opening new perspectives on how we look at complex matter. In particular, food and nutritional sciences still have many research questions unsolved, and conventional laboratory methods are not always suitable to answer them. In this review, we present how microfluidics have been used in these fields to produce and investigate various droplet-based systems, namely simple and double emulsions, microgels, microparticles, and microcapsules with food-grade compositions. We show that droplet microfluidic devices enable unprecedented control over their production and properties, and can be integrated in lab-on-chip platforms for in situ and time-resolved analyses. This approach is illustrated for on-chip measurements of droplet interfacial properties, droplet–droplet coalescence, phase behavior of biopolymer mixtures, and reaction kinetics related to food digestion and nutrient absorption. As a perspective, we present promising developments in the adjacent fields of biochemistry and microbiology, as well as advanced microfluidics–analytical instrument coupling, all of which could be applied to solve research questions at the interface of food and nutritional sciences. Full article
(This article belongs to the Special Issue Microfluidics for Food and Nutrient Applications)
Show Figures

Figure 1

Article
Biocompatible MXene (Ti3C2Tx) Immobilized with Flavin Adenine Dinucleotide as an Electrochemical Transducer for Hydrogen Peroxide Detection in Ovarian Cancer Cell Lines
Micromachines 2021, 12(8), 862; https://doi.org/10.3390/mi12080862 - 22 Jul 2021
Viewed by 338
Abstract
Flavin adenine dinucleotide (FAD) is a coenzyme and acts as a redox cofactor in metabolic process. Owing to such problems as poor electron transfer properties, unfavorable adsorption, and lack of stability on rigid electrodes, the bio-electrochemical applications of FAD have been limited. Herein, [...] Read more.
Flavin adenine dinucleotide (FAD) is a coenzyme and acts as a redox cofactor in metabolic process. Owing to such problems as poor electron transfer properties, unfavorable adsorption, and lack of stability on rigid electrodes, the bio-electrochemical applications of FAD have been limited. Herein, a novel fabrication method was developed for the immobilization process using 2D MXene (Ti3C2Tx), which enhanced the redox property of FAD and improved the electro-catalytic reduction of hydrogen peroxide (H2O2) in neutral medium. The FAD-immobilized Ti3C2Tx electrode (FAD/Ti3C2Tx) was studied by UV-Visible and Raman spectroscopies, which confirmed the successful adsorption of FAD on the Ti3C2Tx surface. The surface morphology and the elemental composition of Ti3C2Tx were investigated by high resolution transmission electron microscopy and the energy dispersive X-ray analysis. The redox property of the FAD/Ti3C2Tx modified glassy carbon electrode (FAD/Ti3C2Tx/GCE) was highly dependent on pH and exhibited a stable redox peak at −0.455 V in neutral medium. Higher amounts of FAD molecules were loaded onto the 2D MXene (Ti3C2Tx)-modified electrode, which was two times higher than the values in the reported work, and the surface coverage (ᴦFAD) was 0.8 × 10−10 mol/cm2. The FAD/Ti3C2Tx modified sensor showed the electrocatalytic reduction of H2O2 at −0.47 V, which was 130 mV lower than the bare electrode. The FAD/Ti3C2Tx/GCE sensor showed a linear detection of H2O2 from 5 nM to 2 µM. The optimization of FAD deposition, amount of Ti3C2Tx loading, effect of pH and the interference study with common biochemicals such as glucose, lactose, dopamine (DA), potassium chloride (KCl), ascorbic acid (AA), amino acids, uric acid (UA), oxalic acid (OA), sodium chloride (NaCl) and acetaminophen (PA) have been carried out. The FAD/Ti3C2Tx/GCE showed high selectivity and reproducibility. Finally, the FAD/Ti3C2Tx modified electrode was successfully applied to detect H2O2 in ovarian cancer cell lines. Full article
(This article belongs to the Special Issue Miniaturized Electronic Devices for Medical Applications)
Show Figures

Figure 1

Article
An Energy Efficient Thermally Regulated Optical Spectroscopy Cell for Lab-on-Chip Devices: Applied to Nitrate Detection
Micromachines 2021, 12(8), 861; https://doi.org/10.3390/mi12080861 - 22 Jul 2021
Viewed by 179
Abstract
Reagent-based colorimetric analyzers often heat the fluid under analysis for improved reaction kinetics, whilst also aiming to minimize energy use per measurement. Here, a novel method of conserving heat energy on such microfluidic systems is presented. Our design reduces heat transfer to the [...] Read more.
Reagent-based colorimetric analyzers often heat the fluid under analysis for improved reaction kinetics, whilst also aiming to minimize energy use per measurement. Here, a novel method of conserving heat energy on such microfluidic systems is presented. Our design reduces heat transfer to the environment by surrounding the heated optical cell on four sides with integral air pockets, thereby realizing an insulated and suspended bridge structure. Our design was simulated in COMSOL Multiphysics and verified in a polymethyl methacrylate (PMMA) device. We evaluate the effectiveness of the insulated design by comparing it to a non-insulated cell. For temperatures up to 55 °C, the average power consumption was reduced by 49.3% in the simulation and 40.2% in the experiment. The designs were then characterized with the vanadium and Griess reagent assay for nitrate at 35 °C. Nitrate concentrations from 0.25 µM to 50 µM were tested and yielded the expected linear relationship with a limit of detection of 20 nM. We show a reduction in energy consumption from 195 J to 119 J per 10 min measurement using only 4 µL of fluid. Efficient heating on-chip will have broad applicability to numerous colorimetric assays. Full article
(This article belongs to the Special Issue State-of-the-Art Lab-on-Chip Technology in Canada)
Show Figures

Figure 1

Article
Investigation of the Influence of Temperature and Humidity on the Bandwidth of an Accelerometer
Micromachines 2021, 12(8), 860; https://doi.org/10.3390/mi12080860 - 22 Jul 2021
Viewed by 163
Abstract
Bandwidth is an important parameter for accelerometers, in some cases, even surpassing sensitivity. However, there are few studies focused on the relationship between bandwidth and environmental conditions in practical application of accelerometers. In this paper, we systematically analyze the influence of environment on [...] Read more.
Bandwidth is an important parameter for accelerometers, in some cases, even surpassing sensitivity. However, there are few studies focused on the relationship between bandwidth and environmental conditions in practical application of accelerometers. In this paper, we systematically analyze the influence of environment on the bandwidth of accelerometers, obtaining the amplitude–frequency response curves versus damping ratio and properties of materials, wherein temperature and humidity were found as the two dominant factors that influence the bandwidth of accelerometers. Common temperature and humidity variations can result in bandwidth degradation of about 25% according to our theoretical analysis. The finite element method (FEM) is introduced to verify our theoretical analysis, and the accordance of the FEM simulation results and the theoretical results confirmed the validity of our analysis. Furthermore, a modification design is proposed to compensate for the influence of temperature and humidity on the bandwidth of accelerometers. By choosing materials with an appropriate Young’s modulus and coefficient of thermal expansion, the degradation of the bandwidth was substantially diminished by more than one order of magnitude, which can serve as a strong guide for the future realization of accelerometers with a steady and large bandwidth. Full article
Show Figures

Figure 1

Article
Fabrication of a 3D Nanomagnetic Circuit with Multi-Layered Materials for Applications in Spintronics
Micromachines 2021, 12(8), 859; https://doi.org/10.3390/mi12080859 - 22 Jul 2021
Viewed by 202
Abstract
Three-dimensional (3D) spintronic devices are attracting significant research interest due to their potential for both fundamental studies and computing applications. However, their implementations face great challenges regarding not only the fabrication of 3D nanomagnets with high quality materials, but also their integration into [...] Read more.
Three-dimensional (3D) spintronic devices are attracting significant research interest due to their potential for both fundamental studies and computing applications. However, their implementations face great challenges regarding not only the fabrication of 3D nanomagnets with high quality materials, but also their integration into 2D microelectronic circuits. In this study, we developed a new fabrication process to facilitate the efficient integration of both non-planar 3D geometries and high-quality multi-layered magnetic materials to prototype 3D spintronic devices, as a first step to investigate new physical effects in such systems. Specifically, we exploited 3D nanoprinting, physical vapour deposition and lithographic techniques to realise a 3D nanomagnetic circuit based on a nanobridge geometry, coated with high quality Ta/CoFeB/Ta layers. The successful establishment of this 3D circuit was verified through magnetotransport measurements in combination with micromagnetic simulations and finite element modelling. This fabrication process provides new capabilities for the realisation of a greater variety of 3D nanomagnetic circuits, which will facilitate the understanding and exploitation of 3D spintronic systems. Full article
Show Figures

Figure 1

Article
Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers
Micromachines 2021, 12(8), 858; https://doi.org/10.3390/mi12080858 - 22 Jul 2021
Viewed by 189
Abstract
The need for accessible and inexpensive microfluidic devices requires new manufacturing methods and materials as a replacement for traditional soft lithography and polydimethylsiloxane (PDMS). Recently, with the advent of modern additive manufacturing (AM) techniques, 3D printing has attracted attention for its use in [...] Read more.
The need for accessible and inexpensive microfluidic devices requires new manufacturing methods and materials as a replacement for traditional soft lithography and polydimethylsiloxane (PDMS). Recently, with the advent of modern additive manufacturing (AM) techniques, 3D printing has attracted attention for its use in the fabrication of microfluidic devices and due to its automated, assembly-free 3D fabrication, rapidly decreasing cost, and fast-improving resolution and throughput. Here, fused filament fabrication (FFF) 3D printing was used to create microfluidic micromixers and enhance the mixing process, which has been identified as a challenge in microfluidic devices. A design of experiment (DoE) was performed on the effects of studied parameters in devices that were printed by FFF. The results of the colorimetric approach showed the effects of different parameters on the mixing process and on the enhancement of the mixing performance in printed devices. The presence of the geometrical features on the microchannels can act as ridges due to the nature of the FFF process. In comparison to passive and active methods, no complexity was added in the fabrication process, and the ridges are an inherent property of the FFF process. Full article
(This article belongs to the Special Issue 3D Printed Micro-/Nano Devices)
Show Figures

Figure 1

Previous Issue
Back to TopTop