Next Issue
Volume 17, May
Previous Issue
Volume 17, March
 
 

Pharmaceutics, Volume 17, Issue 4 (April 2025) – 143 articles

Cover Story (view full-size image):  
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
21 pages, 9638 KiB  
Article
Development of GSH-Stimuli-Responsive Micelles Using a Targeted Paclitaxel Prodrug for Enhanced Anticancer Effect
by Qian Ning, Guangping Yu, Wenkai Yi, Minhui Gu, Qianqian Xu, Zhiting Ye, Mengxia Zhang and Shengsong Tang
Pharmaceutics 2025, 17(4), 538; https://doi.org/10.3390/pharmaceutics17040538 - 21 Apr 2025
Viewed by 179
Abstract
Background: Cancer ranks as a leading cause of death worldwide. It is urgent to develop intelligent co-delivery systems for cancer chemotherapy to achieve reduced side-effects and enhanced therapeutic efficacy. Methods: We chose oligo-hyaluronic acid (oHA, a low molecular weight of HA) as the [...] Read more.
Background: Cancer ranks as a leading cause of death worldwide. It is urgent to develop intelligent co-delivery systems for cancer chemotherapy to achieve reduced side-effects and enhanced therapeutic efficacy. Methods: We chose oligo-hyaluronic acid (oHA, a low molecular weight of HA) as the carrier, and adriamycin (ADM) and paclitaxel (PTX) as the co-delivered drugs. The oHA-ss-PTX macromolecular prodrug was synthesized by introducing glutathione-stimuli-responsive disulfide bonds through chemical reactions. Then, we constructed ADM-loading micelles (ADM/oHA-ss-PTX) in one step by microfluidic preparation. The delivery efficacy was evaluated comprehensively in vitro and in vivo. The biocompatibility of ADM/oHA-ss-PTX was assessed by hemolysis activity analysis, BSA adsorption testing, and cell viability assay in endothelial cells. Results: The resulting ADM/oHA-ss-PTX micelles possessed a dynamic size (127 ± 1.4 nm, zeta potential −9.0 mV), a high drug loading content of approximately 21.2% (PTX) and 7.6% (ADM). Compared with free ADM+PTX, ADM/oHA-ss-PTX showed enhanced blood stability and more efficiently inhibited cancer cell proliferation. Moreover, due to the CD44-mediated endocytosis pathway, a greater number of ADM/oHA-ss-PTX micelles were absorbed by A549 cells than by oHA-saturated A549 cells. In vivo experiments also showed that ADM/oHA-ss-PTX micelles had excellent therapeutic effects and targeting ability. These results show that ADM/oHA-ss-PTX micelles were a promising platform for co-delivery sequential therapy in CD44-positive cancer. Conclusions: In conclusion, these results convincingly demonstrate that ADM/oHA-ss-PTX micelles hold great promise as a novel platform for co-delivering multiple drugs. Their enhanced properties not only validate the potential of this approach for sequential cancer therapy in CD44-positive cancers but also pave the way for future clinical translation and further optimization in cancer treatment. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

14 pages, 2594 KiB  
Article
Comparison of Drying Techniques to Produce Stable and Bioavailable Encapsulated ACE-2 Nanoparticles
by Yigong Guo, Alberto Baldelli, Dai Shi, David D. Kitts, Anubhav Pratap-Singh and Anika Singh
Pharmaceutics 2025, 17(4), 537; https://doi.org/10.3390/pharmaceutics17040537 - 21 Apr 2025
Viewed by 158
Abstract
Background/Objectives: COVID-19 infection continues globally, with frequent emergence of unfamiliar SARS-CoV-2 variants acting to impair immunity. The competitive binding of SARS-CoV-2 spike proteins and angiotensin-converting enzyme 2 (ACE-2) can decrease the binding of the virus on native ACE-2 receptors on healthy human cells. [...] Read more.
Background/Objectives: COVID-19 infection continues globally, with frequent emergence of unfamiliar SARS-CoV-2 variants acting to impair immunity. The competitive binding of SARS-CoV-2 spike proteins and angiotensin-converting enzyme 2 (ACE-2) can decrease the binding of the virus on native ACE-2 receptors on healthy human cells. It remains a practical approach to lessen viral spread. In this study, a method to encapsulate ACE-2 in the form of chitosan/tripolyphosphate cross-linked nanoparticles (NPs) was developed with emphasis placed on the best dehydration method to secure functional ACE-2 nanoparticles. Methods: Methods: Preparation conditions were assessed by varying pH (4.0–6.5) and the ratio between chitosan and ACE-2 mixing ratios (1:1, 1.5:1, 2:1, 2.5:1, and 3:1). The formulated NPs were then dehydrated using different approaches that included spray-drying (SD), freeze-drying (FD), and spray-freeze drying (SFD) and used varying mannitol concentrations (0, 1:1, and 5:1 of total weight). The mannitol was served as a cryoprotectant in this study. Results: The best formulation achieved used a pH 5.5 with a mixing chitosan–ACE-2 ratio of 2:1, where ACE-2-loaded NPs had an average particle size of 303.7 nm, polydispersity index (PDI) of 0.21, encapsulation efficiency (EE) of 98.4%, and ACE-2 loading content (LC) of 28.4%. After reconstitution, all SD samples had a relatively low yield rate, but the ACE-2 NPs dehydrated specifically using SFD required a lower amount of added mannitol (1:1 of its total weight) and produced a higher yield rate (p < 0.05) and similar PDI and EE values, along with relatively good particle size and LC. This formulation also produced a high ACE-2 release and uptake in differentiated Caco-2 cells, thus representing an effective ACE-2 encapsulation procedure for use with dry powders. Conclusions: This work showed that spray-freeze drying was the best method to dehydrate ACE-2 NPs, using less cryoprotectant to create a significant advantage in terms of greater loading capacity with lower additive requirements. Full article
(This article belongs to the Special Issue Advances in Delivery of Peptides and Proteins)
Show Figures

Graphical abstract

17 pages, 5229 KiB  
Article
Thymoquinone Enhances Doxorubicin Efficacy via RAS/RAF Pathway Modulation in Ovarian Adenocarcinoma
by Veysel Toprak, İlhan Özdemir, Şamil Öztürk, Orhan Yanar, Yusuf Ziya Kizildemir and Mehmet Cudi Tuncer
Pharmaceutics 2025, 17(4), 536; https://doi.org/10.3390/pharmaceutics17040536 - 19 Apr 2025
Viewed by 250
Abstract
Background/Objectives: Ovarian cancer remains one of the most commonly diagnosed malignancies among women worldwide. The heterogeneity among tumor subtypes and the emergence of treatment resistance have raised significant concerns regarding the long-term efficacy of chemotherapy, radiotherapy, and immunotherapy. In response to these challenges, [...] Read more.
Background/Objectives: Ovarian cancer remains one of the most commonly diagnosed malignancies among women worldwide. The heterogeneity among tumor subtypes and the emergence of treatment resistance have raised significant concerns regarding the long-term efficacy of chemotherapy, radiotherapy, and immunotherapy. In response to these challenges, drug repurposing strategies—utilizing existing drugs in novel therapeutic contexts—have gained increasing attention. This study aimed to investigate the cytotoxic and apoptotic effects of the combined application of doxorubicin (DX) and thymoquinone (TQ) on ovarian adenocarcinoma cells (OVCAR3). Methods: OVCAR3 cells were cultured in RPMI medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin. Cell viability and proliferation were assessed using the MTT assay following treatment with various concentrations of DX and TQ. NucBlue immunofluorescence staining was employed to examine nuclear morphology and to identify apoptosis-associated changes. Additionally, quantitative real-time polymerase chain reaction (qRT-PCR) was per-formed to evaluate the expression levels of apoptosis-related and oncogenic pathway genes, including RAF, RAS, Bcl-2, and Bax. Results: The results demonstrated that the combination of DX and TQ significantly reduced OVCAR3 cell viability and induced apoptosis in a dose-dependent manner. qRT-PCR analysis revealed a downregulation of RAS, RAF, and Bcl-2 expression, along with an upregulation of Bax, indicating activation of the intrinsic apoptotic pathway. These findings suggest that thymoquinone exerts an-ti-proliferative and pro-apoptotic effects by modulating the RAS/RAF signaling cascade. Furthermore, the co-administration of thymoquinone with doxorubicin potentiated these effects, suggesting a synergistic interaction between the two agents. Conclusions: Histopathological and molecular evaluations further confirmed the activation of apoptosis and the suppression of key oncogenic pathways. Collectively, these results underscore the therapeutic potential of thymoquinone as both a monotherapy and an adjuvant to conventional chemotherapy, warranting further validation in preclinical and clinical studies. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

16 pages, 258 KiB  
Article
Stability and Dissolution Behavior Changes After Drug Compounding for Pediatric Cardiovascular Pharmacotherapy
by Jumpei Saito, Akimasa Yamatani, Yuna Kojima, Masayoshi Nakakuni, Kosuke Nakano, Kaoru Hirose, Hidefumi Nakamura, Takehisa Hanawa and Miki Akabane
Pharmaceutics 2025, 17(4), 535; https://doi.org/10.3390/pharmaceutics17040535 - 19 Apr 2025
Viewed by 135
Abstract
Background: Compounding is performed to adjust dosages and support medication for children. In Japan, tablets are crushed, diluted with lactose, and stored in bottles or sachets until use, but the stability and impact on dissolution of the ingredients after crushing have not been [...] Read more.
Background: Compounding is performed to adjust dosages and support medication for children. In Japan, tablets are crushed, diluted with lactose, and stored in bottles or sachets until use, but the stability and impact on dissolution of the ingredients after crushing have not been evaluated. Methods: Using a database established by the National Center for Child Health and Development in collaboration with 11 medical facilities, the status of tablet crushing was investigated. Commonly compounded drugs were selected as the target drugs. The selected drugs were sieved through a 500 μm mesh after crushing and diluted with lactose hydrate. The stability at 25 ± 2 °C/60 ± 5% relative humidity and the dissolution of the ingredients were evaluated after storing them for up to 120 days under the following conditions: (I) stored in a closed polycarbonate bottle (closed), (II) bottle opened once a day (in-use), or (III) stored in a laminated cellophane and polyethylene sachet (laminated). The changes in the ingredient content and dissolution behavior were evaluated in accordance with the Japanese Pharmacopoeia. Results: Five cardiovascular drugs (amlodipine besylate, carvedilol, propranolol hydrochloride, hydrochlorothiazide, and tadalafil) were selected as target drugs. No more than 10% change in ingredient content was observed for all five formulations compared to day 0. In addition, no related substances (impurities) were detected at more than 0.01%. There was no change in the dissolution rate of the samples after 120 days of storage under each storage condition. Conclusions: The five cardiovascular drugs commonly compounded for children in Japan maintained their pharmaceutical quality after compounding, even after long-term storage. Full article
17 pages, 9778 KiB  
Article
A Convenient Strategy for Studying Antibody Aggregation and Inhibition of Aggregation: Characterization and Simulation
by Yibo Guo, Xi Chen, Guchen Fang, Xuejun Cao and Junfen Wan
Pharmaceutics 2025, 17(4), 534; https://doi.org/10.3390/pharmaceutics17040534 - 19 Apr 2025
Viewed by 127
Abstract
Background/Objectives: Protein aggregation, particularly the aggregation of antibody-based drugs, has long been a significant challenge in downstream processes and formulation. While the inhibitory effects of excipients on aggregation have been extensively studied using early experimental characterization methods, complete formulation research requires significant amounts [...] Read more.
Background/Objectives: Protein aggregation, particularly the aggregation of antibody-based drugs, has long been a significant challenge in downstream processes and formulation. While the inhibitory effects of excipients on aggregation have been extensively studied using early experimental characterization methods, complete formulation research requires significant amounts of antibodies and time, resulting in high research costs. Methods: This study proposed a quick and small-scale position-restrained simulation method which elucidated the mechanism of the reversible self-association (RSA) of antibodies and the influence of excipients on RSA under different conditions. We also validated the rationality of rapid and small-scale simulations through long-term (>1 μs) and large-scale (>1,000,000 atoms) simulations. Results: Through combing with simple stability characterization, the effects of different excipients on monomer residual content and the trend shown with concentration changes after thermal incubation were found to be similar to those observed in the simulations. Additionally, the formulation proposed by the simulations was validated using experimental characterization. Conclusions: Simulations and experiments revealed the mechanism and showed consistent trends, providing better understanding for aggregation research. Full article
(This article belongs to the Special Issue Recent Advances in Inhibitors for Targeted Therapies)
Show Figures

Graphical abstract

17 pages, 2242 KiB  
Article
Investigation of Nano Spray-Dried, Hyaluronic Acid-Modified Polymeric Micelles for Nasal Administration
by Bence Sipos, Levente Mayer, Mária Budai-Szűcs, Gábor Katona, Rita Ambrus and Ildikó Csóka
Pharmaceutics 2025, 17(4), 533; https://doi.org/10.3390/pharmaceutics17040533 - 18 Apr 2025
Viewed by 158
Abstract
Background/Objectives: The combination of nanomedicine with nasal administration is of paramount importance in current research and development. Polymeric micelles coated with hyaluronic acid may be a suitable solution to enhance drug release and permeation whilst properly adhering to the nasal mucosa, increasing [...] Read more.
Background/Objectives: The combination of nanomedicine with nasal administration is of paramount importance in current research and development. Polymeric micelles coated with hyaluronic acid may be a suitable solution to enhance drug release and permeation whilst properly adhering to the nasal mucosa, increasing residence time. Methods: Solid state characterization included morphology and laser diffraction-based size analysis and X-ray powder diffraction. The characterization of dispersed polymeric micelles in aqueous media was performed based on dynamic light scattering and determining the solubility enhancement related factors such as encapsulation efficiency and thermodynamic solubility. In vitro nasal drug release and permeability studies were also conducted to characterize the different hyaluronic acid-modified polymeric micelles. Quantitative measurements were carried out via liquid chromatography. Results: Concentration dependence on hyaluronic acid was found during all measurements, with one formulation candidate overcoming the others. With a high yield above 80%, monodispersed particles were formulated with an approximately 4 µm particle size in uniform distribution and spherical morphology. The small micelle size (107.3 nm) in uniform manner led to a high encapsulation efficiency above 80% and released the drug amount above 70% in 15 min. High drug permeation was also achieved compared with the initial active substance by itself. Conclusions: A value-added polymeric micelle formulation was developed with rapid drug release and permeation kinetics alongside its high mucoadhesion. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

24 pages, 6587 KiB  
Article
Salicylic Acid-Mediated Silver Nanoparticle Green Synthesis: Characterization, Enhanced Antimicrobial, and Antibiofilm Efficacy
by Jingqing Zhang, Yuxu Chen, Yuanyu Xu, Zhimin Zhao and Xinjun Xu
Pharmaceutics 2025, 17(4), 532; https://doi.org/10.3390/pharmaceutics17040532 - 18 Apr 2025
Viewed by 272
Abstract
Objectives: Silver nanoparticles (AgNPs) were synthesized via an easy and rapid biogenic synthesis approach, utilizing the dual capabilities of salicylic acid as both a reducing and capping agent. Methods: The characterization of Salicylic Acid-Mediated Silver Nanoparticle (SA-AgNPs) was conducted using a variety of [...] Read more.
Objectives: Silver nanoparticles (AgNPs) were synthesized via an easy and rapid biogenic synthesis approach, utilizing the dual capabilities of salicylic acid as both a reducing and capping agent. Methods: The characterization of Salicylic Acid-Mediated Silver Nanoparticle (SA-AgNPs) was conducted using a variety of techniques, including ultraviolet-visible spectroscopy, dynamic light scattering, scanning electron microscopy combined with energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, as well as thermogravimetric analysis paired with differential scanning calorimetry. Results: SA-AgNPs demonstrated significant antibacterial properties against both Gram-positive (methicillin-resistant Staphylococcus epidermidis, Staphylococcus aureus, Cutibacterium acnes, methicillin-resistant Staphylococcus aureus) and Gram-negative (Escherichia coli), with minimum inhibitory concentrations (MICs) of 8, 9, 8, 4, and 6 μg/mL, respectively. At a concentration of 32 μg/mL, SA-AgNPs exhibited 99.9% killing efficiency against Escherichia coli (E. coli), Cutibacterium acnes (C. acnes), and methicillin-resistant Staphylococcus aureus (MRSA), within 4, 16, and 12 h, respectively. At the same concentration, SA-AgNPs effectively inhibited 95.61% of MRSA biofilm formation. SA-AgNPs induced the leakage of intracellular macromolecular substances by increasing the membrane permeability, which ultimately caused bacterial apoptosis. Conclusions: Overall, this study presents a fast and environmentally friendly approach for synthesizing SA-AgNPs, with potential applications as nano antibiotics antibacterial coatings for implantable medical devices and wound dressings. Full article
(This article belongs to the Special Issue Nanotechnology in Antibacterial Drug Delivery)
Show Figures

Graphical abstract

20 pages, 2054 KiB  
Article
Matrix Approach Assessment of Cabotegravir Drug–Drug Interactions with OAT1/OAT3 Substrates and UGT1A1/UGT1A9 Inhibitors Using Physiologically-Based Pharmacokinetic Modeling
by Helen Tracey, Simon T. Bate, Susan Ford, Parul Patel, Jackie Bloomer, Aarti Patel and Kunal S. Taskar
Pharmaceutics 2025, 17(4), 531; https://doi.org/10.3390/pharmaceutics17040531 - 18 Apr 2025
Viewed by 353
Abstract
Background/Objective: Cabotegravir (CAB), available as an oral tablet and as a long-acting (LA) nanosuspension for intramuscular injection, is approved as a combination therapy for the treatment, and as a monotherapy for the prevention, of HIV-1 infection. People living with HIV may receive multiple [...] Read more.
Background/Objective: Cabotegravir (CAB), available as an oral tablet and as a long-acting (LA) nanosuspension for intramuscular injection, is approved as a combination therapy for the treatment, and as a monotherapy for the prevention, of HIV-1 infection. People living with HIV may receive multiple concomitant medications, with the associated risk of drug–drug interactions (DDIs). CAB is an inhibitor of OAT1/OAT3 renal transporters and a substrate of the UDP-glucuronosyltransferase enzymes UGT1A1 and 1A9, in vitro. While the effect of induction of UGT1A1/UGT1A9 on CAB exposure had been investigated in the clinic, the effect of the risk of DDIs with CAB via inhibition of these enzymes, or as an inhibitor of OAT1/OAT3 transporters, had not been evaluated. Methods: A physiologically-based pharmacokinetic (PBPK) model was developed and verified for orally dosed CAB to investigate the DDI risks associated with CAB, using a matrix approach to extensively qualify the PBPK platform and the substrates and/or inhibitors of either OAT1/OAT3 or UGT1A1/UGT1A9. The effect of uncertainties in in vitro inhibition values for OAT1/OAT3 was assessed via sensitivity analysis. Results: A mean increase of less than 25% in systemic exposure for OAT1/OAT3 substrates was predicted, with the potential for an increase of up to 80% based on the sensitivity analysis. On co-dosing with UGT1A1/UGT1A9 inhibitors, the predicted mean increase in CAB exposure was within 11%. Conclusions: PBPK modelling indicated that clinically relevant DDIs are not anticipated with OAT1/3 substrates or UGT1A1/1A9 inhibitors and CAB. With maximal exposure of the LA formulation of CAB being lower than the oral, the results of these simulations can be extrapolated to LA injectable dosing. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

22 pages, 5552 KiB  
Article
Conjugation of Glycine max (L.) Merrill Oligopeptide with Monosaccharides: A Novel Approach for Stability and Efficacy in Cosmeceutical Applications
by Wantida Chaiyana, Sudarat Jiamphun, Rewat Phongphisutthinant, Supakit Chaipoot and Pairote Wiriyacharee
Pharmaceutics 2025, 17(4), 530; https://doi.org/10.3390/pharmaceutics17040530 - 17 Apr 2025
Viewed by 200
Abstract
Background/Objectives: Conjugation techniques are increasingly valued in food chemistry for enhancing sensory properties, nutritional profiles, and bioactivity, with potential applications in cosmeceuticals. This study aimed to investigate the potential of Glycine max (L.) Merrill oligopeptide–monosaccharide conjugates as active ingredients in cosmeceuticals, emphasizing [...] Read more.
Background/Objectives: Conjugation techniques are increasingly valued in food chemistry for enhancing sensory properties, nutritional profiles, and bioactivity, with potential applications in cosmeceuticals. This study aimed to investigate the potential of Glycine max (L.) Merrill oligopeptide–monosaccharide conjugates as active ingredients in cosmeceuticals, emphasizing their biological activities and stability. Methods: G. max isolate was prepared and subsequently hydrolyzed using alcalase to obtain the oligopeptide (OP). The OP was then conjugated with allulose (AL) or mannose (MN) through a controlled humid-dry heating process to produce the conjugates, OPA and OPM, respectively. Their biological activities, including antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and anti-hyaluronidase properties, were assessed and compared to the individual components. Additionally, the irritation potential was evaluated using the hen’s egg test on chorioallantoic membrane (HET-CAM). The stability was examined under varying pH levels, temperatures, and light conditions based on their biological activity profiles. Results: OPA demonstrated the highest antioxidant activity, showing the lowest DPPH IC50 value of 198.6 ± 2.7 µg/mL along with a strong ferric reducing power of 1.37 ± 0.04 µg FeSO4/g sample. Besides, OPM showed superior tyrosinase inhibition on both L-tyrosine and L-DOPA substrates, highlighting its potential for skin whitening. Both OPA and OPM significantly enhanced collagenase inhibition, supporting their anti-aging potential. All samples were non-irritating in the HET-CAM test. The conjugates (OPA and OPM) demonstrated enhanced stability against pH, heat, and light compared to OP, AL, and MN. Conclusions: Oligopeptide–monosaccharide conjugation not only improved bioactivity but also enhanced biological stability, suggesting their potential for use in cosmeceutical applications. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

35 pages, 4183 KiB  
Review
New Direction in Antimicrobial Delivery System: Preparation and Applications of Hydrogel Microspheres
by Jiapeng Li, Guotao Wei, Yihao Yuan, Ling Wang, Miaohan Qiu, Bo Li, Ruofei Ma, Jiawei Wu and Ziyi Shen
Pharmaceutics 2025, 17(4), 529; https://doi.org/10.3390/pharmaceutics17040529 - 17 Apr 2025
Viewed by 303
Abstract
Antimicrobial delivery systems have undergone extensive development, yet conventional carriers still exhibit limitations such as low loading capacity, inadequate controlled release mechanisms, and cytotoxicity. Recent studies have increasingly demonstrated the potential of Hydrogel Microspheres (HMSs) for antimicrobial delivery. These microspheres exhibit small dimensions, [...] Read more.
Antimicrobial delivery systems have undergone extensive development, yet conventional carriers still exhibit limitations such as low loading capacity, inadequate controlled release mechanisms, and cytotoxicity. Recent studies have increasingly demonstrated the potential of Hydrogel Microspheres (HMSs) for antimicrobial delivery. These microspheres exhibit small dimensions, high drug-loading capacity, and the ability to achieve deep-targeted delivery, complemented by adjustable physicochemical properties and biocompatibility that create favorable conditions for antimicrobial transportation. This review systematically examines HMS preparation strategies, characteristic properties, transported antimicrobials, and therapeutic applications. Particular emphasis is placed on critical preparation parameters governing HMS performance, especially those influencing drug delivery dynamics. We conclude by addressing current challenges and proposing actionable strategies for material optimization and clinical translation. This work aims to advance HMS-based antimicrobial delivery systems for more effective infection control. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

20 pages, 1129 KiB  
Review
Harnessing Extracellular Vesicles for Targeted Drug Delivery in Ovarian Cancer
by Jang-Hyuk Yun, Yoo Rim Noh, Seongkyeong Yoo, Soohyun Park, Yunsup Choi, Jiyeon An and Iljin Kim
Pharmaceutics 2025, 17(4), 528; https://doi.org/10.3390/pharmaceutics17040528 - 17 Apr 2025
Viewed by 274
Abstract
Ovarian cancer remains one of the most lethal gynecologic malignancies, primarily due to late-stage diagnosis, high recurrence rates, and the development of chemoresistance. Although targeted therapies have improved patient outcomes, their efficacy is often limited by off-target toxicity and acquired drug resistance. Extracellular [...] Read more.
Ovarian cancer remains one of the most lethal gynecologic malignancies, primarily due to late-stage diagnosis, high recurrence rates, and the development of chemoresistance. Although targeted therapies have improved patient outcomes, their efficacy is often limited by off-target toxicity and acquired drug resistance. Extracellular vesicles (EVs), nanoscale vesicles naturally released by cells, have emerged as promising carriers for precision drug delivery. This review provides a comprehensive overview of recent advances in EV-based therapeutic strategies for ovarian cancer, including the delivery of chemotherapeutic agents, nucleic acid therapeutics, and immunomodulatory molecules. We further explore innovative engineering approaches to enhance targeting specificity, such as surface modification, cell source selection, biomaterial integration, and magnetic nanoparticle-assisted delivery. Key translational challenges in bringing EV-based therapies to clinical application are also addressed. Collectively, these insights underscore the transformative potential of EV-based platforms in advancing targeted and personalized treatment for ovarian cancer. Full article
Show Figures

Graphical abstract

25 pages, 6293 KiB  
Article
A Fungistatic Strategy Using a Shear-Thinning pH-Responsive CMCS-OHA-Lp/Lr Hydrogel for Vulvovaginal Candidiasis
by Yuanmin Zhao, Xiu Yang, Jiale Han, Chaoqi Huang, Mengliu Shao, Yan Yang, Qingliang Yang and Gensheng Yang
Pharmaceutics 2025, 17(4), 527; https://doi.org/10.3390/pharmaceutics17040527 - 17 Apr 2025
Viewed by 211
Abstract
Background: Vulvar vaginal candidiasis (VVC) is a type of vaginitis resulting from a Candida infection of the vaginal mucosa. Traditional treatments using antibiotics often lead to resistance and disrupt the vaginal microenvironment, causing ongoing problems for patients. In response to these challenges, [...] Read more.
Background: Vulvar vaginal candidiasis (VVC) is a type of vaginitis resulting from a Candida infection of the vaginal mucosa. Traditional treatments using antibiotics often lead to resistance and disrupt the vaginal microenvironment, causing ongoing problems for patients. In response to these challenges, this study introduces a multifunctional intelligent responsive probiotic hydrogel designed to modulate the vaginal microecological environment to combat Candida albicans infection. Methods: The innovative CMCS-OHA-Lp/Lr hydrogel was formulated using oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CMCS) as carriers, incorporating Lactobacillus plantarum (Lp) and Lactobacillus rhamnosus (Lr) as active components. Comprehensive characterization of the CMCS-OHA-Lp/Lr hydrogel revealed its chemical structure, rheological properties, rapid self-healing properties, gel degradation, and the release of lactobacilli in vitro. Results: The findings demonstrated that the hydrogel’s cross-linking conferred significant physical properties. In addition, the in vitro release study of Lactobacillus showed that the cumulative release rates of Lp and Lr in the medium with pH 5.5 were 83.50 ± 2.70% and 73.31 ± 2.22%, which proved the pH-responsive release characteristics of probiotics in acidic vaginal environments. Furthermore, the storage activity of Lactobacillus indicated that the survival rates of the CMCS-OHA-Lp and CMCS-OHA-Lr hydrogels were 86.90 ± 0.20% and 85.50 ± 0.56%, respectively, proving that encapsulation within the hydrogels significantly enhanced the storage stability of probiotics. In vivo studies further confirmed that the hydrogel alleviated vulval edema symptoms and reduced C. albicans colonies in the vagina, thereby mitigating vaginal inflammation. Conclusions: In conclusion, this pH-responsive, self-healing, and shear-thinning hydrogel offers a promising approach for the clinical treatment of VVC and serves as an effective probiotic delivery vehicle. Full article
Show Figures

Graphical abstract

22 pages, 45418 KiB  
Article
Development of an Ophthalmic Hydrogel to Deliver MG53 and Promote Corneal Wound Healing
by Heather L. Chandler, Sara Moradi, Spencer W. Green, Peng Chen, Christopher Madden, Luxi Zhang, Zhentao Zhang, Ki Ho Park, Jianjie Ma, Hua Zhu and Katelyn E. Swindle-Reilly
Pharmaceutics 2025, 17(4), 526; https://doi.org/10.3390/pharmaceutics17040526 - 16 Apr 2025
Viewed by 404
Abstract
Background/Objective: A clinical need exists for more effective therapeutics and sustained drug delivery systems to promote ocular surface healing. This study tested the hypothesis that a novel biodegradable, thermoresponsive hydrogel loaded with the human recombinant (rh)MG53 protein, which we have demonstrated to promote [...] Read more.
Background/Objective: A clinical need exists for more effective therapeutics and sustained drug delivery systems to promote ocular surface healing. This study tested the hypothesis that a novel biodegradable, thermoresponsive hydrogel loaded with the human recombinant (rh)MG53 protein, which we have demonstrated to promote corneal healing without fibrosis, would exhibit safety and biocompatibility in vitro and in vivo. Methods: Hydrogel optimization was performed based on varying concentrations of poloxamer 407, poloxamer 188, and hydroxypropyl methylcellulose. Hydrogels were characterized and potential toxicity was evaluated in vitro in cultured corneal epithelium, fibroblasts, and endothelium. In vivo safety and tolerability were assessed in mice and hydrogels were used to evaluate corneal healing following alkali injury. Results: The optimized hydrogel formulation did not result in any detrimental changes to the corneal cells and released functional rhMG53 protein for at least 24 h. In vivo rhMG53-loaded hydrogels improved re-epithelialization, reduced stromal opacification and vascularization, and promoted corneal nerve density. Mechanistically, rhMG53 reduced vascular endothelial cell migration and tube formation by inhibiting pSTAT3 signaling. Conclusions: Taken together, our poloxamer-based thermoresponsive hydrogel effectively released rhMG53 protein and enhanced multiple corneal healing outcomes. Full article
Show Figures

Figure 1

2 pages, 470 KiB  
Correction
Correction: Donthi et al. Dasatinib-Loaded Topical Nano-Emulgel for Rheumatoid Arthritis: Formulation Design and Optimization by QbD, In Vitro, Ex Vivo, and In Vivo Evaluation. Pharmaceutics 2023, 15, 736
by Mahipal Reddy Donthi, Ranendra Narayan Saha, Gautam Singhvi and Sunil Kumar Dubey
Pharmaceutics 2025, 17(4), 525; https://doi.org/10.3390/pharmaceutics17040525 - 16 Apr 2025
Viewed by 144
Abstract
In the original publication [...] Full article
Show Figures

Figure 11

16 pages, 10030 KiB  
Article
Population Pharmacokinetic Modeling of Total and Unbound Pamiparib in Glioblastoma Patients: Insights into Drug Disposition and Dosing Optimization
by Charuka Wickramasinghe, Seongho Kim, Yuanyuan Jiang, Xun Bao, Yang Yue, Jun Jiang, Amy Hong, Nader Sanai and Jing Li
Pharmaceutics 2025, 17(4), 524; https://doi.org/10.3390/pharmaceutics17040524 - 16 Apr 2025
Viewed by 224
Abstract
Background: This study aimed to develop a population pharmacokinetic (PK) model that characterized the plasma concentration–time profiles of the total and unbound pamiparib, a PARP inhibitor, in glioblastoma patients and identified patient factors influencing the PK. Methods: The total and unbound pamiparib plasma [...] Read more.
Background: This study aimed to develop a population pharmacokinetic (PK) model that characterized the plasma concentration–time profiles of the total and unbound pamiparib, a PARP inhibitor, in glioblastoma patients and identified patient factors influencing the PK. Methods: The total and unbound pamiparib plasma concentration data were obtained from 41 glioblastoma patients receiving 60 mg of pamiparib twice daily. Nonlinear mixed-effects modeling was performed using Monolix (2024R1) to simultaneously fit the total and unbound drug plasma concentration data. The covariate model was developed by covariate screening using generalized additive modeling followed by stepwise covariate modeling. Model simulations were performed following oral doses of 10–60 mg BID. Results: The total and unbound pamiparib plasma concentration–time profiles were best described by a one-compartment model with first-order absorption and elimination. Creatinine clearance and age were the significant covariates on the apparent volume of distribution (V/F) and apparent clearance (CL/F), respectively, explaining ~22% and ~5% of IIV of V/F and CL/F. Population estimates of the absorption rate constant (Ka), V/F, CL/F, and unbound fraction for the total drug were 1.58 h−1, 44 L, 2.59 L/h, and 0.041. Model simulations suggested that doses as low as 20 mg BID may be adequate for therapeutic effects in a general patient population, assuming that a target engagement ratio (i.e., unbound Css,min/IC50) of 5 or above is sufficient for full target engagement. Conclusions: The total and unbound pamiparib plasma PK are well characterized by a linear one-compartment model, with creatinine clearance as the significant covariate on V/F. Model simulations support further clinical investigation into dose reduction to optimize the benefit-to-risk ratio of pamiparib, particularly in combination therapies. Full article
(This article belongs to the Special Issue Population Pharmacokinetics and Its Clinical Applications)
Show Figures

Figure 1

21 pages, 3534 KiB  
Article
Chitosan-Stabilized Lipid Vesicles with Indomethacin for Modified Release with Prolonged Analgesic Effect: Biocompatibility, Pharmacokinetics and Organ Protection Efficacy
by Angy Abu Koush, Eliza Gratiela Popa, Beatrice Rozalina Buca, Cosmin Gabriel Tartau, Iulian Stoleriu, Ana-Maria Raluca Pauna, Liliana Lacramioara Pavel, Paula Alina Fotache and Liliana Mititelu Tartau
Pharmaceutics 2025, 17(4), 523; https://doi.org/10.3390/pharmaceutics17040523 - 16 Apr 2025
Viewed by 513
Abstract
Background/Objectives: Indomethacin (IND) is a widely used non-steroidal anti-inflammatory drug (NSAID) effective in managing pain and inflammation. However, its therapeutic use is often limited by gastrointestinal irritation and low bioavailability. This study aimed to evaluate the biocompatibility, release kinetics, and analgesic potential [...] Read more.
Background/Objectives: Indomethacin (IND) is a widely used non-steroidal anti-inflammatory drug (NSAID) effective in managing pain and inflammation. However, its therapeutic use is often limited by gastrointestinal irritation and low bioavailability. This study aimed to evaluate the biocompatibility, release kinetics, and analgesic potential of IND-loaded chitosan (CHIT)-stabilized lipid vesicles (IND-ves) in comparison to free IND, focusing on their in vivo effects and impact on somatic nociceptive reactivity in mice. Methods: IND-ves were prepared using a molecular droplet self-assembly technique, followed by CHIT coating to enhance stability and control drug release. Mice were administered either free IND or IND-ves, and various physiological parameters, including liver and kidney function, oxidative stress markers, immune cell activity, and histopathological changes in key organs, were assessed. Plasma drug release kinetics and analgesic effects were evaluated using the tail-flick test. Results: Both IND and IND-ves demonstrated good biocompatibility, with no significant changes in hematological, biochemical, or immunological profiles. IND-ves exhibited a sustained release profile, with drug release initiating at 30 min and peaking at 3 h, while free IND displayed a rapid release and potential gastric mucosal damage. IND-ves did not induce oxidative stress or inflammation and maintained organ integrity, particularly protecting against gastric injury. Additionally, the prolonged release profile of IND-ves contributed to extended analgesic effects in the tail-flick test. Conclusions: CHIT-stabilized lipid vesicles offer a promising drug delivery system for IND, enhancing drug release, prolonging analgesic efficacy, and minimizing gastrointestinal irritation. These findings suggest that IND-ves could serve as a safer and more effective alternative for NSAID therapy. Full article
Show Figures

Figure 1

10 pages, 1976 KiB  
Article
In Vitro Toxicity of Cetalkonium Chloride on Corneal Epithelial Cells
by Joo-Hee Park and Choul Yong Park
Pharmaceutics 2025, 17(4), 522; https://doi.org/10.3390/pharmaceutics17040522 - 16 Apr 2025
Viewed by 220
Abstract
Objective: To investigate the toxicity of cetalkonium chloride (CKC) on primary cultured human corneal epithelial cells (HCECs). Methods: HCECs were subjected to various concentrations (0.03125 × 10−4 to 2.0 × 10−4% (w/v)) of CKC for durations [...] Read more.
Objective: To investigate the toxicity of cetalkonium chloride (CKC) on primary cultured human corneal epithelial cells (HCECs). Methods: HCECs were subjected to various concentrations (0.03125 × 10−4 to 2.0 × 10−4% (w/v)) of CKC for durations ranging from 24 to 72 h. Cell viability was evaluated using the CCK-8 kit along with live and dead cell staining. Intracellular reactive oxygen species (ROS) levels were measured 20 min following CKC exposure. Observations of changes in cell morphology, cytoplasmic actin filaments, and mitochondrial distribution were conducted using immunocytochemistry and MitoTracker assays. Protein expression levels related to cell survival pathways, including mTOR, ERK, Akt, Bcl-xL, and BAX, were examined via Western blot analysis. Results: CKC exhibited dose-dependent toxicity in HCECs. Exposure to CKC concentrations below 0.125 × 10−4% resulted in no significant decrease in HCEC viability for up to 72 h. Conversely, exposure to CKC at concentrations of 1.0 × 10−4% or higher led to significantly decreased HCEC viability. Following exposure to higher concentrations of CKC, elevated levels of intracellular ROS and LDH release were observed. This toxicity was further characterized by decreased levels of phosphorylated mTOR, phosphorylated Akt, phosphorylated ERK, and Bcl-xL, as well as an increase in BAX expression. As the CKC concentration increased, HCECs decreased in size, and mitochondria displayed a loss of characteristic punctate staining. Conclusions: Our findings indicated that exposure to CKC caused significant toxicity in HCECs, which varied with concentration and duration of exposure. This toxicity was associated with an increase in ROS, mitochondrial alterations, and a decline in activity of the cell survival pathways. Full article
Show Figures

Figure 1

22 pages, 15268 KiB  
Article
Pickering Double Emulsions Stabilized with Chitin Nanocrystals and Myristic Acid-Functionalized Silica Nanoparticles for Curcumin and Chlorogenic Acid Co-Delivery
by Javier Paredes-Toledo, Javier Herrera, Javier Morales, Paz Robert, Joaquín Gómez-Estaca and Begoña Giménez
Pharmaceutics 2025, 17(4), 521; https://doi.org/10.3390/pharmaceutics17040521 - 16 Apr 2025
Viewed by 256
Abstract
Background/Objectives: Double emulsions (DEs) enable the simultaneous encapsulation of water-soluble and oil-soluble bioactive compounds. Their stability can be enhanced through Pickering stabilization, where solid particles are irreversibly anchored at the interfaces, forming a steric barrier. This study aimed to evaluate the release [...] Read more.
Background/Objectives: Double emulsions (DEs) enable the simultaneous encapsulation of water-soluble and oil-soluble bioactive compounds. Their stability can be enhanced through Pickering stabilization, where solid particles are irreversibly anchored at the interfaces, forming a steric barrier. This study aimed to evaluate the release behavior of curcumin and chlorogenic acid (CA) in Pickering DEs formulated with chitin nanocrystals (ChNCs) stabilizing the outer interface (DE-ChNC) and both ChNCs and myristic acid-functionalized silica nanoparticles (SNPs-C14) stabilizing the outer and inner interfaces (DE-ChNC-C14) under in vitro gastrointestinal digestion. Methods: The optimal homogenization parameters (time and speed) for stabilizing the external interface with ChNCs were determined using a statistical design. Pickering DEs were characterized (droplet size and size distribution, microstructure, creaming, encapsulation efficiency and stability, rheological behavior) and subjected to the INFOGEST digestion method. Results: ChNCs effectively maintained the droplet size, microstructure, and ζ-potential, preventing coalescence and creaming while enhancing viscosity and gel-like behavior, contributing to improved physical stability. The CA encapsulation efficiency was higher in DE-ChNC-C14 (91.4%) than in DE-ChNC (45.0%) due to the presence of SNPs-C14 at the inner interface, which improved CA retention during storage. CA was gradually released from DE-ChNC-C14 throughout digestion, with bioaccessibility similar to that of the control DE (stabilized with conventional emulsifiers; ~60%). Curcumin bioaccessibility in the Pickering DEs was relatively high (~40%) but lower than in the control DE, as the ChNCs reduced lipid digestion and curcumin bioaccessibility. Conclusions: ChNCs and SNPs-C14 effectively stabilized the outer and inner interfaces of DEs, enabling the simultaneous release of water-soluble and oil-soluble bioactives with health benefits. Full article
Show Figures

Graphical abstract

17 pages, 2217 KiB  
Review
Targeting DLL3: Innovative Strategies for Tumor Treatment
by Hui Wang, Tong Zheng, Dan Xu, Chao Sun, Daqing Huang and Xiongxiong Liu
Pharmaceutics 2025, 17(4), 520; https://doi.org/10.3390/pharmaceutics17040520 - 16 Apr 2025
Viewed by 331
Abstract
Delta-like 3 (DLL3) is an oncogenic protein aberrantly expressed in several tumors, particularly in small-cell lung cancer. DLL3-targeted therapies have recently made significant progress, demonstrating promising preclinical and clinical efficacy. This review aims to explore the mechanisms, challenges, and future opportunities associated with [...] Read more.
Delta-like 3 (DLL3) is an oncogenic protein aberrantly expressed in several tumors, particularly in small-cell lung cancer. DLL3-targeted therapies have recently made significant progress, demonstrating promising preclinical and clinical efficacy. This review aims to explore the mechanisms, challenges, and future opportunities associated with therapies targeting DLL3 for cancer treatment. The biological characteristics of DLL3 and its role in the Notch signaling pathway are introduced first, delving into the role of DLL3 in tumorigenesis and cancer progression. Next, current therapeutic approaches targeting DLL3 are described, including antibody–drug conjugates, T cell engagers, chimeric antigen receptor T cells, and radiopharmaceutical therapy, highlighting their effectiveness and safety in clinical trials. Despite the promising prospects, difficulties remain in the use of DLL3 as a therapeutic target due to tumor heterogeneity, the development of resistance, potential adverse effects, and barriers to patient stratification. Therefore, the potential of combination therapies, the use of innovative drug delivery systems, and ongoing clinical trial advancements are also discussed. Finally, the potential of DLL3-targeted therapies is summarized, highlighting the importance of multidisciplinary research to guide the clinical application and optimization of this emerging treatment strategy. These approaches might provide new therapeutic options, potentially starting a new era in cancer treatment. Full article
(This article belongs to the Special Issue Combination Therapy Approaches for Cancer Treatment)
Show Figures

Figure 1

21 pages, 4883 KiB  
Article
Osteogenic and Antibacterial Response of Levofloxacin-Loaded Mesoporous Nanoparticles Functionalized with N-Acetylcysteine
by Alberto Polo-Montalvo, Natividad Gómez-Cerezo, Mónica Cicuéndez, Blanca González, Isabel Izquierdo-Barba and Daniel Arcos
Pharmaceutics 2025, 17(4), 519; https://doi.org/10.3390/pharmaceutics17040519 - 15 Apr 2025
Viewed by 326
Abstract
Background/Objectives: Bone infection is one of the most prevalent complications in orthopedic surgery. This pathology is mostly due to bacterial pathogens, among which S. aureus stands out. The formation of a bacterial biofilm makes systemic treatment with antibiotics ineffective. Herein we propose [...] Read more.
Background/Objectives: Bone infection is one of the most prevalent complications in orthopedic surgery. This pathology is mostly due to bacterial pathogens, among which S. aureus stands out. The formation of a bacterial biofilm makes systemic treatment with antibiotics ineffective. Herein we propose a nanosystem composed of mesoporous bioactive glass nanoparticles (MBGN) loaded with levofloxacin and functionalized with N-acetylcysteine (NAC), aiming to offer an alternative to current treatments. These nanoparticles would present antibacterial activity able to disintegrate the biofilm and regenerate the peri-implantar osseous tissue. Methods: MBGN of composition 82.5 SiO2—17.5 CaO have been synthesized, loaded with levofloxacin, and functionalized with NAC (MBGN-L-NAC). The antimicrobial activity against mature S. aureus biofilms and bioactivity of the nanosystem have been evaluated, as well as its biocompatibility and ability to promote murine pre-osteoblastic MC3T3-E1 differentiation. Results: MBGNs exhibited high surface areas and radial mesoporosity, allowing up to 23.1% (% w/w) of levofloxacin loading. NAC was covalently bound keeping the mucolytic thiol group, SH, available. NAC and levofloxacin combination enhances the activity against S. aureus by disrupting mature biofilm integrity. This nanosystem was biocompatible with pre-osteoblasts, enhanced their differentiation towards a mature osteoblast phenotype, and promoted bio-mimetic mineralization under in vitro conditions. MBGN-L-NAC nanoparticles induced greater osteogenic response of osteoprogenitor cells through increased alkaline phosphatase expression, increased mineralization, and stimulation of pre-osteoblast nodule formation. Conclusions: MBGN-L-NAC exhibits a more efficient antibacterial activity due to the biofilm disaggregation exerted by NAC, which also contributes to enhance the osteoinductive properties of MBGNs, providing a potential alternative to conventional strategies for the management of bone infections. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

17 pages, 8557 KiB  
Article
Intracellular Protein Binding of Zr-89 Oxine Cell Labeling for PET Cell Tracking Studies
by Emmanuel Nyong, Yutaka Kurebayashi, Kingsley O. Asiedu, Peter L. Choyke and Noriko Sato
Pharmaceutics 2025, 17(4), 518; https://doi.org/10.3390/pharmaceutics17040518 - 15 Apr 2025
Viewed by 237
Abstract
Background/Objectives: 89Zr-oxine is an ex vivo cell labeling agent that enables cells to be tracked in vivo by positron emission tomography (PET) over a period of up to two weeks. To better understand where 89Zr-oxine binds within cellular components, factors [...] Read more.
Background/Objectives: 89Zr-oxine is an ex vivo cell labeling agent that enables cells to be tracked in vivo by positron emission tomography (PET) over a period of up to two weeks. To better understand where 89Zr-oxine binds within cellular components, factors affecting labeling and intracellular distribution of 89Zr were examined. Methods: Mouse primary T cells, natural killer cells, dendritic cells, and monocytes, and cell lines EL4 (mouse lymphoma), DC2.4 (mouse dendritic cell), Kit225K6 (human T cell leukemia) and MC38 (mouse colon adenocarcinoma) were labeled with 89Zr-oxine or 111In-oxine and protein binding within the cellular compartments, the labeling thresholds, and radioactivity retention were subsequently determined. Results: Cell incorporation of 89Zr-oxine (27.8–71.8 kBq/106 cells) positively correlated with cellular size and protein mass. Most (>97%) 89Zr was protein-bound and primarily localized in the cytoplasm, membrane, and nuclear fractions (>81%) with distribution patterns varying by cell type. By contrast, 111In-oxine showed lower protein-binding activity of approximately 59–65%, with 62–65% of 111In localized in the cytoplasm. Autoradiography of electrophoresed subcellular fractionated cell samples indicated stable binding by 89Zr-oxine to proteins in all subcellular fractions but unstable protein binding by 111In. Saturation studies showed that 89Zr-oxine labeling was saturable, and further labeling reduced cellular retention. Biodistribution of dendritic cells labeled with either 89Zr-oxine or 111In-oxine indicated greater retention of 89Zr in the labeled cells in vivo than 111In. Conclusions: 89Zr-oxine stably binds many intracellular proteins and shows much higher and more stable protein binding than 111In-oxine. Intracellular protein binding of 89Zr accounts for the ability of 89Zr-oxine labeling to successfully track cells in vivo long-term on PET. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Graphical abstract

18 pages, 1541 KiB  
Article
Stability and Efficacy of Mucoadhesive Eye Drops Containing Olopatadine HCl: Physicochemical, Functional, and Preclinical In Vivo Assessment
by Anđelka Račić, Veljko Krstonošić, Ana Micov, Uroš Pecikoza, Vladimir Dobričić, Erna Turković and Danina Krajišnik
Pharmaceutics 2025, 17(4), 517; https://doi.org/10.3390/pharmaceutics17040517 - 15 Apr 2025
Viewed by 443
Abstract
Background: The incorporation of polymers into drug delivery vehicles has been shown to be an effective strategy to prolong the residence time of active ingredients in the precorneal tear film and to increase ocular bioavailability. Objectives: The aim of this study was to [...] Read more.
Background: The incorporation of polymers into drug delivery vehicles has been shown to be an effective strategy to prolong the residence time of active ingredients in the precorneal tear film and to increase ocular bioavailability. Objectives: The aim of this study was to develop novel, viscous eye drops containing olopatadine (OCH) as the active ingredient, polysaccharides hydroxypropyl guar gum (HPG), and sodium hyaluronate (SH), individually, and in combination as functional polymers. Methods: Viscous eye drops containing 0.1% OCH in combination with HPG (0.25%) and SH (0.4%), were prepared and evaluated for their physicochemical properties, rheological behavior, mucoadhesion, and preliminary stability. A novel rheological method was used to evaluate the resistance of the eye drops under simulated blinking conditions. In vivo efficacy was evaluated using an ocular itch test in mice to compare the formulations with a commercial product. Results: The formulations remained stable and transparent, with physicochemical parameters within acceptable ranges. Rheological studies confirmed pseudoplastic flow, with the HPG-SH combination exhibiting enhanced viscosity and shear-thinning properties for prolonged retention in the eye. Mucoadhesion was highest in SH-HPG formulations. During simulated blinking cycles, eye drops containing a combination of SH and HPG polymers fully regained their initial viscosity during the resting periods. Preliminary stability studies indicate that the formulated eye drops exhibit satisfactory physicochemical stability under various storage conditions. In vivo, OCH-SH and OCH-HPG-SH drops provided prolonged antipruritic and analgesic effects compared to the reference product. Conclusions: Polysaccharide-based innovative formulations improve OCH retention, enhancing therapeutic efficacy and patient compliance in the treatment of allergic conjunctivitis. Full article
(This article belongs to the Special Issue Biomedical Applications: Advances in Bioengineering and Drug Delivery)
Show Figures

Graphical abstract

13 pages, 817 KiB  
Article
N-Acetylcysteine to Reduce Kidney and Liver Injury Associated with Drug-Resistant Tuberculosis Treatment
by Idu Meadows, Happiness Mvungi, Kassim Salim, Oscar Kaswaga, Peter Mbelele, Alphonce Liyoyo, Hadija Semvua, Athumani Ngoma, Scott K. Heysell and Stellah G. Mpagama
Pharmaceutics 2025, 17(4), 516; https://doi.org/10.3390/pharmaceutics17040516 - 15 Apr 2025
Viewed by 264
Abstract
Background: New drug classes and regimens have shortened the treatment duration for drug-resistant tuberculosis, but adverse events (AEs) and organ toxicity remain unacceptably common. N-acetylcysteine (NAC) has demonstrated potential in reducing kidney and liver toxicity in other clinical settings, but efficacy in drug-resistant [...] Read more.
Background: New drug classes and regimens have shortened the treatment duration for drug-resistant tuberculosis, but adverse events (AEs) and organ toxicity remain unacceptably common. N-acetylcysteine (NAC) has demonstrated potential in reducing kidney and liver toxicity in other clinical settings, but efficacy in drug-resistant tuberculosis treatment has not been rigorously evaluated. Method: A randomized controlled trial was conducted at Kibong’oto Infectious Diseases Hospital in Tanzania to assess the efficacy of NAC in reducing AEs in patients undergoing rifampin-resistant pulmonary tuberculosis treatment. Participants received an all-oral standardized rifampin-resistant regimen alone, with NAC 900 mg daily, or NAC 900 mg twice daily for 6 months. AEs, severe AEs, and renal and liver toxicity were monitored monthly and classified according to the Risk, Injury, Failure, Loss, and End-stage kidney disease criteria and National Cancer Institute Common Terminology Criteria for Adverse Events. Incident ratios and Kaplan–Meier curves were employed to compare group event occurrences. Results: A total of 66 patients (mean age 47 ± 12 years; 80% male) were randomized into three groups of 22. One hundred and fifty-eight AEs were recorded: 52 (33%) in the standard treatment group, 55 (35%) in the NAC 900 mg daily group, and 51 (32%) in the NAC 900 mg twice-daily group (p > 0.99). Severe AEs were observed in four patients in the standard group, two in the NAC 900 mg daily group, and three in the NAC 900 mg twice-daily group. Renal toxicity was more prevalent in the standard treatment group compared to those that received NAC (45% vs. 23%; p = 0.058), with a shorter onset of time to toxicity (χ2 = 3.199; p = 0.074). Liver injury events were rare across all groups. Conclusion: Among Tanzanian adults receiving rifampin-resistant tuberculosis treatment, NAC did not significantly reduce overall AEs but demonstrated important trends in reducing renal toxicity. Full article
(This article belongs to the Special Issue New Platform for Tuberculosis Treatment)
Show Figures

Figure 1

26 pages, 7920 KiB  
Article
Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy
by Mariya S. Ryabtseva, Marina V. Filimonova, Alexander S. Filimonov, Olga V. Soldatova, Anna A. Shitova, Vitaly A. Rybachuk, Irina K. Volkova, Kirill A. Nikolaev, Alexander O. Kosachenko, Sergei N. Koryakin, Dmitry S. Petrunya, Polina A. Kotelnikova, Alexander E. Shemyakov, Danil D. Kolmanovich, Anton L. Popov, Gleb V. Tikhonowski, Anton A. Popov, Anna A. Timakova, Andrey V. Kolobov, Sergey M. Deyev, Andrei V. Kabashin and Irina N. Zavestovskayaadd Show full author list remove Hide full author list
Pharmaceutics 2025, 17(4), 515; https://doi.org/10.3390/pharmaceutics17040515 - 15 Apr 2025
Viewed by 321
Abstract
Proton beam therapy (PBT) is a rapidly advancing modality of hadron therapy. The primary advantage of proton therapy lies in a unique depth-dose distribution characterized by the Bragg peak, which enables a highly targeted irradiation of the area limited to the tumor, while [...] Read more.
Proton beam therapy (PBT) is a rapidly advancing modality of hadron therapy. The primary advantage of proton therapy lies in a unique depth-dose distribution characterized by the Bragg peak, which enables a highly targeted irradiation of the area limited to the tumor, while minimizing the impact on healthy tissues. However, a broader clinical adoption of the ion beam therapy is limited by both economic and radiobiological constraints. One of the possible ways to increase the relative biological effectiveness (RBE) of proton therapy involves the use of radiosensitizers. Background/Objectives: In this work, we investigated the efficacy of using colloidal solutions of lanthanum hexaboride (LaB6) nanoparticles (NPs) coated with polyacrylic acid (PAA) as sensitizers to increase the antitumor biological effectiveness of proton irradiation. This material has not yet been studied extensively so far, despite its promising physical and chemical properties and several reports on its biocompatibility. Methods: LaB6 NPs were synthesized by femtosecond pulsed laser ablation, functionalized with PAA and characterized. The safety of NPs was evaluated in vitro using a Live/Dead assay on cell cultures: EMT6/P, BT-474, and in vivo in Balb/c mice after intravenous (i.v.) administration. The efficacy of binary proton therapy was evaluated in vitro on cell cultures: EMT6/P, BT-474, and in vivo in the model of human ductal carcinoma of the mammary gland BT-474 in female Nu/j mice after intratumoral (i.t.) administration at a dose of 2.0 mg/mouse and local proton irradiation (fractional exposure of 31 Gy + 15 Gy). The biodistribution of LaB6-PAA NPs in the animal body was also evaluated. Results: Significant enhancement in cancer cell death following proton beam irradiation was demonstrated in vitro on EMT6/P, BT-474 cell lines. Although the antitumor efficacy observed in vivo was comparatively lower—likely due to the high sensitivity of the BT-474 xenografts—both proton monotherapy and binary treatment were well tolerated. Conclusions: LaB6-PAA NPs show promise as efficient sensitizers capable of enhancing the biological efficacy of proton therapy, offering a potential path forward for improving therapeutic outcomes. Full article
(This article belongs to the Special Issue Advances in Radiopharmaceuticals for Disease Diagnoses and Therapy)
Show Figures

Figure 1

21 pages, 5384 KiB  
Review
Traditional Chinese Medicine-Loaded Hydrogels: An Emerging Strategy for the Treatment of Bone Infections
by Xueyi Jin, Yujie Yue, Huaanzi Hu and Songwei Lv
Pharmaceutics 2025, 17(4), 514; https://doi.org/10.3390/pharmaceutics17040514 - 14 Apr 2025
Viewed by 321
Abstract
Bone infection is a disease that seriously affects patients’ quality of life and physical health. Traditional treatment methods have many drawbacks. Hydrogels loaded with Traditional Chinese Medicine (TCM), as an emerging treatment strategy, combine the advantages of good biocompatibility of hydrogels, adjustable drug [...] Read more.
Bone infection is a disease that seriously affects patients’ quality of life and physical health. Traditional treatment methods have many drawbacks. Hydrogels loaded with Traditional Chinese Medicine (TCM), as an emerging treatment strategy, combine the advantages of good biocompatibility of hydrogels, adjustable drug release performance, and multi-target synergistic treatment of TCM, showing great application potential. This article elaborates in detail on the research progress of hydrogels loaded with TCM for the treatment of bone infections, including the classification and characteristics of hydrogels, the mechanism of action of TCM in the treatment of bone infections, the preparation methods of hydrogels loaded with TCM, application examples, advantages, and the challenges and prospects faced. The aim is to provide new ideas and references for the clinical treatment of bone infections. Full article
Show Figures

Figure 1

14 pages, 2108 KiB  
Article
The Prediction of the In Vitro Release Curves for PLGA-Based Drug Delivery Systems with Neural Networks
by Zheng Zhang, Bolun Zhang, Ren Chen, Qian Zhang and Kangjun Wang
Pharmaceutics 2025, 17(4), 513; https://doi.org/10.3390/pharmaceutics17040513 - 14 Apr 2025
Viewed by 295
Abstract
Background/Objectives: The accurate prediction of drug release profiles from Poly (lactic-co-glycolic acid) (PLGA)-based drug delivery systems is a critical challenge in pharmaceutical research. Traditional methods, such as the Korsmeyer-Peppas and Weibull models, have been widely used to describe in vitro drug release kinetics. [...] Read more.
Background/Objectives: The accurate prediction of drug release profiles from Poly (lactic-co-glycolic acid) (PLGA)-based drug delivery systems is a critical challenge in pharmaceutical research. Traditional methods, such as the Korsmeyer-Peppas and Weibull models, have been widely used to describe in vitro drug release kinetics. However, these models are limited by their reliance on fixed mathematical forms, which may not capture the complex and nonlinear nature of drug release behavior in diverse PLGA-based systems. Method: In response to these limitations, we propose a novel approach—DrugNet, a data-driven model based on a multilayer perceptron (MLP) neural network, aiming to predict the drug release data at unknown time points by fitting release curves using the key physicochemical characteristics of PLGA carriers and drug molecules, as well as in vitro drug release data. We establish a dataset through a literature review, and the model is trained and validated to determine its effectiveness in predicting different drug release curves. Results: Compared to the traditional Korsmeyer–Peppas and Weibull semi-empirical models, the MSE of DrugNet decreases by 20.994 and 1.561, respectively, and (R2) increases by 0.036 and 0.005. Conclusions: These results demonstrate that DrugNet has a stronger ability to fit drug release curves and better capture nonlinear relationships in drug release data. It can deal with the nonlinear change of data better, has stronger adaptability and advantages than traditional models, and overcomes the limitations of the mathematical expressions in traditional models. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

19 pages, 15322 KiB  
Article
Silver Nanoparticles Decorated UiO-66-NH2 Metal-Organic Framework for Combination Therapy in Cancer Treatment
by Francesco Ragonese, Letizia Trovarelli, Lorenzo Monarca, Sofia Girolmoni, Flora Ballarino, Ferdinando Costantino and Bernard Fioretti
Pharmaceutics 2025, 17(4), 512; https://doi.org/10.3390/pharmaceutics17040512 - 13 Apr 2025
Viewed by 282
Abstract
Background: Nanomedicine has shown significant promise in advancing cancer diagnostics and therapeutics. In particular, nanoparticles (NPs) offer potential for overcoming limitations associated with conventional therapies, such as off-target toxicity and side effects. Among the various NPs, silver nanoparticles (AgNPs) have garnered attention [...] Read more.
Background: Nanomedicine has shown significant promise in advancing cancer diagnostics and therapeutics. In particular, nanoparticles (NPs) offer potential for overcoming limitations associated with conventional therapies, such as off-target toxicity and side effects. Among the various NPs, silver nanoparticles (AgNPs) have garnered attention due to their cytotoxic and genotoxic properties in cancer cells. However, despite their potential, the optimization of AgNPs efficacy often necessitates combination strategies with other therapeutic agents. This study explores the potential of AgNPs integrated with Zr-based metal-organic frameworks (MOFs) UiO-66 for drug delivery, to enhance cancer therapy. Methods: We decorated amino-terephthalic based UiO-66-NH2 with AgNPs and loaded it with the chemotherapeutic agent cisplatin (Cis-Pt) to make the UiO-66-NH2@AgNPs@Cis-Pt. A preliminary MTT assay was conducted to evaluate the cytotoxic effects of the nanocomposite on several glioblastoma and other tumour cell lines, including U251, U87, GL261, HeLa, RKO, and HepG2. Results: Our results demonstrate that UiO-66-NH2@AgNPs@Cis-Pt and its combinations exhibit enhanced cytotoxicity compared to individual components such as AgNPs and Cis-Pt. Conclusions: This work offers preliminary insights into the potential of AgNP-functionalized MOFs as effective drug and delivery platforms, particularly in the context of combination therapy for cancer treatment. Full article
(This article belongs to the Special Issue Application of Silver Nanoparticles in Cancer Treatment)
Show Figures

Figure 1

14 pages, 9175 KiB  
Article
Amphiphilic Celecoxib-Polysaccharide Delivery System for Enhanced Colon-Targeted Colitis Therapy
by Qiao Qiao, Xian Wan, Jie Li, Weijun Chen, Enxuan Li, Lipeng Qiu and Huiming Tu
Pharmaceutics 2025, 17(4), 511; https://doi.org/10.3390/pharmaceutics17040511 - 12 Apr 2025
Viewed by 318
Abstract
Background: Ulcerative colitis (UC), a subtype of chronic inflammatory bowel disease (IBD), is primarily treated with oral medications to reduce inflammation and alleviate symptoms. Celecoxib (CXB) is an attractive candidate for UC; however, its limited solubility and low bioavailability pose significant challenges [...] Read more.
Background: Ulcerative colitis (UC), a subtype of chronic inflammatory bowel disease (IBD), is primarily treated with oral medications to reduce inflammation and alleviate symptoms. Celecoxib (CXB) is an attractive candidate for UC; however, its limited solubility and low bioavailability pose significant challenges to its clinical application. Methods: We reported a novel chondroitin sulfate A–Celecoxib (CSA-CXB) polymeric nanoprodrug to address the limited solubility and low bioavailability of CXB. CXB was conjugated to chondroitin sulfate A (CSA) via succinic anhydride (SA) and ethylenediamine to prepare CSA-CXB polymers, which can self-assemble into nanoparticle structural prodrugs in aqueous condition. We investigated the stability, blood compatibility, and responsiveness of the nanoparticles. The ability of the nanoparticles to treat UC in vitro and in vivo was then evaluated. Results: The CSA-CXB nanoprodrug was spherical with a mean particle size of 188.4 ± 2.2 nm, a zeta potential of −22.9 ± 0.1 mV, and sustained drug release behavior. Furthermore, CSA-CXB exhibited remarkable antioxidant and anti-inflammatory effects, as it can significantly increase the free radical scavenging rate and reduce the expression level of ROS, TNF-α, IL-6, nitric oxide (NO), and COX-2 protein in vitro. In vivo results demonstrated that CSA-CXB targeted the mice’s colon efficiently mitigate UC symptoms by inhibiting the expression of inflammatory cytokine. Conclusions: The CSA-CXB nanoprodrug can improve the therapeutic impact of CXB, and has potential as a new preparation for a clinical UC treatment nanoprodrug. Full article
(This article belongs to the Special Issue Natural Macromolecule-Based Nanocarriers for Drug Delivery)
Show Figures

Figure 1

19 pages, 2608 KiB  
Article
Delivery of PLGA-Loaded Influenza Vaccine Microparticles Using Dissolving Microneedles Induces a Robust Immune Response
by Emmanuel Adediran, Tanisha Arte, Dedeepya Pasupuleti, Sharon Vijayanand, Revanth Singh, Parth Patel, Mahek Gulani, Amarae Ferguson, Mohammad Uddin, Susu M. Zughaier and Martin J. D’Souza
Pharmaceutics 2025, 17(4), 510; https://doi.org/10.3390/pharmaceutics17040510 - 12 Apr 2025
Viewed by 330
Abstract
Background: Influenza virus is one of the major respiratory virus infections that is a global health concern. Although there are already approved vaccines, most are administered via the intramuscular route, which is usually painful, leading to vaccine hesitancy. To this end, exploring the [...] Read more.
Background: Influenza virus is one of the major respiratory virus infections that is a global health concern. Although there are already approved vaccines, most are administered via the intramuscular route, which is usually painful, leading to vaccine hesitancy. To this end, exploring the non-invasive, transdermal vaccination route using dissolving microneedles would significantly improve vaccine compliance. Research on innovative vaccine delivery systems, such as antigen-loaded PLGA microparticles, has the potential to pave the way for a broader range of vaccine candidates. Methods: In this proof-of-concept study, a combination of the inactivated influenza A H1N1 virus and inactivated influenza A H3N2 virus were encapsulated in a biodegradable poly (lactic-co-glycolic acid) (PLGA) polymeric matrix within microparticles, which enhanced antigen presentation. The antigen PLGA microparticles were prepared separately using a double emulsion (w/o/w), lyophilized, and characterized. Next, the vaccine microparticles were assessed in vitro in dendritic cells (DC 2.4) for immunogenicity. To explore pain-free transdermal vaccination, the vaccine microparticles were loaded into dissolving microneedles and administered in mice (n = 5). Results: Our vaccination study demonstrated that the microneedle-based vaccine elicited strong humoral responses as demonstrated by high antigen-specific IgA, IgG, IgG1, and IgG2a antibodies in serum samples and IgA in lung supernatant. Further, the vaccine also elicited a strong cellular response as evidenced by high levels of CD4+ and CD8a+ T cells in lymphoid organs such as the lymph nodes and spleen. Conclusion: The delivery of influenza vaccine-loaded PLGA microparticles using microneedles would be beneficial to individuals experiencing needle-phobia, as well as the geriatric and pediatric population. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Figure 1

12 pages, 1138 KiB  
Article
Sonoporation with Echogenic Liposomes: The Evaluation of Glioblastoma Applicability Using In Vivo Xenograft Models
by Ju-Hyun Park, Yoo-Kyung Lee, Hana Lee, Dong-Hyun Choi, Ki-Jong Rhee, Han Sung Kim and Jong-Bum Seo
Pharmaceutics 2025, 17(4), 509; https://doi.org/10.3390/pharmaceutics17040509 - 11 Apr 2025
Viewed by 199
Abstract
Objective: In previous studies, echogenic liposomes with liquid and gas cores were analyzed as alternative carriers of drug molecules and cavitation nuclei for sonoporation. The possibility of small interfering RNA (si-RNA) encapsulation has also been presented. In this study, the usability of [...] Read more.
Objective: In previous studies, echogenic liposomes with liquid and gas cores were analyzed as alternative carriers of drug molecules and cavitation nuclei for sonoporation. The possibility of small interfering RNA (si-RNA) encapsulation has also been presented. In this study, the usability of echogenic liposomes as drug carriers and cavitation seeds was evaluated using an in vivo model. Methods: A doxorubicin-loaded echogenic liposome was synthesized as a drug carrier. The size distribution and the number of formed echogenic liposomes were measured. Five comparative in vivo experiments were conducted with and without doxorubicin-loaded echogenic liposomes, and the results were statically analyzed. Results: Sonoporation with doxorubicin-loaded echogenic liposomes at 3.05 W/cm2 of ISPTA ultrasound sonication and 0.98 MHz results in an average tumor volume growth of less than 25% of that following the simple administration of doxorubicin. Considering the p-value between the two groups is approximately 0.03, doxorubicin-loaded echogenic liposomes were effectively applicable as cavitation nuclei for sonoporation. Conclusions: Although further studies are needed to clarify the responses to incident ultrasound fields, the proposed echogenic liposome appears to be a promising alternative cavitation nuclei/carrier for sonoporation. Full article
(This article belongs to the Special Issue Hybrid Nanoparticles for Cancer Therapy)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop