New Direction in Antimicrobial Delivery System: Preparation and Applications of Hydrogel Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation Methods for Hydrogel Microspheres (HMSs)
2.1.1. Batch Emulsion Method
2.1.2. Microfluidic Method
2.1.3. Spraying Method
2.1.4. Other Methods
2.2. Materials for the Preparation of Hydrogel Microspheres (HMSs)
2.2.1. Natural Polymers
2.2.2. Synthetic Polymers
2.2.3. Composite Materials
2.3. Antimicrobials Delivered by Hydrogel Microspheres (HMSs)
2.3.1. Antibiotics
2.3.2. Metal-Based Antimicrobials
2.3.3. Natural Materials
2.3.4. Other Antimicrobials
3. Properties Affecting the Application of Hydrogel Microspheres (HMSs)
3.1. Drug Release
3.1.1. Diameter
3.1.2. Porosity
3.1.3. Swelling Degree
3.1.4. pH-Responsive Drug Release
3.1.5. Photo-Responsive Drug Release
3.1.6. Magnetic-Responsive Drug Release
3.1.7. Targeted Release
3.2. Cell Adhesion
3.3. Biocompatibility
3.4. Degradability
3.5. Mechanical Properties
4. Application of Drug-Loaded Antimicrobial Hydrogel Microspheres (HMSs)
4.1. Skin Wound Repair
4.2. Intestinal Mucosal Treatment
4.3. Tissue Repair
4.3.1. Bone Repair
4.3.2. Periodontal Repair
4.4. Other Applications
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HMSs | Hydrogel microspheres |
PBS | Phosphate-buffered saline |
PDMS | Polydimethylsiloxane |
Alg | Alginate |
CS | Chitosan |
MMP-9 | Matrix metalloproteinase-9 |
GelMA | Gelatin methacrylate |
HA | Hyaluronic acid |
CMC | Carboxymethyl cellulose |
PLGA | Poly (lactic acid-hydroxyacetic acid) |
LA | Lactic acid |
GA | Glycolic acid |
PVA | Polyvinyl alcohol |
KGM | Konjac glucomannan |
SA | Sodium alginate |
GO | Graphene oxide |
AMP | Amphotericin B |
C-AMPs | CS microspheres encapsulating amphotericin B |
LDH | Layered double hydroxide |
AMX | Amoxicillin |
S. typhi | Salmonella typhi |
B. subtilis | Bacillus subtilis |
S. aureus | Staphylococcus aureus |
E. coli | Escherichia coli |
rhBMP-2 | Recombinant human bone morphogenetic protein-2 |
VAN | Vancomycin |
TH | Tetracycline hydrochloride |
AgSD | Silver sulfadiazine |
HAp | Hydroxyapatite |
MHGMs | Magnetic hydroxyapatite/gelatin microspheres |
ATP | Adenosine triphosphate |
AgNPs | Silver nanoparticles |
PAA | Poly (acrylic acid) |
EGCG | Epigallocatechin gallate |
S. typhimurium | Salmonella typhimurium |
V. parahaemolyticus | Vibrio parahaemolyticus |
V. cholerae | Vibrio cholerae |
MIC | Minimum inhibitory concentration |
PHMB | Polyhexamethylene biguanide |
W-Gels | Double-crosslinked nanocomposite gels |
L. reuteri | Lactobacillus reuteri |
P. aeruginosa | Pseudomonas aeruginosa |
PEG | Polyethylene glycol |
pAAm | Polyacrylamide |
CMS | Carboxymethyl starch |
SLPN | Solid lipid-polymer hybrid nanoparticles |
CMCS | Carboxymethyl chitosan |
ROS | Reactive oxygen species |
NIR | Near-infrared |
OA | Osteoarthritis |
CNC | Cellulose nanocrystals |
SLPN-CS | SA/cellulose nanocrystal |
BMP-2 | Bone morphogenetic protein-2 |
VEGF | Vascular endothelial growth factor |
Zn2+ | Zinc ions |
His-VEGF | Histidine-tagged VEGF |
IBD | Inflammatory bowel diseases |
GQDs | Graphene quantum dots |
Cu-MBGs | Copper-doped mesoporous bioactive glass |
5-FU | 5-fluorouracil |
S. gordonii | Streptococcus gordonii |
F. nucleatum | Fusobacterium nucleatum |
P. gingivalis | Porphyromonas gingivalis |
S. enterica | Salmonella enterica |
MSSA | Methicillin-Sensitive Staphylococcus aureus |
K. pneumoniae | Klebsiella pneumoniae |
M. ulcerans | Mycobacterium ulcerans |
References
- Curren, E.J.; Lutgring, J.D.; Kabbani, S.; Diekema, D.J.; Gitterman, S.; Lautenbach, E.; Morgan, D.J.; Rock, C.; Salerno, R.M.; McDonald, L.C. Advancing Diagnostic Stewardship for Healthcare-Associated Infections, Antibiotic Resistance, and Sepsis. Clin. Infect. Dis. 2022, 74, 723–728. [Google Scholar] [CrossRef]
- de Kraker, M.E.; Stewardson, A.J.; Harbarth, S. Will 10 Million People Die a Year due to Antimicrobial Resistance by 2050? PLoS Med. 2016, 13, e1002184. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Antimicrobial Resistance Surveillance System: Manual for Early Implementation; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Habib, M.; Zheng, J.; Chan, C.F.; Yang, Z.; Wong, I.L.K.; Chow, L.M.C.; Lee, M.M.; Chan, M.K. A Targeted and Protease-Activated Genetically Encoded Melittin-Containing Particle for the Treatment of Cutaneous and Visceral Leishmaniasis. ACS Appl. Mater. Interfaces 2024, 16, 49148–49163. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Ahmed, A.; Cong, H.; Yu, B.; Shen, Y. Effective Strategies for Developing Potent, Broad-Spectrum Antibacterial and Wound Healing Promotion from Short-Chain Antimicrobial Peptides. ACS Appl. Mater. Interfaces 2023, 15, 32136–32147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, J.; Yan, J.; Guo, Z.; Zhang, F. Magnetic microspheres mimicking certain functions of macrophages: Towards precise antibacterial potency for bone defect healing. Mater. Today Bio 2023, 20, 100651. [Google Scholar] [CrossRef]
- Kirtane, A.R.; Verma, M.; Karandikar, P.; Furin, J.; Langer, R.; Traverso, G. Nanotechnology approaches for global infectious diseases. Nat. Nanotechnol. 2021, 16, 369–384. [Google Scholar] [CrossRef]
- Bapolisi, A.M.; Nkanga, C.I.; Walker, R.B.; Krause, R.W.M. Simultaneous liposomal encapsulation of antibiotics and proteins: Co-loading and characterization of rifampicin and Human Serum Albumin in soy-liposomes. J. Drug Deliv. Sci. Technol. 2020, 58, 101751. [Google Scholar] [CrossRef]
- Li, G.; Liu, S.; Chen, Y.; Zhao, J.; Xu, H.; Weng, J.; Yu, F.; Xiong, A.; Udduttula, A.; Wang, D.; et al. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment. Nat. Commun. 2023, 14, 3159. [Google Scholar] [CrossRef]
- Cai, X.; Javor, S.; Gan, B.H.; Kohler, T.; Reymond, J.L. The antibacterial activity of peptide dendrimers and polymyxin B increases sharply above pH 7.4. Chem. Commun. 2021, 57, 5654–5657. [Google Scholar] [CrossRef]
- Abd-El-Aziz, A.S.; Benaaisha, M.R.; Abdelghani, A.A.; Bissessur, R.; Abdel-Rahman, L.H.; Fayez, A.M.; El-Ezz, D.A. Aspirin-Based Organoiron Dendrimers as Promising Anti-Inflammatory, Anticancer, and Antimicrobial Drugs. Biomolecules 2021, 11, 1568. [Google Scholar] [CrossRef]
- Su, M.; Ruan, L.; Dong, X.; Tian, S.; Lang, W.; Wu, M.; Chen, Y.; Lv, Q.; Lei, L. Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review. Int. J. Biol. Macromol. 2023, 227, 472–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gang, X.; Xiao, Y.; Ren, Y.; Wang, J.; Niu, B.; Li, W. Sodium Alginate/carboxymethyl chitosan-CuO hydrogel beads as a pH-sensitive carrier for the controlled release of curcumin. Eur. Polym. J. 2023, 192, 112069. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Y.; Zhang, X.; Fu, B.; Xu, W.; Xue, D.; Chen, N.; Wang, X.; Xie, Q. Construction of sodium alginate/konjac glucomannan/chitosan oligosaccharide/Zeolite P hydrogel microspheres loaded with potassium diformate for sustained intestinal bacterial inhibition. Eur. Polym. J. 2022, 172, 111233. [Google Scholar] [CrossRef]
- Ouyang, X.K.; Zhao, L.; Jiang, F.; Ling, J.; Yang, L.Y.; Wang, N. Cellulose nanocrystal/calcium alginate-based porous microspheres for rapid hemostasis and wound healing. Carbohydr. Polym. 2022, 293, 119688. [Google Scholar] [CrossRef]
- Mou, J.; Liu, Z.; Liu, J.; Lu, J.; Zhu, W.; Pei, D. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: Preparation, characterization and evaluation. Drug Deliv. 2019, 26, 179–187. [Google Scholar] [CrossRef]
- Mohammed, A.M.; Hassan, K.T.; Hassan, O.M. Assessment of antimicrobial activity of chitosan/silver nanoparticles hydrogel and cryogel microspheres. Int. J. Biol. Macromol. 2023, 233, 123580. [Google Scholar] [CrossRef]
- Griffin, D.R.; Weaver, W.M.; Scumpia, P.O.; Di Carlo, D.; Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 2015, 14, 737–744. [Google Scholar] [CrossRef]
- Komi, D.E.A.; Khomtchouk, K.; Santa Maria, P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clin. Rev. Allergy Immunol. 2019, 58, 298–312. [Google Scholar] [CrossRef]
- Ju, Y.; Zeng, H.; Ye, X.; Dai, M.; Fang, B.; Liu, L. Zn(2+) incorporated composite polysaccharide microspheres for sustained growth factor release and wound healing. Mater. Today Bio 2023, 22, 100739. [Google Scholar]
- Zhang, X.; Zhang, G.; Zhang, H.; Liu, X.; Shi, J.; Shi, H.; Yao, X.; Chu, P.K.; Zhang, X. A bifunctional hydrogel incorporated with CuS@MoS2 microspheres for disinfection and improved wound healing. Chem. Eng. J. 2020, 382, 122849. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Zhang, H.; Chen, C.; Zhang, D.; Zhao, Y. Protein-Based Hybrid Responsive Microparticles for Wound Healing. ACS Appl. Mater. Interfaces 2021, 13, 18413–18422. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Yang, Y.; Shi, J.; Zhang, H.; Yao, X.; Chen, W.; Zhang, X. A rose bengal/graphene oxide/PVA hybrid hydrogel with enhanced mechanical properties and light-triggered antibacterial activity for wound treatment. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 118, 111447. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cao, W.; Liu, Y.; Liu, H.; Ru, J.; Yin, M.; Luo, X.; Zhang, Y.; Chen, F. Hydrogel microspheres encapsulating lysozyme/MXene for photothermally enhanced antibacterial activity and infected wound healing. Int. J. Biol. Macromol. 2024, 279 Pt 4, 135527. [Google Scholar] [CrossRef]
- Song, S.; Li, Z.; Li, J.; Liu, Y.; Li, Z.; Wang, P.; Huang, J. Electrospray Nano-Micro Composite Sodium Alginate Microspheres with Shape-Adaptive, Antibacterial, and Angiogenic Abilities for Infected Wound Healing. ACS Appl. Mater. Interfaces 2024, 16, 28147–28161. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Luo, Y. Chitosan Hydrogel Beads Functionalized with Thymol-Loaded Solid Lipid(-)Polymer Hybrid Nanoparticles. Int. J. Mol. Sci. 2018, 19, 3112. [Google Scholar] [CrossRef]
- Ouyang, Q.; Hou, T.; Li, C.; Hu, Z.; Liang, L.; Li, S.; Zhong, Q.; Li, P. Construction of a composite sponge containing tilapia peptides and chitosan with improved hemostatic performance. Int. J. Biol. Macromol. 2019, 139, 719–729. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Q.; Li, X.; Huang, K.; Shao, W.; Yao, D.; Huang, C. Redox-responsive blend hydrogel films based on carboxymethyl cellulose/chitosan microspheres as dual delivery carrier. Int. J. Biol. Macromol. 2019, 134, 413–421. [Google Scholar] [CrossRef]
- Lv, L.; Cheng, W.; Wang, S.; Lin, S.; Dang, J.; Ran, Z.; Zhu, H.; Xu, W.; Huang, Z.; Xu, P.; et al. Poly(beta-amino ester) Dual-Drug-Loaded Hydrogels with Antibacterial and Osteogenic Properties for Bone Repair. ACS Biomater. Sci. Eng. 2023, 9, 1976–1990. [Google Scholar] [CrossRef]
- Xu, W.; Gao, X.; Tan, H.; Li, S.; Zhou, T.; Li, J.; Chen, Y. Covalent and biodegradable chitosan-cellulose hydrogel dressing containing microspheres for drug delivery and wound healing. Mater. Today Commun. 2022, 33, 104163. [Google Scholar] [CrossRef]
- Krishnan, R.A.; Pant, T.; Sankaranarayan, S.; Stenberg, J.; Jain, R.; Dandekar, P. Protective nature of low molecular weight chitosan in a chitosan-Amphotericin B nanocomplex—A physicochemical study. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 93, 472–482. [Google Scholar] [CrossRef]
- Ming, Z.; Han, L.; Bao, M.; Zhu, H.; Qiang, S.; Xue, S.; Liu, W. Living Bacterial Hydrogels for Accelerated Infected Wound Healing. Adv. Sci. 2021, 8, e2102545. [Google Scholar] [CrossRef] [PubMed]
- Yu, N.; Wang, X.; Qiu, L.; Cai, T.; Jiang, C.; Sun, Y.; Li, Y.; Peng, H.; Xiong, H. Bacteria-triggered hyaluronan/AgNPs/gentamicin nanocarrier for synergistic bacteria disinfection and wound healing application. Chem. Eng. J. 2020, 380, 122582. [Google Scholar] [CrossRef]
- Behzadi Nia, S.; Pooresmaeil, M.; Namazi, H. Carboxymethylcellulose/layered double hydroxides bio-nanocomposite hydrogel: A controlled amoxicillin nanocarrier for colonic bacterial infections treatment. Int. J. Biol. Macromol. 2020, 155, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Zhao, Y.; Lu, Z.; Xing, R.; Yao, X.; Jin, Z.; Wang, Y.; Yu, F. Citral-loaded chitosan/carboxymethyl cellulose copolymer hydrogel microspheres with improved antimicrobial effects for plant protection. Int. J. Biol. Macromol. 2020, 164, 986–993. [Google Scholar] [CrossRef]
- Sathiyaseelan, A.; Zhang, X.; Wang, M.H. Enhancing the Antioxidant, Antibacterial, and Wound Healing Effects of Melaleuca alternifolia Oil by Microencapsulating It in Chitosan-Sodium Alginate Microspheres. Nutrients 2023, 15, 1319. [Google Scholar] [CrossRef]
- Pooresmaeil, M.; Hassanpouraghdam, Y.; Namazi, H. Chitosan/carboxymethyl starch bio-coated naproxen@GQDs/Copper glutamate MOFs: A new system for colon-specific drug delivery relay on the special structure of the used polymers. Eur. Polym. J. 2023, 184, 111802. [Google Scholar] [CrossRef]
- Athipornchai, A.; Pabunrueang, P.; Trakulsujaritchok, T. Mangiferin loaded carrageenan/chitosan core-shell hydrogel beads: Preparation, characterization and proposed application. Food Hydrocoll. 2024, 147, 109394. [Google Scholar] [CrossRef]
- Zhu, Q.; Jiang, M.; Liu, Q.; Yan, S.; Feng, L.; Lan, Y.; Shan, G.; Xue, W.; Guo, R. Enhanced healing activity of burn wound infection by a dextran-HA hydrogel enriched with sanguinarine. Biomater. Sci. 2018, 6, 2472–2486. [Google Scholar] [CrossRef]
- Qin, Y.; Qiu, C.; Hu, Y.; Ge, S.; Wang, J.; Jin, Z. In Situ Self-Assembly of Nanoparticles into Waxberry-Like Starch Microspheres Enhanced the Mechanical Strength, Fatigue Resistance, and Adhesiveness of Hydrogels. ACS Appl. Mater. Interfaces 2020, 12, 46609–46620. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, J.; Zhao, Q.; He, Z.; Tang, L.; Pu, Y.; He, B. Bio-adhesive and ROS-scavenging hydrogel microspheres for targeted ulcerative colitis therapy. Int. J. Pharm. 2023, 639, 122962. [Google Scholar] [CrossRef]
- Mendes, A.I.; Rebelo, R.; Aroso, I.; Correlo, V.M.; Fraga, A.G.; Pedrosa, J.; Marques, A.P. Development of an antibiotics delivery system for topical treatment of the neglected tropical disease Buruli ulcer. Int. J. Pharm. 2022, 623, 121954. [Google Scholar] [CrossRef] [PubMed]
- Saeedi Garakani, S.; Davachi, S.M.; Bagher, Z.; Heraji Esfahani, A.; Jenabi, N.; Atoufi, Z.; Khanmohammadi, M.; Abbaspourrad, A.; Rashedi, H.; Jalessi, M. Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. Int. J. Biol. Macromol. 2020, 164, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xiao, Y. Sequential drug delivery of vancomycin and rhBMP-2 via pore-closed PLGA microparticles embedded photo-crosslinked chitosan hydrogel for enhanced osteointegration. Int. J. Biol. Macromol. 2021, 182, 612–625. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, C.; Dong, Y.; Jing, W.; Wei, P.; Peng, C.; Liu, Z.; Zhao, B.; Wang, Y. Microsphere-Gel Composite System with Mesenchymal Stem Cell Recruitment, Antibacterial, and Immunomodulatory Properties Promote Bone Regeneration via Sequential Release of LL37 and W9 Peptides. ACS Appl. Mater. Interfaces 2022, 14, 38525–38540. [Google Scholar] [CrossRef]
- Hu, C.; Hou, B.; Yang, F.; Huang, X.; Chen, Y.; Liu, C.; Xiao, X.; Zou, L.; Deng, J.; Xie, S. Enhancing diabetic wound healing through anti-bacterial and promoting angiogenesis using dual-functional slow-release microspheres-loaded dermal scaffolds. Colloids Surf. B Biointerfaces 2024, 242, 114095. [Google Scholar] [CrossRef]
- Sun, M.; Zhu, C.; Long, J.; Lu, C.; Pan, X.; Wu, C. PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat Staphylococcus aureus-induced skin infections. Drug Deliv. 2020, 27, 632–641. [Google Scholar] [CrossRef]
- Bakadia, B.M.; Zhong, A.; Li, X.; Boni, B.O.O.; Ahmed, A.A.Q.; Souho, T.; Zheng, R.; Shi, Z.; Shi, D.; Lamboni, L.; et al. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: Application to deep full-thickness burn wound healing. Adv. Compos. Hybrid Mater. 2022, 5, 2847–2872. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, H.; Song, T.; Liu, X.; Gao, Y.; Zhou, J.; Li, Y. Sustainable Dual Release of Antibiotic and Growth Factor from pH-Responsive Uniform Alginate Composite Microparticles to Enhance Wound Healing. ACS Appl. Mater. Interfaces 2019, 11, 22730–22744. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, M.; Tang, X.; Zhou, Y.; Zhang, J.; Yang, B. Culture-Delivery Live Probiotics Dressing for Accelerated Infected Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 53283–53296. [Google Scholar] [CrossRef]
- Gwon, K.; Park, J.D.; Lee, S.; Yu, J.S.; Lee, D.N. Fabrication of silicon-based nickel nanoflower-encapsulated gelatin microspheres as an active antimicrobial carrier. Int. J. Biol. Macromol. 2024, 264 Pt 2, 130617. [Google Scholar] [CrossRef]
- Dai, M.; Lin, X.; Hua, P.; Wang, S.; Sun, X.; Tang, C.; Zhang, C.; Liu, L. Antibacterial sequential growth factor delivery from alginate/gelatin methacryloyl microspheres for bone regeneration. Int. J. Biol. Macromol. 2024, 275 Pt 1, 133557. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Wang, X.; Zhu, Y.; Su, W.; Lv, Q.; Li, D. Antimicrobial hydrogel microspheres for protein capture and wound healing. Mater. Des. 2022, 215, 110478. [Google Scholar] [CrossRef]
- Yang, C.; Ding, X.; Yang, C.; Shang, L.; Zhao, Y. Marine polymers-alginate/chitosan composited microcapsules for wound healing. Chem. Eng. J. 2023, 456, 140886. [Google Scholar] [CrossRef]
- Weng, Y.; Chen, H.; Chen, X.; Yang, H.; Chen, C.H.; Tan, H. Adenosine triphosphate-activated prodrug system for on-demand bacterial inactivation and wound disinfection. Nat. Commun. 2022, 13, 4712. [Google Scholar] [CrossRef]
- Liu, G.; Zhou, Y.; Xu, Z.; Bao, Z.; Zheng, L.; Wu, J. Janus hydrogel with dual antibacterial and angiogenesis functions for enhanced diabetic wound healing. Chin. Chem. Lett. 2023, 34, 107705. [Google Scholar] [CrossRef]
- Chen, B.; Benavente, L.P.; Chitto, M.; Wychowaniec, J.K.; Post, V.; D’Este, M.; Constant, C.; Zeiter, S.; Feng, W.; Moreno, M.G.; et al. Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections. J. Control. Release 2023, 364, 159–173. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Liang, Z.; Lan, W.; Wei, Y.; Hu, Y.; Wang, L.; Lei, Q.; Huang, D. Injectable antibacterial Ag-HA/GelMA hydrogel for bone tissue engineering. Front. Bioeng. Biotechnol. 2023, 11, 1219460. [Google Scholar] [CrossRef]
- Lan, Z.; Guo, L.; Fletcher, A.; Ang, N.; Whitfield-Cargile, C.; Bryan, L.; Welch, S.; Richardson, L.; Cosgriff-Hernandez, E. Antimicrobial hydrogel foam dressing with controlled release of gallium maltolate for infection control in chronic wounds. Bioact. Mater. 2024, 42, 433–448. [Google Scholar] [CrossRef]
- Wang, B.; Wang, J.; Shao, J.; Kouwer, P.H.J.; Bronkhorst, E.M.; Jansen, J.A.; Walboomers, X.F.; Yang, F. A tunable and injectable local drug delivery system for personalized periodontal application. J. Control. Release 2020, 324, 134–145. [Google Scholar] [CrossRef]
- Xu, Z.; Cui, Y.; Tian, W.; Sun, F.; Zhang, J. Surface Wrinkled Microsphere Enhanced Irregular Wound Healing Through Synergistic Hygroscopicity, Reversible Wet-Adhesion and Antibacterial Properties. Small Sci. 2024, 4, 2300216. [Google Scholar] [CrossRef]
- Ling, Z.; Liu, X.; Cheng, S.; Jiang, C.; Zhao, W.; Zhao, C. Rational design of hemocompatible hydrogel microspheres towards pathogen-associated molecular patterns removal for Gram-positive bacteria-induced sepsis. Chem. Eng. J. 2024, 489, 151461. [Google Scholar] [CrossRef]
- Noh, S.; Gong, H.Y.; Lee, H.J.; Koh, W.G. Electrically Conductive Micropatterned Polyaniline-Poly(ethylene glycol) Composite Hydrogel. Materials 2021, 14, 308. [Google Scholar] [CrossRef] [PubMed]
- Ham, J.; Lee, K.M.; Ko, J.; Lee, K.; Koh, W.-G. Suspension Arrays Prepared from Nanofiber-Based Microparticles for a Platform of SERS-Based Multiplex Immunoassay. ACS Appl. Polym. Mater. 2022, 5, 625–634. [Google Scholar] [CrossRef]
- Nichol, J.W.; Koshy, S.T.; Bae, H.; Hwang, C.M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010, 31, 5536–5544. [Google Scholar] [CrossRef]
- Zhang, S.; Li, G.; Man, J.; Zhang, S.; Li, J.; Li, J.; Li, D. Fabrication of Microspheres from High-Viscosity Bioink Using a Novel Microfluidic-Based 3D Bioprinting Nozzle. Micromachines 2020, 11, 681. [Google Scholar] [CrossRef]
- Chen, J.; Huang, D.; Wang, L.; Hou, J.; Zhang, H.; Li, Y.; Zhong, S.; Wang, Y.; Wu, Y.; Huang, W. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. J. Colloid Interface Sci. 2020, 574, 162–173. [Google Scholar] [CrossRef]
- Xin, S.; Chimene, D.; Garza, J.E.; Gaharwar, A.K.; Alge, D.L. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting. Biomater. Sci. 2019, 7, 1179–1187. [Google Scholar] [CrossRef]
- Song, Y.; Hu, Q.; Liu, Q.; Liu, S.; Wang, Y.; Zhang, H. Design and fabrication of drug-loaded alginate/hydroxyapatite/collagen composite scaffolds for repairing infected bone defects. J. Mater. Sci. 2023, 58, 911–926. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, S.H. Hydrogel-shelled biodegradable microspheres for sustained release of encapsulants. J. Polym. Sci. 2021, 60, 1700–1709. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Liu, M.; Fan, W.; Sui, K. In Situ Growth of Multiresponsive Structural Color Patterns within Hydrogels for Multiple Information Encryption. ACS Appl. Mater. Interfaces 2025, 17, 2250–2260. [Google Scholar] [CrossRef]
- Kang, J.; Yun, S.I. Chitosan-reinforced PHB hydrogel and aerogel monoliths fabricated by phase separation with the solvent-exchange method. Carbohydr. Polym. 2022, 284, 119184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Pan, Y.; Li, S.; Xing, L.; Du, S.; Yuan, G.; Li, J.; Zhou, T.; Xiong, D.; Tan, H.; et al. Doubly crosslinked biodegradable hydrogels based on gellan gum and chitosan for drug delivery and wound dressing. Int. J. Biol. Macromol. 2020, 164, 2204–2214. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Gao, Y.; Xu, Z.; Chen, G.; Ge, L.; Mu, C.; Tian, Y.; Li, D. Emulsion Template Fabrication of Antibacterial Gelatin-Based Scaffolds with a Preferred Microstructure for Accelerated Wound Healing. ACS Appl. Polym. Mater. 2022, 4, 3885–3895. [Google Scholar] [CrossRef]
- Panwar, V.; Sharma, A.; Murugesan, P.; Salaria, N.; Ghosh, D. Free-flowing, self-crosslinking, carboxymethyl starch and carboxymethyl cellulose microgels, as smart hydrogel dressings for wound repair. Int. J. Biol. Macromol. 2023, 246, 125735. [Google Scholar] [CrossRef]
- Huang, Y.; Du, Z.; Zheng, T.; Jing, W.; Liu, H.; Liu, X.; Mao, J.; Zhang, X.; Cai, Q.; Chen, D.; et al. Antibacterial, conductive, and osteocompatible polyorganophosphazene microscaffolds for the repair of infectious calvarial defect. J. Biomed. Mater. Res. A 2021, 109, 2580–2596. [Google Scholar] [CrossRef]
- Hu, X.; Tang, J.; Yu, H.; Yang, H.; Lu, X.; Zheng, D. Preparation of fish collagen and vancomycin microspheres based on microfluidic technology and its application in osteomyelitis. Front. Bioeng. Biotechnol. 2023, 11, 1249706. [Google Scholar] [CrossRef]
- Chen, M.; Tan, H.; Xu, W.; Wang, Z.; Zhang, J.; Li, S.; Zhou, T.; Li, J.; Niu, X. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomater. 2022, 153, 159–177. [Google Scholar] [CrossRef]
- Zhan, Y.-l.; Wen, K.-c.; Li, Z.-a.; Zang, J.; Sun, P.; Li, F.-q. Microwave assisted black phosphorus-based core-shell composites with synergistic antibacterial and osteogenic ability for bone tissue repair. Compos. Part. B Eng. 2024, 281, 111554. [Google Scholar] [CrossRef]
- Ying, H.; Zhou, J.; Wang, M.; Su, D.; Ma, Q.; Lv, G.; Chen, J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 101, 487–498. [Google Scholar] [CrossRef]
- Xu, T.; Li, H.; He, C.; Xu, H.; Song, X.; Ji, H.; Zhao, C. Semi-interpenetrating polymer network microspheres with superior dimensional stability as multifunctional antibacterial adsorbent materials. J. Environ. Chem. Eng. 2019, 7, 103393. [Google Scholar] [CrossRef]
- Rashidzadeh, B.; Shokri, E.; Mahdavinia, G.R.; Moradi, R.; Mohamadi-Aghdam, S.; Abdi, S. Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release. Int. J. Biol. Macromol. 2020, 154, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Ghumman, S.A.; Mahmood, A.; Noreen, S.; Rana, M.; Hameed, H.; Ijaz, B.; Hasan, S.; Aslam, A.; ur Rehman, M.F. Formulation and evaluation of quince seeds mucilage—Sodium alginate microspheres for sustained delivery of cefixime and its toxicological studies. Arab. J. Chem. 2022, 15, 103811. [Google Scholar] [CrossRef]
- Huang, J.; Ren, J.; Chen, G.; Li, Z.; Liu, Y.; Wang, G.; Wu, X. Tunable sequential drug delivery system based on chitosan/hyaluronic acid hydrogels and PLGA microspheres for management of non-healing infected wounds. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 89, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Elbert, D.L. Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review. Acta Biomater. 2011, 7, 31–56. [Google Scholar] [CrossRef]
- Matai, I.; Garg, M.; Rana, K.; Singh, S. Polydopamine functionalized hydrogel beads as magnetically separable antibacterial materials. RSC Adv. 2019, 9, 13444–13457. [Google Scholar] [CrossRef]
- Sivan, S.S.; Bonstein, I.; Marmor, Y.N.; Pelled, G.; Gazit, Z.; Amit, M. Encapsulation of Human-Bone-Marrow-Derived Mesenchymal Stem Cells in Small Alginate Beads Using One-Step Emulsification by Internal Gelation: In Vitro, and In Vivo Evaluation in Degenerate Intervertebral Disc Model. Pharmaceutics 2022, 14, 1179. [Google Scholar] [CrossRef]
- An, C.; Li, H.; Zhao, Y.; Zhang, S.; Zhao, Y.; Zhang, Y.; Yang, J.; Zhang, L.; Ren, C.; Zhang, Y.; et al. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int. J. Biol. Macromol. 2023, 231, 123307. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, T.; Huang, F.; Wang, S.; Zhu, P.; Xu, R.X.; Si, T. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. Adv. Mater. 2024, 36, e2304840. [Google Scholar] [CrossRef]
- Ding, L.; Oh, S.; Shrestha, J.; Lam, A.; Wang, Y.; Radfar, P.; Warkiani, M.E. Scaling up stem cell production: Harnessing the potential of microfluidic devices. Biotechnol. Adv. 2023, 69, 108271. [Google Scholar] [CrossRef]
- Tolabi, H.; Davari, N.; Khajehmohammadi, M.; Malektaj, H.; Nazemi, K.; Vahedi, S.; Ghalandari, B.; Reis, R.L.; Ghorbani, F.; Oliveira, J.M. Progress of Microfluidic Hydrogel-Based Scaffolds and Organ-on-Chips for the Cartilage Tissue Engineering. Adv. Mater. 2023, 35, e2208852. [Google Scholar] [CrossRef]
- Senturk, E.; Bilici, C.; Afghah, F.; Khan, Z.; Celik, S.; Wu, C.; Koc, B. 3D bioprinting of tyramine modified hydrogels under visible light for osteochondral interface. Biofabrication 2023, 15, 034102. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Cho, Y.H.; Park, M.S.; Kim, B.H. Microchannel Fabrication on Glass Materials for Microfluidic Devices. Int. J. Precis. Eng. Manuf. 2019, 20, 479–495. [Google Scholar] [CrossRef]
- Li, Q.; Chang, B.; Dong, H.; Liu, X. Functional microspheres for tissue regeneration. Bioact. Mater. 2023, 25, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.M.; Vedicherla, S.; Gansau, J.; McIntyre, T.; Doherty, M.; Buckley, C.T. Living Cell Factories—Electrosprayed Microcapsules and Microcarriers for Minimally Invasive Delivery. Adv. Mater. 2016, 28, 5662–5671. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, X.; Gong, J.; Mu, R.; Li, Y.; Wu, C.; Pang, J. Fabrication of chitosan-coated konjac glucomannan/sodium alginate/graphene oxide microspheres with enhanced colon-targeted delivery. Int. J. Biol. Macromol. 2019, 131, 209–217. [Google Scholar] [CrossRef]
- Li, B.; He, M.; Ramirez, L.; George, J.; Wang, J. Multifunctional Hydrogel Microparticles by Polymer-Assisted Photolithography. ACS Appl. Mater. Interfaces 2016, 8, 4158–4164. [Google Scholar] [CrossRef]
- Pontremoli, C.; Boffito, M.; Fiorilli, S.; Laurano, R.; Torchio, A.; Bari, A.; Tonda-Turo, C.; Ciardelli, G.; Vitale-Brovarone, C. Hybrid injectable platforms for the in situ delivery of therapeutic ions from mesoporous glasses. Chem. Eng. J. 2018, 340, 103–113. [Google Scholar] [CrossRef]
- Kiekens, S.; Vandenheuvel, D.; Broeckx, G.; Claes, I.; Allonsius, C.; De Boeck, I.; Thys, S.; Timmermans, J.P.; Kiekens, F.; Lebeer, S. Impact of spray-drying on the pili of Lactobacillus rhamnosus GG. Microb. Biotechnol. 2019, 12, 849–855. [Google Scholar] [CrossRef]
- Helgeson, M.E.; Chapin, S.C.; Doyle, P.S. Hydrogel microparticles from lithographic processes: Novel materials for fundamental and applied colloid science. Curr. Opin. Colloid Interface Sci. 2011, 16, 106–117. [Google Scholar] [CrossRef]
- Hegde, V.; Uthappa, U.T.; Altalhi, T.; Jung, H.-Y.; Han, S.S.; Kurkuri, M.D. Alginate based polymeric systems for drug delivery, antibacterial/microbial, and wound dressing applications. Mater. Today Commun. 2022, 33, 104813. [Google Scholar] [CrossRef]
- Qiao, S.; Chen, W.; Zheng, X.; Ma, L. Preparation of pH-sensitive alginate-based hydrogel by microfluidic technology for intestinal targeting drug delivery. Int. J. Biol. Macromol. 2024, 254 Pt 2, 127649. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Duan, Z.; Zhao, J.; Fu, R.; Zhu, C.; Fan, D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioact. Mater. 2022, 17, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Yu, Y.; Chen, Z.; Wang, F.; Zhang, K.; Chen, H.; Xu, J.; Kang, Q. Injectable hypoxia-preconditioned cartilage progenitor cells-laden GelMA microspheres system for enhanced osteoarthritis treatment. Mater. Today Bio 2023, 20, 100637. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Shen, S.; Xu, X.; Xie, X.; Zhou, X.; Su, X.; Wu, L.; Wang, S.; Zhang, L.; Chen, B.; et al. All-in-one hydrogel patches with sprayed bFGF-loaded GelMA microspheres for infected wound healing studies. Int. J. Pharm. 2024, 658, 124205. [Google Scholar] [CrossRef]
- Valente, K.; Boice, G.N.; Polglase, C.; Belli, R.G.; Bourque, E.; Suleman, A.; Brolo, A. Synthesis of Gelatin Methacryloyl Analogs and Their Use in the Fabrication of pH-Responsive Microspheres. Pharmaceutics 2024, 16, 1016. [Google Scholar] [CrossRef]
- Lin, P.; Tang, X.; Zhong, J.; Tang, F.; Liu, H.; Peng, L.; Wan, B.; Wang, M.; Ye, Y.; Guo, R.; et al. Antibacterial, ROS scavenging and angiogenesis promotingϵ-Polylysine/gelatin based hydrogel containing CTLP to regulate macrophages for pressure ulcer healing. Biofabrication 2024, 16, 025025. [Google Scholar] [CrossRef]
- Sun, X.; Liu, C.; Omer, A.M.; Lu, W.; Zhang, S.; Jiang, X.; Wu, H.; Yu, D.; Ouyang, X.K. pH-sensitive ZnO/carboxymethyl cellulose/chitosan bio-nanocomposite beads for colon-specific release of 5-fluorouracil. Int. J. Biol. Macromol. 2019, 128, 468–479. [Google Scholar] [CrossRef]
- Chen, M.; Tian, J.; Liu, Y.; Cao, H.; Li, R.; Wang, J.; Wu, J.; Zhang, Q. Dynamic covalent constructed self-healing hydrogel for sequential delivery of antibacterial agent and growth factor in wound healing. Chem. Eng. J. 2019, 373, 413–424. [Google Scholar] [CrossRef]
- Cao, W.; Xia, D.; Zhou, L.; Liu, Y.; Wang, D.; Liang, C.; Chen, M. Antibacterial and antioxidant wound dressings with pH responsive release properties accelerate chronic wound healing. Mater. Today Phys. 2024, 40, 101316. [Google Scholar] [CrossRef]
- Lv, X.; Liu, C.; Shao, Z.; Song, S.; Sun, S. Tailored Ionic Liquids Encapsulation Method Endowing Hydrogels with Excellent Mechanical and Catalytic Activity. ACS Sustain. Chem. Eng. 2020, 8, 5975–5984. [Google Scholar] [CrossRef]
- Huang, F.; Yang, S.; Wang, H.; Zhao, P.; Zhou, B.; Cheng, B.; Dong, S.; Yang, J.; Li, B.; Wang, X. pH-responsive PLGA/gelatin porous microspheres containing paclitaxel used for inhibition of cancer cell proliferation. J. Drug Deliv. Sci. Technol. 2023, 86, 104735. [Google Scholar] [CrossRef]
- Khorrami, S.; Zarrabi, A.; Khaleghi, M.; Danaei, M.; Mozafari, M.R. Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int. J. Nanomed. 2018, 13, 8013–8024. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Lei, T.; Hua, L.; Zhang, Y.; Wang, D.; Nan, J.; Liu, W.; Sun, Y.; Hu, Y.; Lei, P. Fabrication, bacteriostasis and osteointegration properties researches of the additively-manufactured porous tantalum scaffolds loading vancomycin. Bioact. Mater. 2023, 24, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Dou, Z.; Li, B.; Wu, L.; Qiu, T.; Wang, X.; Zhang, X.; Shen, Y.; Lu, M.; Yang, Y. Probiotic-Functionalized Silk Fibroin/Sodium Alginate Scaffolds with Endoplasmic Reticulum Stress-Relieving Properties for Promoted Scarless Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 6297–6311. [Google Scholar] [CrossRef]
- Schwendeman, S.P.; Shah, R.B.; Bailey, B.A.; Schwendeman, A.S. Injectable controlled release depots for large molecules. J. Control. Release 2014, 190, 240–253. [Google Scholar] [CrossRef]
- Thorsen, T.; Roberts, R.W.; Arnold, F.H.; Quake, S.R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 2001, 86, 4163–4166. [Google Scholar] [CrossRef]
- Zhang, S.; Campagne, C.; Salaün, F. Preparation of Electrosprayed Poly(caprolactone) Microparticles Based on Green Solvents and Related Investigations on the Effects of Solution Properties as Well as Operating Parameters. Coatings 2019, 9, 84. [Google Scholar] [CrossRef]
- Ghosh Dastidar, D.; Saha, S.; Chowdhury, M. Porous microspheres: Synthesis, characterisation and applications in pharmaceutical & medical fields. Int. J. Pharm. 2018, 548, 34–48. [Google Scholar]
- Zou, Q.; Duan, H.; Fang, S.; Sheng, W.; Li, X.; Stoika, R.; Finiuk, N.; Panchuk, R.; Liu, K.; Wang, L. Fabrication of yeast beta-glucan/sodium alginate/gamma-polyglutamic acid composite particles for hemostasis and wound healing. Biomater. Sci. 2024, 12, 2394–2407. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, G.; Zhu, B.; Yan, M.; Yu, F.; Wang, X.; Yu, B. Fabrication of an injectable hydrogel scaffold embedding kartogenin-encapsulated PLGA microsphere with long-term drug release to promote chondrogenesis. React. Funct. Polym. 2024, 196, 105821. [Google Scholar] [CrossRef]
- He, Q.; Chen, J.; Yan, J.; Cai, S.; Xiong, H.; Liu, Y.; Peng, D.; Mo, M.; Liu, Z. Tumor microenvironment responsive drug delivery systems. Asian J. Pharm. Sci. 2020, 15, 416–448. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Ren, P.; Pan, X.; Zhang, X.; Ma, J.; Chen, J.; Sheng, J.; Luo, H.; Lu, H.; Chen, G. Intracellular Delivery of Itaconate by Metal-Organic Framework-Anchored Hydrogel Microspheres for Osteoarthritis Therapy. Pharmaceutics 2023, 15, 724. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Huang, C.; Kong, X.; Ma, J.; Ren, P.; Chen, J.; Zhang, X.; Luo, H.; Chen, G. Nanoarchitectonics of Cartilage-Targeting Hydrogel Microspheres with Reactive Oxygen Species Responsiveness for the Repair of Osteoarthritis. ACS Appl. Mater. Interfaces 2022, 14, 40711–40723. [Google Scholar] [CrossRef]
- He, X.; He, S.; Xiang, G.; Deng, L.; Zhang, H.; Wang, Y.; Li, J.; Lu, H. Precise Lubrication and Protection of Cartilage Damage by Targeting Hydrogel Microsphere. Adv. Mater. (Deerfield Beach Fla.) 2024, 36, e2405943. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, T.; Du, Y.; Ling, S.; Meng, C.; Zhuang, P.; Wang, N.; Li, Y.; Zou, C.; Huang, J.; et al. Targeting Bacterial Persisters via Reactive Oxygen Species-Generating Hydrogel Microspheres. Adv. Funct. Mater. 2024, 34, 2405199. [Google Scholar] [CrossRef]
- Gheffar, C.; Le, H.; Jouenne, T.; Schaumann, A.; Corbière, A.; Vaudry, D.; LeCerf, D.; Karakasyan, C. Antibacterial Activity of Ciprofloxacin-Loaded Poly(lactic-co-glycolic acid)-Nanoparticles Against Staphylococcus aureus. Part. Part. Syst. Charact. 2020, 38, 2000253. [Google Scholar] [CrossRef]
- Liu, E.Y.; Choi, Y.; Yi, H.; Choi, C.H. Triple Emulsion-Based Rapid Microfluidic Production of Core-Shell Hydrogel Microspheres for Programmable Biomolecular Conjugation. ACS Appl. Mater. Interfaces 2021, 13, 11579–11587. [Google Scholar] [CrossRef]
- Zheng, Y.; Liang, Y.; Zhang, D.; Sun, X.; Liang, L.; Li, J.; Liu, Y.N. Gelatin-Based Hydrogels Blended with Gellan as an Injectable Wound Dressing. ACS Omega 2018, 3, 4766–4775. [Google Scholar] [CrossRef]
- Wei, Q.; Wang, Y.; Wang, H.; Qiao, L.; Jiang, Y.; Ma, G.; Zhang, W.; Hu, Z. Photo-induced adhesive carboxymethyl chitosan-based hydrogels with antibacterial and antioxidant properties for accelerating wound healing. Carbohydr. Polym. 2022, 278, 119000. [Google Scholar] [CrossRef]
- Rieder, F.; Mukherjee, P.K.; Massey, W.J.; Wang, Y.; Fiocchi, C. Fibrosis in IBD: From pathogenesis to therapeutic targets. Gut 2024, 73, 854–866. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Zhang, J.; Liao, Y.; Alakpa, E.V.; Bunpetch, V.; Zhang, J.; Ouyang, H. Current advances in microsphere based cell culture and tissue engineering. Biotechnol. Adv. 2020, 39, 107459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, L.; Song, P.; Pei, X.; Sun, H.; Wu, L.; Zhou, C.; Wang, K.; Fan, Y.; Zhang, X. 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations. Mater. Des. 2021, 201, 109490. [Google Scholar] [CrossRef]
- Mohammadian, M.; Sahraei, R.; Ghaemy, M. Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag(0) highly efficient sorbent for hard water softening. Chemosphere 2019, 225, 259–269. [Google Scholar] [CrossRef]
Carrier Type | Advantages | Disadvantages |
---|---|---|
HMSs | High biocompatibility; Ability to penetrate deep tissues; Controlled release; High drug loading | The production process needs to be optimized; Complex preparation process |
Natural polymer hydrogels | High biocompatibility; Low cost | Difficulty in achieving deep tissue drug delivery; Low mechanical strength |
Synthetic polymer hydrogels | Adjustable mechanical strength; Functional design flexibility; High drug-loading potential | Low biocompatibility; Complex preparation process |
Liposomes | High biocompatibility; Hydrophobic drugs can be encapsulated | Low drug loading; Poor stability; Prone to leakage |
Dendritic polymers | High drug-loading potential | High cytotoxicity; High production cost; Slow degradation |
Free antimicrobials | Easy to use; No carrier preparation costs | Difficult to accurately control release; Side effects; Poor stability |
Preparation Methods | Materials | Advantages of Preparation Method | Disadvantages of Preparation Method | Antimicrobial Application |
---|---|---|---|---|
Batch emulsion | Alg [14,24], Alg/PLGA [25], CS [17,26,27,28,29], CMCS [30], Low molecular weight CS [31], HA [32,33], CMC [34], CS/CMC [35], CS/Alg [36], CS/Carboxymethyl starch (CMS) [37], CS/κ-Carrageenan [38], Gelatin [39], Debranched starch [40], GelMA [32], Konjac glucomannan [14,41], Poly(hydroxybutyrate-co-hydroxyvalerate) [42], PLGA [43,44,45,46,47], PVA [45,48] | Simple preparation process High yield Low cost | Waste generation Polydispersity of microspheres Batch-to-batch variations Uneven drug loading Cumbersome purification steps | Large-scale production Non-uniform drug loading/size acceptable |
Microfluidic | Alg [49,50], GelMA [51], Alg/GelMA [52], CS [53], CS/Alg [54], Gelatin [22], Polyacrylamide(pAAm) [55] | Precise control over production process Highly homogeneous particle size Even drug loading Low batch-to-batch variations | Relative expensive equipment cost Low yield | Precise size/release control Continuous release and synergy preferred |
Spraying | Alg [56,57], GelMA [58], PLGA [59,60], Cellulose [61], Sulfoxylbetaine methacrylate [62] | Relative high yield Low pollution Preparation of high-purity microspheres | Inadequate regulation of particle size in HMSs Relatively high initial investment and learning cost | High drug stability/activity Size uniformity less critical |
Photolithography | Polyethylene glycol (PEG)/polyaniline [63], PVA [64], Gelatin [65] | High resolution Highly homogeneous particle size Easy size adjustment Low pollution | High cost Low yield | Photo-responsive applications Shape-controlled drug regulation |
3D printing | Alg [66], GelMA/CS [67], PEG [68], Collagen/SA [69] | Precise control of internal structure Personalized customization | Slow print High cost | Complex 3D structures Personalized HMSs preparation |
Phase Separation | Alg [70], poly-(N-isopropylacrylamide) [71], CS [72] | Simple preparation process Wide range of application High yield | Solvent residue High pollution Poorly homogeneous particle size | Contamination control prioritized Size uniformity non-essential |
Applications | Loaded Antimicrobials | Antimicrobial Activities | Ref. |
---|---|---|---|
Skin wound repair | TH, AgSD | S. aureus, E. coli | [73] |
L. reuteri | S. aureus, E. coli, S. enterica | [32] | |
Rifamycin | S. aureus | [49] | |
AgNPs, gentamicin | S. aureus, E. coli | [33] | |
Sanguinarine | MRSA, E. coli | [39] | |
AgNPs | S. aureus, E. coli | [56] | |
Zn2+ | S. aureus, E. coli | [20] | |
Gallium maltolate | MRSA | [59] | |
Lysozyme, MXene | S. aureus | [24] | |
TH | S. aureus, E. coli | [30] | |
Rifampin, streptomycin | M. ulcerans | [42] | |
PHMB | S. aureus, E. coli, P. aeruginosa | [46] | |
Zn2+ | S. aureus, E. coli | [53] | |
EPL | S. aureus, E. coli, P. aeruginosa | [15] | |
VAN, gentamicin | MRSA, E. coli, P. aeruginosa | [48] | |
Antimicrobial peptide | E. coli | [22] | |
Thymol | S. aureus, E. coli | [61] | |
Zeolitic imidazolate framework-8 nanoparticles | S. aureus, E. coli | [25] | |
Ciprofloxacin | MSSA, MRSA | [47] | |
Melaleuca alternifolia oil | B. cereus, S. aureus, E. coli, S. enterica | [36] | |
EPL | S. aureus, E. coli | [74] | |
EGCG | S. aureus, E. coli, S. typhi | [40] | |
L. reuteri | S. aureus, E. coli | [50] | |
AgNPs | S. aureus, E. coli | [75] | |
Bone repair | AMX | E. coli | [69] |
AgNPs | S. aureus | [76] | |
Ag-hydroxyapatite | S. aureus, E. coli | [58] | |
Cu2+ | S. aureus, E. coli | [52] | |
LL-37 | E. coli | [45] | |
VAN | S. aureus | [77] | |
TH, AgSD | S. aureus, E. coli | [78] | |
VAN | MRSA | [79] | |
VAN, total flavonoids of Rhizoma Drynariae | S. aureus, E. coli | [29] | |
Intestinal mucosal treatment | AMX | S. aureus, E. coli | [34] |
K-diformate | S. aureus, E. coli, B. subtilis | [14] | |
Olazazine, Zn2+ | E. coli | [41] | |
GQDs | S. aureus, E. coli | [26] | |
Periodontal restoration | C. reinhardtii | S. gordonii, F. nucleatum, P. gingivalis | [80] |
VAN | S. aureus | [44] | |
Doxycycline, lipoxin | P. gingivalis | [60] | |
Amino antibacterial nanoparticles | P. gingivalis | [6] | |
Agricultural sterilization | Citral | S. aureus, E. coli, B. subtilis, B. cinerea | [35] |
Water purification | AgNPs | S. aureus, E. coli | [81] |
AgNPs | S. aureus, B. subtilis, E. coli, P. aeruginosa | [45] | |
Food preservation | Mangiferin | V. parahaemolyticus, V. cholerae | [38] |
Anti-infective therapy | Si@Ni | P. aeruginosa, K. pneumoniae, MRSA | [51] |
AMP | C. tropicalis, S. cerevisiae, C. parapsilosis | [31] | |
AgNPs, Fe3O4 | S. aureus, E. coli | [82] | |
AgNPs | S. aureus, St. thoraltensis, P. vulgaris, K. pneumoniae, E. coli, P. aeruginosa | [17] | |
Cefixime | S. typhi, B. subtitles | [83] | |
HRP, IAA | S. aureus | [55] | |
Bacteriophage, meropenem | P. aeruginosa | [57] | |
Anti-cancer | 5-FU, TH | S. aureus, E. coli | [28] |
Sinusitis | Dexamethasone | S. aureus, E. coli | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wei, G.; Yuan, Y.; Wang, L.; Qiu, M.; Li, B.; Ma, R.; Wu, J.; Shen, Z. New Direction in Antimicrobial Delivery System: Preparation and Applications of Hydrogel Microspheres. Pharmaceutics 2025, 17, 529. https://doi.org/10.3390/pharmaceutics17040529
Li J, Wei G, Yuan Y, Wang L, Qiu M, Li B, Ma R, Wu J, Shen Z. New Direction in Antimicrobial Delivery System: Preparation and Applications of Hydrogel Microspheres. Pharmaceutics. 2025; 17(4):529. https://doi.org/10.3390/pharmaceutics17040529
Chicago/Turabian StyleLi, Jiapeng, Guotao Wei, Yihao Yuan, Ling Wang, Miaohan Qiu, Bo Li, Ruofei Ma, Jiawei Wu, and Ziyi Shen. 2025. "New Direction in Antimicrobial Delivery System: Preparation and Applications of Hydrogel Microspheres" Pharmaceutics 17, no. 4: 529. https://doi.org/10.3390/pharmaceutics17040529
APA StyleLi, J., Wei, G., Yuan, Y., Wang, L., Qiu, M., Li, B., Ma, R., Wu, J., & Shen, Z. (2025). New Direction in Antimicrobial Delivery System: Preparation and Applications of Hydrogel Microspheres. Pharmaceutics, 17(4), 529. https://doi.org/10.3390/pharmaceutics17040529