Next Issue
Volume 15, June
Previous Issue
Volume 15, April
 
 

World Electr. Veh. J., Volume 15, Issue 5 (May 2024) – 45 articles

Cover Story (view full-size image): The transition to an electrified road transport system presents challenges, especially concerning the impact of electric vehicle charging on the electricity grid. Analyzing various charging scenarios for plug-in hybrid electric vehicles (PHEVs) can help develop strategies which can minimize their impact on the grid. By using real-world travel data, we can strategically coordinate the charging and discharging of PHEVs to reduce grid stress and quantify the potential benefits of vehicle-to-grid (V2G) adoption for both the grid and vehicle owners. Implementing optimized charging strategies can make PHEVs a more sustainable alternative to conventional vehicles, while also enhancing the stability and efficiency of the electricity grid. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 771 KiB  
Article
Impact of Engine Inertia on P2 Mild HEV Fuel Consumption
by Gulnora Yakhshilikova, Sanjarbek Ruzimov, Andrea Tonoli and Akmal Mukhitdinov
World Electr. Veh. J. 2024, 15(5), 220; https://doi.org/10.3390/wevj15050220 - 19 May 2024
Cited by 1 | Viewed by 1020
Abstract
The energy management system (EMS) of a hybrid electric vehicle (HEV) is an algorithm that determines the power split between the electrical and thermal paths. It defines the operating state of the power sources, i.e., the electric motor (EM) and the internal combustion [...] Read more.
The energy management system (EMS) of a hybrid electric vehicle (HEV) is an algorithm that determines the power split between the electrical and thermal paths. It defines the operating state of the power sources, i.e., the electric motor (EM) and the internal combustion engine (ICE). It is therefore one of the main factors that can significantly influence the fuel consumption and performance of hybrid vehicles. In the transmission path, the power generated by the ICE is in part employed to accelerate the rotating components of the powertrain, such as the crankshaft, flywheel, gears, and shafts. The main inertial components are the crankshaft and the flywheel. This additional power is significant during high-intensity acceleration. Therefore, the actual engine operation is different from that required by the power split unit. This study focuses on exploring the influence of engine inertia on HEV fuel consumption by developing a controller based on an equivalent consumption minimisation strategy (ECMS) that considers crankshaft and flywheel inertia. The optimal solution obtained by the ECMS controller is refined by incorporating the inertia effect of the main rotating components of the engine into the cost function. This reduces the engine operation during high inertial torque transient phases, resulting in a decrease in vehicle CO2 emissions by 2.34, 2.22, and 1.13 g/km for the UDDS, US06, and WLTC driving cycles, respectively. Full article
Show Figures

Figure 1

15 pages, 5048 KiB  
Article
Advancements in Battery Cell Finalization: Insights from an Expert Survey and Prospects for Process Optimization
by Tobias Robben, Christian Offermanns, Heiner Heimes and Achim Kampker
World Electr. Veh. J. 2024, 15(5), 219; https://doi.org/10.3390/wevj15050219 - 17 May 2024
Cited by 1 | Viewed by 974
Abstract
Battery cell finalization is a crucial process chain in battery manufacturing, contributing to a significant share of CAPEX and OPEX. Thus, there is a high cost-saving potential by improving the process chain. This research paper investigates various crucial facets of the cell finalization [...] Read more.
Battery cell finalization is a crucial process chain in battery manufacturing, contributing to a significant share of CAPEX and OPEX. Thus, there is a high cost-saving potential by improving the process chain. This research paper investigates various crucial facets of the cell finalization process in battery cell production through an expert survey. These include investment cost allocation, potential cost savings in sub-processes, reject generation, early detection of faulty cells, quality measurement techniques, and the utilization of inline data for early quality determination and real-time process control during the formation process. A solution approach for the implementation of electrochemical impedance spectroscopy for inline early quality determination is given. The results yield valuable insights for optimizing the formation process and enhancing product quality. Full article
Show Figures

Figure 1

23 pages, 6416 KiB  
Article
Analysis of Scalable Resonant DC–DC Converter Using GaN Switches for xEV Charging Stations
by Rajanand Patnaik Narasipuram, Subbarao Mopidevi, Anton Dianov and Amit Singh Tandon
World Electr. Veh. J. 2024, 15(5), 218; https://doi.org/10.3390/wevj15050218 - 17 May 2024
Cited by 3 | Viewed by 1110
Abstract
In this research, an innovative electric vehicle (EV) charger is designed and presented for xEV charging stations. The key feature of our system is a scalable, interleaved inductor–inductor–capacitor (iL2C) DC-DC converter operation. The proposed system employs two parallel L2C [...] Read more.
In this research, an innovative electric vehicle (EV) charger is designed and presented for xEV charging stations. The key feature of our system is a scalable, interleaved inductor–inductor–capacitor (iL2C) DC-DC converter operation. The proposed system employs two parallel L2C converters with 8-GaN switches on the primary side and a shared rectifier circuit on the secondary side. This configuration not only amplifies the resonant tank internal currents and losses generated by the switches but also improves current sharing. A novel closed-loop technique is proposed with a constant-voltage method of operation, along with a hybrid control scheme of variable frequency + phase shift modulation (VFPSM). To examine the controller and converter’s performance, an experimental demonstration is conducted under varying load conditions, including full load, half load, and light load, where the source voltage and load voltage are maintained at constant levels of 400 Vin and 48 V0, respectively. Furthermore, line regulation is conducted and verified to accommodate a broad input voltage range of 300 Vin–500 Vin and 500 Vin–300 Vin while maintaining an output voltage of 48 V0 at 3.3 kW, 1.65 kW, and 0.33 kW with a peak efficiency of 98.2%. Full article
Show Figures

Figure 1

18 pages, 3875 KiB  
Article
Estimation of Soil Characteristic Parameters for Electric Mountain Tractor Based on Gauss–Newton Iteration Method
by Zhiqiang Xi, Tian Feng, Zhijun Liu, Huaijun Xu, Jingyang Zheng and Liyou Xu
World Electr. Veh. J. 2024, 15(5), 217; https://doi.org/10.3390/wevj15050217 - 15 May 2024
Cited by 1 | Viewed by 684
Abstract
Future field work tasks will require mountain tractors to pass through rough terrain with limited human supervision. The wheel–soil interaction plays a critical role in rugged terrain mobility. In this paper, an algorithm for the estimation of soil characteristic parameters based on the [...] Read more.
Future field work tasks will require mountain tractors to pass through rough terrain with limited human supervision. The wheel–soil interaction plays a critical role in rugged terrain mobility. In this paper, an algorithm for the estimation of soil characteristic parameters based on the Simpson numerical integration method and Gauss–Newton iteration method is presented. These parameters can be used for passability prediction or in a traction control algorithm to improve tractor mobility and to plan safe operation paths for autonomous navigation systems. To verify the effectiveness of the solving algorithm, different initial values and soils were selected for simulation calculations of soil characteristic parameters such as internal friction angle, settlement index, and the joint parameter of soil cohesion modulus and friction modulus. The results show that the error was kept within 2%, and the calculation time did not exceed 0.84 s, demonstrating high robustness and real-time performance. To test the applicability of the algorithm model, further research was conducted using different wheel parameters of electric mountain tractors under wet clay conditions. The results show that these parameters also have high accuracy and stability with only a few iterations. Thus, the estimation algorithm can meet the requirements of quickly and accurately identifying soil characteristic parameters during tractor operation. A criterion for the passability of wheeled tractors through unknown terrain is proposed, utilizing identified soil parameters. Full article
Show Figures

Figure 1

14 pages, 927 KiB  
Article
On the Aggregation and Monetization of Flexible Loads in the Context of EV Fleets
by Kelaja Schert, Florian Biedenbach, Thomas Müller, Michael Kluge and Zoltán Nochta
World Electr. Veh. J. 2024, 15(5), 216; https://doi.org/10.3390/wevj15050216 - 14 May 2024
Viewed by 808
Abstract
In this paper, we present an approach to the price-optimized charging of electric vehicles (EVs) based on energy flexibility. Fleet operators determine the minimum and the maximum power demand to charge EVs at a specific time and share this information as so-called power [...] Read more.
In this paper, we present an approach to the price-optimized charging of electric vehicles (EVs) based on energy flexibility. Fleet operators determine the minimum and the maximum power demand to charge EVs at a specific time and share this information as so-called power corridors (PCs) with an energy aggregator. The energy aggregator collects the predicted PCs from the fleet operators located in the same market area and aggregates the PCs. The energy provider periodically sends energy prices from the market to the energy aggregator, which purchases energy when its price is opportune. The energy aggregator calculates and delivers charge plans for each fleet operator involved and thus can pass along the purchase prices. The incentive design must ensure that fleet operators are better off by disclosing their flexibility data to the aggregator. This study can contribute to a new data-driven energy market communication system by providing insights on how to leverage the energy flexibility that EVs can offer to the energy system. Full article
Show Figures

Figure 1

25 pages, 2538 KiB  
Review
Related Work and Motivation for Electric Vehicle Solar/Wind Charging Stations: A Review
by Radwan A. Almasri, Talal Alharbi, M. S. Alshitawi, Omar Alrumayh and Salman Ajib
World Electr. Veh. J. 2024, 15(5), 215; https://doi.org/10.3390/wevj15050215 - 13 May 2024
Cited by 6 | Viewed by 1724
Abstract
The shift towards sustainable transportation is an urgent worldwide issue, leading to the investigation of creative methods to decrease the environmental effects of traditional vehicles. Electric vehicles (EVs) are a promising alternative, but the issue lies in establishing efficient and environmentally friendly charging [...] Read more.
The shift towards sustainable transportation is an urgent worldwide issue, leading to the investigation of creative methods to decrease the environmental effects of traditional vehicles. Electric vehicles (EVs) are a promising alternative, but the issue lies in establishing efficient and environmentally friendly charging infrastructure. This review explores the existing research on the subject of photovoltaic-powered electric vehicle charging stations (EVCSs). Our analysis highlights the potential for economic growth and the creation of robust and decentralized energy systems by increasing the number of EVCSs. This review summarizes the current knowledge in this field and highlights the key factors driving efforts to expand the use of PV-powered EVCSs. The findings indicate that MATLAB was predominantly used for theoretical studies, with projects focusing on shading parking lots. The energy usage varied from 0.139 to 0.295 kWh/km, while the cost of energy ranged from USD 0.0032 to 0.5645 per kWh for an on-grid system. The payback period (PBP) values are suitable for this application. The average PBP was demonstrated to range from 1 to 15 years. The findings from this assessment can guide policymakers, researchers, and industry stakeholders in shaping future advancements toward a cleaner and more sustainable transportation system. Full article
Show Figures

Figure 1

20 pages, 13202 KiB  
Article
Efficiency Analysis of Hybrid Extreme Regenerative with Supercapacitor Battery and Harvesting Vibration Absorber System for Electric Vehicles Driven by Permanent Magnet Synchronous Motor 30 kW
by Pataphiphat Techalimsakul and Pakornkiat Sawetmethikul
World Electr. Veh. J. 2024, 15(5), 214; https://doi.org/10.3390/wevj15050214 - 12 May 2024
Viewed by 1121
Abstract
This research presents an approach to the hybrid energy harvesting paradigm (HEHP) based on suspended energy harvest. It uses a harvesting vibration absorber (HVA) with an SC/NMC-lithium battery hybrid energy storage paradigm (SCB-HESP) equipped regenerative braking system (SCB-HESP-RBS) for electric vehicles 2 tons [...] Read more.
This research presents an approach to the hybrid energy harvesting paradigm (HEHP) based on suspended energy harvest. It uses a harvesting vibration absorber (HVA) with an SC/NMC-lithium battery hybrid energy storage paradigm (SCB-HESP) equipped regenerative braking system (SCB-HESP-RBS) for electric vehicles 2 tons in gross weight (MEVs) driven by a 30 kW permanent magnet synchronous motor (PMSM). During regenerative braking, the ANN mechanism controls the RBS to adjust the switching waveform of the three-phase power inverter, and the braking energy transfers to the energy storage device. Additionally, a supercapacitor (SC) equipped with HVA can absorb energy from vehicle vibrations and convert it into electrical energy. The energy-harvesting efficiency of MEV based on SCB-HESP-RBS using HVA suspended energy harvesting enhances the efficiency maximum to 50.58% and 15.36% in comparison to MEV with only-HVA and SCB-HESP-RBS, respectively. Further, the MEV with SCB-HESP-RBS using HVA has a driving distance of up to 247.34 km (22.5 cycles) when compared with SCB-HESP-RBS (214.40 km, 19.5 cycles) and only-HVA (164.25 km, 15 cycles). Full article
(This article belongs to the Topic Advanced Electric Vehicle Technology, 2nd Volume)
Show Figures

Figure 1

20 pages, 6979 KiB  
Article
Multi-Strategical Thermal Management Approach for Lithium-Ion Batteries: Combining Forced Convection, Mist Cooling, Air Flow Improvisers and Additives
by Anikrishnan Mohanan and Kannan Chidambaram
World Electr. Veh. J. 2024, 15(5), 213; https://doi.org/10.3390/wevj15050213 - 11 May 2024
Cited by 1 | Viewed by 823
Abstract
Maintaining the peak temperature of a battery within limits is a mandate for the safer operation of electric vehicles. In two-wheeler electric vehicles, the options available for the battery thermal management system are minuscule due to the restrictions imposed by factors like weight, [...] Read more.
Maintaining the peak temperature of a battery within limits is a mandate for the safer operation of electric vehicles. In two-wheeler electric vehicles, the options available for the battery thermal management system are minuscule due to the restrictions imposed by factors like weight, cost, availability, performance, and load. In this study, a multi-strategical cooling approach of forced convection and mist cooling over a single-cell 21,700 lithium-ion battery working under the condition of 4C is proposed. The chosen levels for air velocities (10, 15, 20 and 25 m/s) imitate real-world riding conditions, and for mist cooling implementation, injection pressure with three levels (3, 7 and 14 bar) is considered. The ANSYS fluent simulation is carried out using the volume of fluid in the discrete phase modelling transition using water mist as a working fluid. Initial breakup is considered for more accurate calculations. The battery’s state of health (SOH) is determined using PYTHON by adopting the Newton–Raphson estimation. The maximum temperature reduction potential by employing an airflow improviser (AFI) and additives (Tween 80, 1-heptanol, APG0810, Tween 20 and FS3100) is also explored. The simulation results revealed that an additional reduction of about 11% was possible by incorporating additives and AFI in the multi-strategical approach. The corresponding SOH improvement was about 2%. When the electric two-wheeler operated under 4C, the optimal condition (Max. SOH and Min. peak cell temp.) was achieved at an air velocity of 25 m/s, injection pressure of 7 bar with AFI and 3% (by wt.) Tween 80 and a 0.1% deformer. Full article
(This article belongs to the Special Issue Thermal Management System for Battery Electric Vehicle)
Show Figures

Figure 1

13 pages, 2807 KiB  
Article
Medium- and Long-Term Electric Vehicle Ownership Forecasting for Urban Residents
by Zhao-Xia Xiao, Jiang-Wei Jia, Xiang-Yu Liu, Hong-Kun Bai, Qiu-Yan Li and Yuan-Peng Hua
World Electr. Veh. J. 2024, 15(5), 212; https://doi.org/10.3390/wevj15050212 - 10 May 2024
Viewed by 992
Abstract
With the rapid development of electric vehicles (EVs) in Chinese cities, accurately forecasting the number of EVs used by urban residents in the next five years and more long term is beneficial for the government to adjust industrial policies of EVs, guide the [...] Read more.
With the rapid development of electric vehicles (EVs) in Chinese cities, accurately forecasting the number of EVs used by urban residents in the next five years and more long term is beneficial for the government to adjust industrial policies of EVs, guide the rational planning of urban charging facilities and supporting distribution network, and achieve the rational and orderly development of the EV industry. The paper considers the advantages of using the grey GM(1,1) prediction model to predict the short-term ownership of EVs by urban residents. Then, by forecasting the number of EV users in a certain city in the future and predicting the number of private vehicles in the future, the boundary conditions for long-term year ownership of EVs by residents are determined. Combined with historical data and short-term forecast data generated by the grey prediction model, the model parameters that include the innovation coefficient and imitation coefficient of the Bass model are trained using a genetic algorithm. Finally, the Bass model is used for medium- to long-term ownership forecasting from 2023 to 2040. The prediction error for the target year is provided. The simulation results indicate that the ownership of resident EVs in this city will experience rapid growth in the next five years. Full article
Show Figures

Figure 1

18 pages, 36541 KiB  
Article
Driving Profiles of Light Commercial Vehicles of Craftsmen and the Potential of Battery Electric Vehicles When Charging on Company Premises
by Oliver Heilmann, Britta Bocho, Alexander Frieß, Sven Cortès, Ulrich Schrade, André Casal Kulzer and Michael Schlick
World Electr. Veh. J. 2024, 15(5), 211; https://doi.org/10.3390/wevj15050211 - 10 May 2024
Viewed by 815
Abstract
This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position [...] Read more.
This paper examines the extent to which it is possible to replace conventional light commercial vehicles in the heating, ventilation and air conditioning and plumbing trade with battery electric vehicles with an unchanged usage profile. GPS trackers are used to record the position data of 22 craft vehicles with combustion engines from eleven companies over the duration of one working week. Within this paper, various assumptions (battery capacity and average consumption) are made for battery electric vehicles and the charging power on the company premises. The potential of battery electric vehicles is evaluated based on the assumption that they are charged only on company premises. Using the collected data and the assumptions made, theoretical state of charge curves are calculated for the vehicles. The driving profiles of the individual vehicles differ greatly, and the suitability of battery electric vehicles should be considered individually. Battery capacity, vehicle energy consumption and charging power at the company have a substantial influence on the suitability of battery electric vehicles. Furthermore, there are differences between vehicles that can charge on the company premises at night and those that cannot or can only do so on some days. Full article
Show Figures

Figure 1

14 pages, 8664 KiB  
Article
A Multi-Sensor 3D Detection Method for Small Objects
by Yuekun Zhao, Suyun Luo, Xiaoci Huang and Dan Wei
World Electr. Veh. J. 2024, 15(5), 210; https://doi.org/10.3390/wevj15050210 - 10 May 2024
Cited by 1 | Viewed by 1021
Abstract
In response to the limited accuracy of current three-dimensional (3D) object detection algorithms for small objects, this paper presents a multi-sensor 3D small object detection method based on LiDAR and a camera. Firstly, the LiDAR point cloud is projected onto the image plane [...] Read more.
In response to the limited accuracy of current three-dimensional (3D) object detection algorithms for small objects, this paper presents a multi-sensor 3D small object detection method based on LiDAR and a camera. Firstly, the LiDAR point cloud is projected onto the image plane to obtain a depth image. Subsequently, we propose a cascaded image fusion module comprising multi-level pooling layers and multi-level convolution layers. This module extracts features from both the camera image and the depth image, addressing the issue of insufficient depth information in the image feature. Considering the non-uniform distribution characteristics of the LiDAR point cloud, we introduce a multi-scale voxel fusion module composed of three sets of VFE (voxel feature encoder) layers. This module partitions the point cloud into grids of different sizes to improve detection ability for small objects. Finally, the multi-level fused point features are associated with the corresponding scale’s initial voxel features to obtain the fused multi-scale voxel features, and the final detection results are obtained based on this feature. To evaluate the effectiveness of this method, experiments are conducted on the KITTI dataset, achieving a 3D AP (average precision) of 73.81% for the hard level of cars and 48.03% for the hard level of persons. The experimental results demonstrate that this method can effectively achieve 3D detection of small objects. Full article
(This article belongs to the Special Issue Deep Learning Applications for Electric Vehicles)
Show Figures

Figure 1

23 pages, 10187 KiB  
Article
Hardware Implementation of a Resilient Energy Management System for Networked Microgrids
by Hossam M. Hussein, S M Sajjad Hossain Rafin, Mahmoud S. Abdelrahman and Osama A. Mohammed
World Electr. Veh. J. 2024, 15(5), 209; https://doi.org/10.3390/wevj15050209 - 10 May 2024
Cited by 1 | Viewed by 929
Abstract
A networked microgrid is composed of multiple nearby microgrids linked together to gain additional flexibility for resilient operations. Networked microgrids collaborate to prevent power shortages in microgrid clusters by sharing critical renewable and energy storage resources. However, controlling the local resources of each [...] Read more.
A networked microgrid is composed of multiple nearby microgrids linked together to gain additional flexibility for resilient operations. Networked microgrids collaborate to prevent power shortages in microgrid clusters by sharing critical renewable and energy storage resources. However, controlling the local resources of each microgrid, including the energy storage systems’ charging and discharging, maintaining the DC bus voltage, and even overseeing the power shared by multiple microgrids, is challenging. Therefore, a microgrid control technique and distributed energy management are used cooperatively in this study to handle the shared power between a system of networked microgrids incorporating photovoltaics and battery energy storage systems. Numerical simulation results from a networked microgrid system verify the accuracy and soundness of the suggested distributed energy management under several operating conditions, including renewable uncertainties and sequential load variations in different zones. The applicability of the suggested technique is confirmed by hardware implementation, and several operational scenarios further evaluate the proposed system on a practical two-microgrid system located in the Florida International University (FIU) testbed. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

19 pages, 16965 KiB  
Review
Application of Digital Twin in Electric Vehicle Powertrain: A Review
by Xiaokang Li, Wenxu Niu and Haobin Tian
World Electr. Veh. J. 2024, 15(5), 208; https://doi.org/10.3390/wevj15050208 - 10 May 2024
Cited by 1 | Viewed by 1728
Abstract
Digital Twin (DT) is widely regarded as a highly promising technology with the potential to revolutionize various industries, making it a key trend in the Industry 4.0 era. In a cost-effective and risk-free setting, digital twins facilitate the interaction and merging of the [...] Read more.
Digital Twin (DT) is widely regarded as a highly promising technology with the potential to revolutionize various industries, making it a key trend in the Industry 4.0 era. In a cost-effective and risk-free setting, digital twins facilitate the interaction and merging of the physical and informational realms. The application of digital twins spans across different sectors, including aerospace, healthcare, smart manufacturing, and smart cities. As electric vehicles have experienced rapid growth, there is a growing demand for the development of innovative technologies. One potential area for digital twins application is within the automotive sector. The powertrain system of electric vehicles (EVs) consists of three parts, power source, power electronic system, and electric motor, which are considered as the core components of electric vehicles. The focus of this paper is to conduct a methodical review regarding the use of digital twins in the powertrain of electric vehicles (EVs). While reviewing the development of digital twin technology, its main application scenarios and its use in electric vehicle powertrains are analysed. Finally, the digital twins currently encounter several challenges that need to be addressed, and so the future development of their application to electric vehicles are summarized. Full article
Show Figures

Figure 1

15 pages, 5452 KiB  
Article
Suppression of Initial Charging Torque for Electric Drive-Reconfigured On-Board Charger
by Yang Xiao, Kangwei Wang, Zhi Geng, Kai Ni, Mingdi Fan and Yong Yang
World Electr. Veh. J. 2024, 15(5), 207; https://doi.org/10.3390/wevj15050207 - 9 May 2024
Viewed by 1249
Abstract
This paper presents a new electric drive-reconfigured on-board charger and initial electromagnetic torque suppression method. This proposed reconfigured on-board charger does not need many components added to the original electric drive system: only a connector is needed, which is easy to add. Specifically, [...] Read more.
This paper presents a new electric drive-reconfigured on-board charger and initial electromagnetic torque suppression method. This proposed reconfigured on-board charger does not need many components added to the original electric drive system: only a connector is needed, which is easy to add. Specifically, the inverter for propulsion is reconfigured as a buck chopper and a conduction path to match the reconfigured windings. Two of the machine phase windings serve as inductors, while the third phase winding is reutilized as a common-mode inductor. In addition, the initial charging torque is generated at the outset of the charging process, which may cause an instant shock or even rotational movement. In order to prevent vehicle movement, the reason for the charging torque and suppression method were analyzed. Further, predictive control of the model based on mutual inductance analysis was adopted, where the charging torque was directly used as a control object in the cost function. Finally, experimental performances were applied to verify the proposed reconfigured on-board charger under constant current and constant voltage charging. Full article
Show Figures

Figure 1

13 pages, 1034 KiB  
Article
Modeling an Investment Framework for BMTA Electric Bus Fleet Development
by Sorawit Wanitanukul, Kuskana Kubaha and Roongrojana Songprakorp
World Electr. Veh. J. 2024, 15(5), 206; https://doi.org/10.3390/wevj15050206 - 9 May 2024
Viewed by 839
Abstract
In Thailand, diesel buses are notorious for their poor energy efficiency and contribution to air pollution. To combat these issues, battery electric buses (BEBs) have emerged as a promising alternative. However, their high initial costs have posed challenges for fleet management, especially for [...] Read more.
In Thailand, diesel buses are notorious for their poor energy efficiency and contribution to air pollution. To combat these issues, battery electric buses (BEBs) have emerged as a promising alternative. However, their high initial costs have posed challenges for fleet management, especially for agencies such as the Bangkok Mass Transit Authority (BMTA). This study aims to revolutionize BEB fleet management by developing an energy model tailored to the BMTA’s needs. The methodology consists of two crucial steps: analyzing BMTA bus routes and designing fleet management and charging systems. Through this process, the study seeks to determine the maximum number of BEBs that can be operated on each route with the fewest chargers possible. The results reveal exciting possibilities. Within the city bus landscape, two out of five BMTA bus routes show potential for transitioning to BEBs, provided they meet a maximum energy requirement of 200 kWh every two rounds. This analysis identifies routes ripe for BEB adoption while considering the limitations of battery size. In the next step, the study unveils a game-changing strategy: a maximum of 13 BEBs can operate on two routes with just four chargers requiring 150 kW each. This means fewer chargers and more efficient operations. Plus, the charging profile peaks at 600 kW from 4:00 to 8:00 p.m., showing when and where the fleet needs power the most. However, the real eye-opener? Significant energy savings of THB 10.44 million per year compared to diesel buses, with an initial investment cost savings of over 37%. These findings underscore the potential for BEB fleet management to revolutionize public transportation and save money in the long run. However, there is more work to be done. The study highlights the need for real-time passenger considerations, the development of post-service charging strategies, and a deeper dive into total lifetime costs. These areas of improvement promise even greater strides in the future of sustainable urban transportation. Full article
Show Figures

Figure 1

15 pages, 5738 KiB  
Article
An Effective Charging Torque Elimination Method for Dual-Channel Electric-Drive-Reconstructed Onboard Chargers
by Xunhui Cheng, Feng Yu and Linhao Qiu
World Electr. Veh. J. 2024, 15(5), 205; https://doi.org/10.3390/wevj15050205 - 8 May 2024
Viewed by 892
Abstract
The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an [...] Read more.
The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM). A unique operation mode, called the unbalanced charging voltage operation mode, exists in this topology, in case the voltages of the two batteries are unequal. This unbalance results in different winding currents following through two channels, leading to an undesired charging torque in the machine. To ensure the safety of the system, an effective charging torque elimination method, based on dual-channel winding current balance, is proposed, which achieves a dot-shaped current path of torque generation-associated subspace (i.e., αβ subspace) by balancing the dual-channel charging power. Eventually, a controller is designed for the system and a prototype is created, to validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

14 pages, 11444 KiB  
Article
Online Fault Detection of Open-Circuit Faults in a DTP-PMSM Using Double DQ Current Prediction
by Qiang Geng, Wenhao Du, Xuefeng Jin, Guozheng Zhang and Zhanqing Zhou
World Electr. Veh. J. 2024, 15(5), 204; https://doi.org/10.3390/wevj15050204 - 8 May 2024
Viewed by 919
Abstract
This research proposes a strategy to diagnose open-phase faults (OPF) and open-switching faults (OSF) in dual three-phase permanent magnet synchronous motor (DTP-PMSM) inverters. The method is based on the dual d–q predictive current model and involves establishing a mathematical model and utilizing the [...] Read more.
This research proposes a strategy to diagnose open-phase faults (OPF) and open-switching faults (OSF) in dual three-phase permanent magnet synchronous motor (DTP-PMSM) inverters. The method is based on the dual d–q predictive current model and involves establishing a mathematical model and utilizing the finite control set model predictive current extraction technique to predict the motor current. It then analyzes the characteristics of the switching-tube current under both normal and fault conditions. Finally, a fault predictive current model is introduced and the residual is calculated based on the predicted fault current value and the actual measured current value to diagnose the inverter fault. The proposed method effectively overcomes misjudgment issues encountered in traditional open-circuit fault diagnosis of inverters. It enhances the system’s response speed during dynamic processes and strengthens the robustness of diagnosis algorithm parameters. The experimental results demonstrate that the proposed method can rapidly, effectively, and accurately diagnose open-circuit faults presented in this paper fastest within one-fifth of a current cycle. It achieves a diagnostic accuracy rate of 97% in the dual three-phase permanent magnet synchronous motor drive system. Full article
Show Figures

Figure 1

18 pages, 4885 KiB  
Article
Position Correction Control of Permanent-Magnet Brushless Motor Based on Commutation-Interval Current Symmetry
by Yongwu Guo, Yun Zhang and Xiaowei Li
World Electr. Veh. J. 2024, 15(5), 203; https://doi.org/10.3390/wevj15050203 - 7 May 2024
Viewed by 781
Abstract
With the needs of environmental protection and the adjustment of energy structure, new energy vehicles are playing an increasingly important role in the field of transportation today. The permanent-magnet brushless direct-current motor has the characteristics of high efficiency, and can be used in [...] Read more.
With the needs of environmental protection and the adjustment of energy structure, new energy vehicles are playing an increasingly important role in the field of transportation today. The permanent-magnet brushless direct-current motor has the characteristics of high efficiency, and can be used in the drive system of new energy vehicles or other auxiliary equipment. In the control process of the permanent-magnet brushless direct-current motor, based on a three-Hall position sensor, due to various factors, there are some errors in the Hall position signal, which must be corrected by appropriate measures. In this paper, the relationship between the position deviation in the commutation interval and the non-commutation-phase current is analyzed, and the current expressions in three different states are given. A new closed-loop compensation strategy for correcting the inaccurate commutation caused by the Hall signal error is proposed. Taking the position of a 30° electrical angle before and after the phase-change point as the H point, realizing the current symmetry within the 30° interval around the H point as the target and the sum of the slopes of the tangent lines at the two points symmetrical within the β (0 < β < 30) electrical angle around the H point as the deviation, a proportional-integral regulator is designed to correct the phase error of the phase-change signal. Finally, it is verified by experiments that the closed-loop compensation strategy proposed in this paper can effectively compensate the phase deviation of the commutation signal at a speed of about 2000 r/min, which improves the working efficiency of the motor to a certain extent. Full article
Show Figures

Figure 1

15 pages, 6034 KiB  
Article
Distributed-Drive Vehicle Lateral-Stability Coordinated Control Based on Phase-Plane Stability Region
by Jun Liu and Ang Dai
World Electr. Veh. J. 2024, 15(5), 202; https://doi.org/10.3390/wevj15050202 - 7 May 2024
Viewed by 777
Abstract
The lateral stability control of vehicles is one of the most crucial aspects of vehicle safety. This article introduces a coordinated-control strategy designed to enhance the handling stability of distributed-drive electric vehicles. The upper controller uses active front steering and direct yaw moment-control [...] Read more.
The lateral stability control of vehicles is one of the most crucial aspects of vehicle safety. This article introduces a coordinated-control strategy designed to enhance the handling stability of distributed-drive electric vehicles. The upper controller uses active front steering and direct yaw moment-control controllers designed based on sliding-mode control theory. The lower controller optimally allocates control inputs to the upper controller, considering factors such as load transfer and tire load rate. It divides the stability region by relying on the phase plane and develops a coordinated-control strategy based on the degree of deviation of the vehicle state from the stability region. The results of the simulation experiments demonstrate that the proposed control strategy effectively improves handling stability under extreme working conditions. Full article
(This article belongs to the Special Issue Intelligent Electric Vehicle Control, Testing and Evaluation)
Show Figures

Figure 1

19 pages, 26111 KiB  
Article
Optimization Design of Variable Reluctance Resolver Based on Three-phase Symmetrical Winding
by Xinmin Li, Jiannan Chen and Zhen Zhang
World Electr. Veh. J. 2024, 15(5), 201; https://doi.org/10.3390/wevj15050201 - 6 May 2024
Viewed by 1087
Abstract
In order to ease the structure and manufacturing process of the variable reluctance (VR) resolver, the three-phase symmetrical single-layer winding commonly used in the stator winding of permanent magnet synchronous motors (PMSM) is applied to the VR resolver in this paper. The proposed [...] Read more.
In order to ease the structure and manufacturing process of the variable reluctance (VR) resolver, the three-phase symmetrical single-layer winding commonly used in the stator winding of permanent magnet synchronous motors (PMSM) is applied to the VR resolver in this paper. The proposed resolver has the same winding direction and number of turns on all teeth. And the non-overlapping distribution of the three-phase windings of the resolver is ensured. For this novel resolver, the resolver-to-digital conversion (RDC) method references the ultra-high-frequency (UHF) signal injection method used when a PMSM is powered off and restarted. Instead of the need for the orthogonal envelope RDC required by conventional resolvers, the absolute position of the rotor can be obtained. In this paper, the prototype of the proposed resolver and the peripheral circuits are fabricated and compared with the position detected by the optical encoder, and the validity of the proposed resolver and the accuracy of the RDC are verified by the results of the comparison experiments. Full article
Show Figures

Figure 1

14 pages, 2580 KiB  
Article
Improved Equivalent Strain Method for Fatigue Life of Automobile Aluminum Alloy
by Shanjie Zhi, Hejian Liu and Xintian Liu
World Electr. Veh. J. 2024, 15(5), 200; https://doi.org/10.3390/wevj15050200 - 6 May 2024
Viewed by 1027
Abstract
Automotive parts are usually subjected to random loads with large mean tensile/compressive stresses under working conditions. It is important for automotive parts to have a long fatigue life under mean stress in practical engineering applications. An equivalent strain model is established here to [...] Read more.
Automotive parts are usually subjected to random loads with large mean tensile/compressive stresses under working conditions. It is important for automotive parts to have a long fatigue life under mean stress in practical engineering applications. An equivalent strain model is established here to predict fatigue life considering the influence of mean strain and stress under asymmetric cycles. To predict the fatigue life more accurately, the coefficient of surface roughness and temperature correction is introduced in this model. The effectiveness of the improved equivalent strain (IES) model is verified by comparing it with multiple sets of experimental data. The IES is also compared with Smith–Watson–Topper (SWT), Manson–Coffin, and equivalent strain models. The results show that the developed model has a higher prediction accuracy than the other models. An improved fatigue strength exponent is introduced to modify the equivalent strain model, and the effectiveness of the model is verified by experimental data. The IES model demonstrates significantly reduced standard deviations under various strain ratios (−0.06, 0.06, 0.5), with measurements of 0.0936, 0.0721, and 0.0636, respectively. The method provides a certain reference for the life prediction of automotive parts. Full article
(This article belongs to the Special Issue Electric Vehicle Networking and Traffic Control)
Show Figures

Figure 1

15 pages, 6701 KiB  
Article
Direct Torque Control of Dual Three-Phase Permanent Magnet Synchronous Motors Based on Master–Slave Virtual Vectors
by Qiang Geng, Ziteng Qin, Xuefeng Jin, Guozheng Zhang and Zhanqing Zhou
World Electr. Veh. J. 2024, 15(5), 199; https://doi.org/10.3390/wevj15050199 - 4 May 2024
Viewed by 1111
Abstract
In order to further reduce the torque, flux-linkage fluctuation, and current harmonic content of dual three-phase permanent magnet synchronous motors, this paper proposes a direct torque control strategy combined with a master–slave virtual vector duty cycle assignment. Two types of virtual voltage vectors [...] Read more.
In order to further reduce the torque, flux-linkage fluctuation, and current harmonic content of dual three-phase permanent magnet synchronous motors, this paper proposes a direct torque control strategy combined with a master–slave virtual vector duty cycle assignment. Two types of virtual voltage vectors with different amplitudes are used to form a harmonic suppression switching table. The virtual vectors are classified into master and slave virtual vectors according to the degree of influence on the torque and the flux-linkage. Then, the duty cycle of the master and slave virtual vectors is recalculated and allocated through the evaluation function to achieve accurate control of the torque and the flux-linkage. Finally, the switching sequences of the master and slave virtual vectors that act together in one control cycle are rearranged into a symmetrical waveform. It is experimentally verified that the phase current THD of the proposed strategy is reduced by 69.4%, the 5th and 7th current harmonics content is significantly reduced, and the torque fluctuation and flux-linkage fluctuation can also be effectively suppressed, which provides better dynamic performance and steady-state performance. Full article
Show Figures

Figure 1

19 pages, 24649 KiB  
Article
Personalized Path-Tracking Approach Based on Reference Vector Field for Four-Wheel Driving and Steering Wire-Controlled Chassis
by Changhua Dai, Changfu Zong, Dong Zhang, Hongyu Zheng, Chuyo Kaku, Dingheng Wang and Kai Zhao
World Electr. Veh. J. 2024, 15(5), 198; https://doi.org/10.3390/wevj15050198 - 3 May 2024
Cited by 1 | Viewed by 993
Abstract
It is essential and forward-thinking to investigate the personalized use of four-wheel driving and steering wire-controlled unmanned chassis. This paper introduces a personalized path-tracking approach designed to adapt the vehicle’s control system to human-like characteristics, enhancing the fit and maximizing the potential of [...] Read more.
It is essential and forward-thinking to investigate the personalized use of four-wheel driving and steering wire-controlled unmanned chassis. This paper introduces a personalized path-tracking approach designed to adapt the vehicle’s control system to human-like characteristics, enhancing the fit and maximizing the potential of the chassis’ multi-directional driving and steering capabilities. By modifying the classic vehicle motion controller design, this approach aligns with individual driving habits, significantly improving upon traditional path-tracking control methods that rely solely on reference vector fields. First, the classic reference vector field’s logic was expanded upon, and it is shown that a personalized upgrade is feasible. Then, driving behavior data from multiple drivers were collected using a driving simulator. The fuzzy c-means clustering method was used to categorize drivers based on typical states that match vehicle path-tracking performance. Additionally, the random forest algorithm was used as the method for recognizing driving style. Subsequently, a personalized path-tracking control strategy based on the reference vector field was developed and a distributed execution architecture for four-wheel driving and steering wire-controlled unmanned chassis was established. Finally, the proposed personalized path-tracking approach was validated using a driving simulator. The results of the experimental tests demonstrated that the personalized path-tracking control approach not only fits well with various driving styles but also delivers high accuracy in driving style identification, making it highly suitable for application in four-wheel driving and steering wire-controlled chassis. Full article
Show Figures

Figure 1

19 pages, 3892 KiB  
Article
Flexible Charging to Energy Saving—Strategies Assessment with Big Data Analysis for PHEVs Private Cars
by Natascia Andrenacci, Giancarlo Giuli, Antonino Genovese and Giovanni Pede
World Electr. Veh. J. 2024, 15(5), 197; https://doi.org/10.3390/wevj15050197 - 3 May 2024
Cited by 1 | Viewed by 1232
Abstract
In road transport, most vehicles today still rely on internal combustion engines. However, these engines have lower efficiency and generate higher pollution levels compared to electric motors. Consequently, there is a growing interest in the transition from conventional vehicles to electric ones. However, [...] Read more.
In road transport, most vehicles today still rely on internal combustion engines. However, these engines have lower efficiency and generate higher pollution levels compared to electric motors. Consequently, there is a growing interest in the transition from conventional vehicles to electric ones. However, the transition to an electrified road transport system is not without challenges. Among these, the impact that electric vehicle charging will have on the electricity grid is of particular concern. This paper analyzes different charging scenarios for plug-in hybrid electric vehicles (PHEVs) and proposes charging strategies to minimize their impact on the electricity grid. The analysis is based on a large dataset of trips in urban areas in Italy. The study shows that smart charging of PHEVs can be implemented to minimize the impact on the electricity grid. The implementation of optimized charging strategies can contribute to making PHEVs a valid, eco-sustainable alternative to conventional vehicles while also promoting the stability and efficiency of the electricity grid. The study aims to verify the effectiveness and efficiency of the flexible charging strategy by comparing the common charging operation (first in–first out) with other, less impactful charging schemes. Full article
(This article belongs to the Special Issue Smart Charging Strategies for Plug-In Electric Vehicles)
Show Figures

Figure 1

19 pages, 5788 KiB  
Article
Mutual Inductance Identification and Bilateral Cooperation Control Strategy for MCR-BE System
by Ke Li, Yuanmeng Liu, Xiaodong Sun and Xiang Tian
World Electr. Veh. J. 2024, 15(5), 196; https://doi.org/10.3390/wevj15050196 - 2 May 2024
Viewed by 773
Abstract
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements [...] Read more.
Considering that the excitation method of an electric excitation synchronous motor has the disadvantages of the brush and slip ring, this article proposes a new brushless excitation system, which includes two parts: a wireless charging system and a motor. To meet the requirements of maximum transmission efficiency and constant voltage output of the system, a bilateral cooperation control strategy is proposed. For the strategy, the buck converter in the receiving side of the system can maintain maximum transmission efficiency through impedance matching, while the inverter in the transmitting side can keep the output voltage constant through phase shift modulation. In the control process, considering that the offset of coupling coils will affect the control results, a grey wolf optimization–particle swarm optimization algorithm is proposed to identify mutual inductance. Simulation and experimental results show that this identification algorithm can improve the identification accuracy and maximize the avoidance of falling into local optima. The final experimental result shows that the bilateral cooperation control strategy can maintain the output voltage around 48 V and the transmission efficiency around 84.5%, which meets the expected requirements. Full article
(This article belongs to the Special Issue Permanent Magnet Motors and Driving Control for Electric Vehicles)
Show Figures

Figure 1

14 pages, 2093 KiB  
Article
A Double-Threshold Cooperative Spectrum Sensing Algorithm in the Internet of Vehicles
by Hong Du and Yuhan Wang
World Electr. Veh. J. 2024, 15(5), 195; https://doi.org/10.3390/wevj15050195 - 2 May 2024
Viewed by 785
Abstract
To address the shortage of wireless spectrum resources caused by the rapid development of the Internet of Vehicles, spectrum sensing technology in cognitive radio is employed to tackle this issue. In pursuit of superior outcomes, a double-threshold cooperative spectrum sensing algorithm is introduced. [...] Read more.
To address the shortage of wireless spectrum resources caused by the rapid development of the Internet of Vehicles, spectrum sensing technology in cognitive radio is employed to tackle this issue. In pursuit of superior outcomes, a double-threshold cooperative spectrum sensing algorithm is introduced. This algorithm enhances traditional energy detection technology to mitigate the high sensitivity to noise interference in the Internet of Vehicles environment. A double-threshold judgment mechanism can be established based on the uncertainty of noise. Varying fusion rules are implemented in the collaborative spectrum sensing scheme according to the density of vehicles and the spectrum resource demand. Simulation results demonstrate that the performance of the double-threshold cooperative spectrum sensing algorithm surpasses that of the traditional single-threshold energy detection scheme, particularly evident under lower Signal-to-Noise Ratio (SNR) conditions. Moreover, the proposed algorithm exhibits superior sensing performance in environments characterized by higher noise uncertainty. Full article
Show Figures

Figure 1

16 pages, 3406 KiB  
Article
Improvement of Commercial Vehicle Seat Suspension Employing a Mechatronic Inerter Element
by Xiaofeng Yang, Shuilan Bi, Yanling Liu, Yi Yang, Changning Liu and Jiahao Qin
World Electr. Veh. J. 2024, 15(5), 194; https://doi.org/10.3390/wevj15050194 - 30 Apr 2024
Viewed by 1081
Abstract
To further improve the ride comfort of commercial vehicles, a seat ISD (Inerter–Spring–Damper) suspension utilizing a mechatronic inerter is proposed in this paper. Firstly, a five-DOF (degree-of-freedom) commercial vehicle seat ISD model was built. Then, the positive real network constraint conditions of a [...] Read more.
To further improve the ride comfort of commercial vehicles, a seat ISD (Inerter–Spring–Damper) suspension utilizing a mechatronic inerter is proposed in this paper. Firstly, a five-DOF (degree-of-freedom) commercial vehicle seat ISD model was built. Then, the positive real network constraint conditions of a biquadratic impedance transfer function were determined, and the meta-heuristic intelligent optimization algorithm was used to solve the parameters. According to the solution, the impedance transfer function was obtained and the specific network structure was realized by network synthesis. Lastly, this study compares the vibration isolation performance of the mechatronic ISD suspension of the vehicle seat with that of a passive suspension. In comparison to passive seat suspension, the seat mechatronic ISD suspension reduces seat vibration transmissibility by 16.33% and vertical acceleration by 16.78%. Results indicate that the new suspension system can be an effective improvement in ride comfort. Full article
(This article belongs to the Special Issue Advanced Vehicle System Dynamics and Control)
Show Figures

Figure 1

16 pages, 2842 KiB  
Article
Battery Research and Innovation—A Study of Patents and Papers
by Hans Pohl and Måns Marklund
World Electr. Veh. J. 2024, 15(5), 193; https://doi.org/10.3390/wevj15050193 - 29 Apr 2024
Viewed by 1006
Abstract
This study of patent applications and scientific publications related to batteries is unique as it includes the volume of as well as qualitative indicators for both types of publications. Using carefully elaborated strategies to identify publications relating to batteries, this study provides data [...] Read more.
This study of patent applications and scientific publications related to batteries is unique as it includes the volume of as well as qualitative indicators for both types of publications. Using carefully elaborated strategies to identify publications relating to batteries, this study provides data to discuss the critical balance to strike between investments in research and the more innovation-related aspects. The results show that China’s dominance in publication volumes increases and that research with Chinese involvement is highly cited, whereas patent applications are slightly less valued than the world average. Quality-related indicators for Canada and the United States are very high for both scientific publications and patent applications. National differences in the proportions of patent applications and scientific publications are large, with Japan at one end with three patent applications per scientific paper and Canada at the other with almost seven scientific papers per patent application. On an actor level, data for Sweden indicate how the automotive industry started to file many patent applications in the decade starting in 2010. Finally, it is noted that this new approach to study a technological field appears promising as it gives new perspectives of relevance for policy actors and others. Full article
Show Figures

Figure 1

15 pages, 28316 KiB  
Article
Design and Aerodynamic Characteristics Analysis of an Electric Racecar Body Based on CFD
by Jixiong Li, Fengbi Liu and Lei Wang
World Electr. Veh. J. 2024, 15(5), 192; https://doi.org/10.3390/wevj15050192 - 29 Apr 2024
Viewed by 896
Abstract
This study focuses on the development of a body for an electric racecar, utilizing CAD software for the design. A simplified full-vehicle geometric model was constructed. Based on fundamental theories of computational fluid dynamics and using CAE software platforms, the shear stress transport [...] Read more.
This study focuses on the development of a body for an electric racecar, utilizing CAD software for the design. A simplified full-vehicle geometric model was constructed. Based on fundamental theories of computational fluid dynamics and using CAE software platforms, the shear stress transport (SST) k-ω physical model was chosen to establish a three-dimensional computational model of the racecar’s external flow field. Simulations were conducted to analyze the pressure, airflow streamlines, and velocity distribution around the body and its surrounding flow field, elucidating the impact of body shape structure on aerodynamic characteristics. Finally, a manufacturing process for the body was designed, and a prototype was produced and integrated into the complete vehicle for road testing. The results indicate that the designed electric racecar body maintained consistent airflow over its surface, meeting the basic requirements of aerodynamics. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

12 pages, 2373 KiB  
Review
OCPP Interoperability: A Unified Future of Charging
by Silke R. Kirchner
World Electr. Veh. J. 2024, 15(5), 191; https://doi.org/10.3390/wevj15050191 - 29 Apr 2024
Cited by 1 | Viewed by 1715
Abstract
Electric vehicle (EV) adoption grows steadily on a global scale, yet there is no consistent experience for EV drivers to charge their vehicles, which hinders the important EV mass market adoption. The Open Charge Point Protocol (OCPP) is the solution to this challenge, [...] Read more.
Electric vehicle (EV) adoption grows steadily on a global scale, yet there is no consistent experience for EV drivers to charge their vehicles, which hinders the important EV mass market adoption. The Open Charge Point Protocol (OCPP) is the solution to this challenge, as it provides standardization and open communication between EV infrastructure components. The interplay of the OCPP with open cross-functional communication standards boosters driver experience on the one hand, while the charging station itself is integrated into a renewable energy ecosystem. This paper presents a deep dive into the combination of the OCPP with the OpenADR protocol, the Open Smart Charging Protocol (OSCP), the ISO 15118, and eRoaming protocols to explore possibilities and limitations. Furthermore, we suggest LoRa communication as an alternative to IP-based communication for deep-in building applications. Hence, this paper reveals the next important steps towards a successful EV mass market transition powered by user-friendliness and green energy. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop