Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Functionalization of NPs
2.2. Characterization of LaB6-NPs
2.3. In Vitro Studies
2.3.1. Cell Cultures
2.3.2. Cytotoxicity
2.3.3. Efficacy of Proton Therapy In Vitro
2.4. In Vivo Studies
2.4.1. Animals
2.4.2. Safety
2.4.3. Antitumor Efficacy
2.4.4. Biodistribution
2.4.5. Morphology
2.5. Statistical Analysis
3. Results
3.1. Synthesis, Functionalization, and Characterization of NPs
3.2. Cytotoxicity
3.3. Efficacy of Proton Therapy In Vitro
3.4. Safety
3.5. Tolerability of Antitumor Therapy
3.6. Antitumor Efficacy In Vivo
3.7. Biodistribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Durante, M.; Orecchia, R.; Loeffler, J.S. Charged-particle therapy in cancer: Clinical uses and future perspectives. Nat. Rev. Clin. Oncol. 2017, 14, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Particle Therapy Co-Operative Group. Available online: http://www.ptcog.ch/ (accessed on 20 January 2025).
- Bragg, W.; Kleemann, R. On the α-particles of radium and their loss of range in passing through various atoms and molecules. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1905, 10, 318–340. [Google Scholar] [CrossRef]
- Loeffler, J.S.; Durante, M. Charged particle therapy—Optimization, challenges and future directions. Nat. Rev. Clin. Oncol. 2013, 10, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Shah, C.; Rwigema, J.-C.M.; Solberg, T.; Zhu, X.; Simone, C.B. Cost-comparativeness of proton versus photon therapy. Chin. Clin. Oncol. 2016, 5, 56. [Google Scholar] [CrossRef]
- Chen, Z.; Dominello, M.M.; Joiner, M.C.; Burmeister, J.W. Proton versus photon radiation therapy: A clinical review. Front. Oncol. 2023, 13, 1133909. [Google Scholar] [CrossRef]
- Doyen, J.; Falk, A.T.; Floquet, V.; Hérault, J.; Hannoun-Lévi, J.-M. Proton beams in cancer treatments: Clinical outcomes and dosimetric comparisons with photon therapy. Cancer Treat. Rev. 2016, 43, 104–112. [Google Scholar] [CrossRef]
- Tommasino, F.; Durante, M. Proton radiobiology. Cancers 2015, 7, 353–381. [Google Scholar] [CrossRef]
- Hall, E.J. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1–7. [Google Scholar] [CrossRef]
- Karger, C.P.; Glowa, C.; Peschke, P.; Kraft-Weyrather, W. The RBE in ion beam radiotherapy: In vivo studies and clinical application. Z. Med. Phys. 2021, 31, 105–121. [Google Scholar] [CrossRef]
- Shen, H.; Huang, H.; Jiang, Z. Nanoparticle-based radiosensitization strategies for improving radiation therapy. Front. Pharmacol. 2023, 14, 1145551. [Google Scholar] [CrossRef]
- Zhao, X.; Li, J.; Wang, Q.; Zhang, Z.; Liu, J.; Zhang, C.; Shi, J. Recent progress on high-Z metal-based nanomaterials for cancer radiosensitization. Chin. J. Chem. 2023, 41, 2545–2556. [Google Scholar] [CrossRef]
- Lehnert, S. Radiosensitizers and Radiochemotherapy in the Treatment of Cancer; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Oxfordshire, UK, 2015; p. 548. [Google Scholar]
- Ma, J.; Shen, H.; Mi, Z. Enhancing Proton Therapy Efficacy Through Nanoparticle-Mediated Radiosensitization. Cells 2024, 13, 1841. [Google Scholar] [CrossRef] [PubMed]
- Zwiehoff, S.; Johny, J.; Behrends, C.; Landmann, A.; Mentzel, F.; Bäumer, C.; Kröninger, K.; Rehbock, C.; Timmermann, B.; Barcikowski, S. Enhancement of proton therapy efficiency by noble metal nanoparticles is driven by the number and chemical activity of surface atoms. Small 2022, 18, 2106383. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, C.; de Kock, M.; Engelbrecht, M.; Miles, X.; Slabbert, J.; Vandevoorde, C. Radiosensitization effect of gold nanoparticles in proton therapy. Front. Public Health 2021, 9, 699822. [Google Scholar] [CrossRef]
- Johny, J.; van Halteren, C.E.R.; Cakir, F.C.; Zwiehoff, S.; Behrends, C.; Bäumer, C.; Timmermann, B.; Rauschenbach, L.; Tippelt, S.; Scheffler, B.; et al. Surface chemistry and specific surface area rule the efficiency of gold nanoparticle sensitizers in proton therapy. Chem. Eur. J. 2023, 29, e202301260. [Google Scholar] [CrossRef]
- Brero, F.; Calzolari, P.; Albino, M.; Antoccia, A.; Arosio, P.; Berardinelli, F.; Bettega, D.; Ciocca, M.; Facoetti, A.; Gallo, S.; et al. Proton therapy, magnetic nanoparticles and hyperthermia as combined treatment for pancreatic BxPC3 tumor cells. Nanomaterials 2023, 13, 791. [Google Scholar] [CrossRef]
- Schlathölter, T.; Eustache, P.; Porcel, E.; Salado, D.; Stefancikova, L.; Tillement, O.; Lux, F.; Mowat, P.; Biegun, A.K.; Goethem, M.-J.V.; et al. Improving proton therapy by metal-containing nanoparticles: Nanoscale insights. Int. J. Nanomed. 2016, 11, 1549–1556. [Google Scholar] [CrossRef]
- Zavestovskaya, I.N.; Filimonova, M.V.; Popov, A.L.; Zelepukin, I.V.; Shemyakov, A.E.; Tikhonowski, G.V.; Savinov, M.S.; Filimonov, A.S.; Shitova, A.A.; Soldatova, O.; et al. Bismuth nanoparticles-enhanced proton therapy: Concept and biological assessment. Mater. Today Nano 2024, 27, 100508. [Google Scholar] [CrossRef]
- Filimonova, M.V.; Soldatova, O.V.; Shitova, A.A.; Filimonov, A.S.; Rybachuk, V.A.; Kosachenko, A.O.; Nikolaev, K.A.; Demyashkin, G.A.; Popov, A.A.; Zelepukin, I.V.; et al. Bismuth nanoparticles increase effectiveness of proton therapy of Ehrlich carcinoma. Bull. Exp. Biol. Med. 2024, 176, 626–630. [Google Scholar] [CrossRef]
- Kim, J.-K.; Seo, S.-J.; Kim, K.-H.; Kim, T.-J.; Chung, M.-H.; Kim, K.-R.; Yang, T.-K. Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect. Nanotechnology 2010, 21, 425102. [Google Scholar] [CrossRef]
- Kim, J.-K.; Seo, S.-J.; Kim, H.-T.; Kim, K.-H.; Chung, M.-H.; Kim, K.-R.; Ye, S.-J. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles. Phys. Med. Biol. 2012, 57, 8309–8323. [Google Scholar] [CrossRef] [PubMed]
- Filimonova, M.V.; Kolmanovich, D.D.; Tikhonowski, G.V.; Petrunya, D.S.; Kotelnikova, P.A.; Shitova, A.A.; Soldatova, O.V.; Filimonov, A.S.; Rybachuk, V.A.; Kosachenko, A.O.; et al. Doklady Biochemistry and Biophysics; Pleiades Publishing: Moscow, Russia, 2024; Volume 516, pp. 111–114. [Google Scholar]
- Le Sech, C.; Kobayashi, K.; Usami, N.; Furusawa, Y.; Porcel, E.; Lacombe, S. Comment on ‘Therapeutic application of metallic nanoparticles combined with particle-induced x-ray emission effect’. Nanotechnology 2012, 23, 078001. [Google Scholar] [CrossRef] [PubMed]
- Gerken, L.R.H.; Gogos, A.; Starsich, F.H.L.; David, H.; Gerdes, M.E.; Schiefer, H.; Psoroulas, S.; Meer, D.; Plasswilm, L.; Weber, D.C.; et al. Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy. Nat. Commun. 2022, 13, 3248. [Google Scholar] [CrossRef] [PubMed]
- Manda, G.; Isvoranu, G.; Comanescu, M.V.; Manea, A.; Debelec Butuner, B.; Korkmaz, K.S. The redox biology network in cancer pathophysiology and therapeutics. Redox Biol. 2015, 5, 347–357. [Google Scholar] [CrossRef]
- Li, S.; Penninckx, S.; Karmani, L.; Heuskin, A.-C.; Watillon, K.; Marega, R.; Zola, J.; Corvaglia, V.; Genard, G.; Gallez, B.; et al. LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation. Nanotechnology 2016, 27, 455101. [Google Scholar] [CrossRef]
- Cirrone, G.A.P.; Manti, L.; Margarone, D.; Petringa, G.; Giuffrida, L.; Minopoli, A.; Picciotto, A.; Russo, G.; Cammarata, F.; Pisciotta, P.; et al. First experimental proof of Proton Boron Capture Therapy (PBCT) to enhance protontherapy effectiveness. Sci. Rep. 2018, 8, 1141. [Google Scholar] [CrossRef]
- Cammarata, F.P.; Torrisi, F.; Vicario, N.; Bravatà, V.; Stefano, A.; Salvatorelli, L.; D’Aprile, S.; Giustetto, P.; Forte, G.I.; Minafra, L.; et al. Proton boron capture therapy (PBCT) induces cell death and mitophagy in a heterotopic glioblastoma model. Commun. Biol. 2023, 6, 388. [Google Scholar] [CrossRef]
- Zavestovskaya, I.N.; Popov, A.L.; Kolmanovich, D.D.; Tikhonowski, G.V.; Pastukhov, A.I.; Savinov, M.S.; Shakhov, P.V.; Babkova, J.S.; Popov, A.A.; Zelepukin, I.V.; et al. Boron Nanoparticle-Enhanced Proton Therapy for Cancer Treatment. Nanomaterials 2023, 13, 2167. [Google Scholar] [CrossRef]
- Michaelidesová, A.J.; Kundrát, P.; Zahradníček, O.; Danilová, I.; Pachnerová Brabcová, K.; Vachelová, J.; Vilimovský, J.; David, M.; Vondráček, V.; Davídková, M. First independent validation of the proton-boron capture therapy concept. Sci. Rep. 2024, 14, 19264. [Google Scholar] [CrossRef]
- Zavestovskaya, I.N.; Kasatova, A.I.; Kasatov, D.A.; Babkova, J.S.; Zelepukin, I.V.; Kuzmina, K.S.; Tikhonowski, G.V.; Pastukhov, A.I.; Aiyyzhy, K.O.; Barmina, E.V.; et al. Laser-Synthesized Elemental Boron Nanoparticles for Efficient Boron Neutron Capture Therapy. Int. J. Mol. Sci. 2023, 24, 17088. [Google Scholar] [CrossRef]
- Tran, N.H.; Shtam, T.; Marchenko, Y.Y.; Konevega, A.L.; Lebedev, D. Current State and Prospectives for Proton Boron Capture Therapy. Biomedicines 2023, 11, 1727. [Google Scholar] [CrossRef] [PubMed]
- Mazzone, A.; Finocchiaro, P.; Meo, S.L.; Colonna, N. On the (un)effectiveness of proton boron capture in proton therapy. Eur. Phys. J. Plus 2019, 134, 361. [Google Scholar] [CrossRef]
- Azarkin, M.; Kirakosyan, M.; Ryabov, V. Study of Nuclear Reactions in Therapy of Tumors with Proton Beams. Int. J. Mol. Sci. 2023, 24, 13400. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, L.; Wang, X.; Wang, L. A ternary model of proton therapy based on boron medium radiosensitization and enhancement paths: A Monte Carlo simulation. Transl. Cancer Res. 2023, 12, 2545–2555. [Google Scholar] [CrossRef]
- Popov, A.L.; Kolmanovich, D.D.; Chukavin, N.N.; Zelepukin, I.V.; Tikhonowski, G.V.; Pastukhov, A.I.; Popov, A.A.; Shemyakov, A.E.; Klimentov, S.M.; Ryabov, V.A.; et al. Boron Nanoparticle-Enhanced Proton Therapy: Molecular Mechanisms of Tumor Cell Sensitization. Molecules 2024, 29, 3936. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, C.; Li, X.; Li, Z.P.; Liu, B.H. Development of chemically synthesized spherical plasmonic LaB6 nanoparticles for biomedical application. J. Alloys Compd. 2019, 803, 757–767. [Google Scholar] [CrossRef]
- Lai, B.-H.; Chen, D.-H. LaB6 nanoparticles with carbon-doped silica coating for fluorescence imaging and near-IR photothermal therapy of cancer cells. Acta Biomater. 2013, 9, 7556–7563. [Google Scholar] [CrossRef]
- Belyaev, I.B.; Zelepukin, I.V.; Kotelnikova, P.A.; Tikhonowski, G.V.; Popov, A.A.; Kapitannikova, A.Y.; Barman, J.; Kopylov, A.N.; Bratashov, D.N.; Prikhozhdenko, E.S.; et al. Laser-Synthesized Germanium Nanoparticles as Biodegradable Material for Near-Infrared Photoacoustic Imaging and Cancer Phototherapy. Adv. Sci. 2024, 11, 2307060. [Google Scholar] [CrossRef]
- Bontempo, A.; Ugalde-Villanueva, B.; Delgado-González, E.; Rodríguez, Á.; Aceves, C. Molecular iodine impairs chemoresistance mechanisms, enhances doxorubicin retention and induces downregulation of the CD44+/CD24+ and E-cadherin+/vimentin+ subpopulations in MCF-7 cells resistant to low doses of doxorubicin. Oncol. Rep. 2017, 38, 2867–2876. [Google Scholar] [CrossRef]
- Cабурoв, B.O.; Coлдатoва, O.B.; Мoисеев, A.C.; Шитoва, A.A.; Гoлoванoва, O.Ю.; Aдарoва, A.И.; Филимoнoв, A.C.; Рыбачук, B.A.; Никoлаев, K.A.; Литун, E.B.; et al. A Device for Fixing Small Laboratory Animals During Local Irradiation of the Hindlimb with Protons. RU Patent 224468 U1, 26 March 2024. Available online: https://elibrary.ru/download/elibrary_65142223_12298562.PDF (accessed on 21 January 2025).
- Filimonova, M.; Shitova, A.; Soldatova, O.; Shevchenko, L.; Saburova, A.; Podosinnikova, T.; Surinova, V.; Shegay, P.; Kaprin, A.; Ivanov, S.; et al. Combination of NOS- and PDK-Inhibitory Activity: Possible Way to Enhance Antitumor Effects. Int. J. Mol. Sci. 2022, 23, 730. [Google Scholar] [CrossRef]
- Hua, D.; Wang, J.; Yu, D.; Liu, J. Lanthanum exerts acute toxicity and histopathological changes in gill and liver tissue of rare minnow (Gobiocypris rarus). Ecotoxicology 2017, 26, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Hong, J.; Yu, X.; Zhao, X.; Sheng, L.; Ze, Y.; Sang, X.; Gui, S.; Sun, Q.; Wang, L.; et al. Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere 2013, 93, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Fei, M.; Li, N.; Ze, Y.; Liu, J.; Wang, S.; Gong, X.; Duan, Y.; Zhao, X.; Wang, H.; Hong, F. The mechanism of liver injury in mice caused by lanthanoids. Biol. Trace Elem. Res. 2011, 140, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.A.; Sisin, N.N.T.; Razak, K.A.; Geso, M.; Akasaka, H.; Sasaki, R.; Tominaga, T.; Miura, H.; Nishi, M.; Almutery, A.A.; et al. Cell survival analysis of radiosensitization effects by gold nanoparticles for proton beam therapy. J. Radiat. Res. Appl. Sci. 2025, 18, 101203. [Google Scholar] [CrossRef]
- Smith, C.L.; Best, S.P.; Gagliardi, F.; Tominaga, T.; Geso, M. The effects of gold nanoparticles concentrations and beam quality/LET on dose enhancement when irradiated with X-rays and protons using alanine/EPR dosimetry. Radiat. Meas. 2017, 106, 352–356. [Google Scholar] [CrossRef]
- Her, S.; Jaffray, D.A.; Allen, C. Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv. Drug Deliv. Rev. 2017, 109, 84–101. [Google Scholar] [CrossRef]
- Park, Y.; Park, J.M.; Kim, D.H.; Kwon, J.; Kim, I.A. Inhibition of PI4K IIIα radiosensitizes in human tumor xenograft and immune-competent syngeneic murine tumor model. Oncotarget 2017, 8, 110392–110405. [Google Scholar] [CrossRef]
- Martin, B.; Richardson, F.S. Lanthanides as probes for calcium in biological systems. Q. Rev. Biophys. 1979, 12, 181–209. [Google Scholar] [CrossRef]
- Brasch, J.; Harrison, O.J.; Honig, B.; Shapiro, L. Thinking outside the cell: How cadherins drive adhesion. Trends Cell Biol. 2012, 22, 299–310. [Google Scholar] [CrossRef]
- Lewis, B.D.; Spalding, E.P. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction. J. Membr. Biol. 1998, 162, 81–90. [Google Scholar] [CrossRef]
- Brayshaw, L.L.; Smith, R.C.G.; Badaoui, M.; Irving, J.A.; Price, S.R. Lanthanides compete with calcium for binding to cadherins and inhibit cadherin-mediated cell adhesion. Metallomics 2019, 11, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, V.; Kircheva, N.; Dobrev, S.; Angelova, S.; Dudev, T. Lanthanides as Calcium Mimetic Species in Calcium-Signaling/Buffering Proteins: The Effect of Lanthanide Type on the Ca2+/Ln3+ Competition. Int. J. Mol. Sci. 2023, 24, 6297. [Google Scholar] [CrossRef] [PubMed]
- Padmanaban, V.; Krol, I.; Suhail, Y.; Szczerba, B.M.; Aceto, N.; Bader, J.S.; Ewald, A.J. E-cadherin is required for metastasis in multiple models of breast cancer. Nature 2019, 573, 439–444. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.F.; Paredes, J. P-cadherin and the journey to cancer metastasis. Mol. Cancer 2015, 14, 178. [Google Scholar] [CrossRef]
- Mrozik, K.M.; Blaschuk, O.W.; Cheong, C.M.; Zannettino, A.C.W.; Vandyke, K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer 2018, 18, 939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryabtseva, M.S.; Filimonova, M.V.; Filimonov, A.S.; Soldatova, O.V.; Shitova, A.A.; Rybachuk, V.A.; Volkova, I.K.; Nikolaev, K.A.; Kosachenko, A.O.; Koryakin, S.N.; et al. Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy. Pharmaceutics 2025, 17, 515. https://doi.org/10.3390/pharmaceutics17040515
Ryabtseva MS, Filimonova MV, Filimonov AS, Soldatova OV, Shitova AA, Rybachuk VA, Volkova IK, Nikolaev KA, Kosachenko AO, Koryakin SN, et al. Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy. Pharmaceutics. 2025; 17(4):515. https://doi.org/10.3390/pharmaceutics17040515
Chicago/Turabian StyleRyabtseva, Mariya S., Marina V. Filimonova, Alexander S. Filimonov, Olga V. Soldatova, Anna A. Shitova, Vitaly A. Rybachuk, Irina K. Volkova, Kirill A. Nikolaev, Alexander O. Kosachenko, Sergei N. Koryakin, and et al. 2025. "Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy" Pharmaceutics 17, no. 4: 515. https://doi.org/10.3390/pharmaceutics17040515
APA StyleRyabtseva, M. S., Filimonova, M. V., Filimonov, A. S., Soldatova, O. V., Shitova, A. A., Rybachuk, V. A., Volkova, I. K., Nikolaev, K. A., Kosachenko, A. O., Koryakin, S. N., Petrunya, D. S., Kotelnikova, P. A., Shemyakov, A. E., Kolmanovich, D. D., Popov, A. L., Tikhonowski, G. V., Popov, A. A., Timakova, A. A., Kolobov, A. V., ... Zavestovskaya, I. N. (2025). Polyacrylic Acid-Coated LaB6 Nanoparticles as Efficient Sensitizers for Binary Proton Therapy. Pharmaceutics, 17(4), 515. https://doi.org/10.3390/pharmaceutics17040515