Next Issue
Volume 13, February-2
Previous Issue
Volume 13, January-2

Table of Contents

Materials, Volume 13, Issue 3 (February-1 2020) – 316 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The immobilization of antimicrobial agents on plastic surfaces through easy methodologies has [...] Read more.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
MgO-Lignin Dual Phase Filler as an Effective Modifier of Polyethylene Film Properties
Materials 2020, 13(3), 809; https://doi.org/10.3390/ma13030809 - 10 Feb 2020
Viewed by 277
Abstract
Functional magnesium oxide-lignin hybrid materials were obtained via mechanical grinding. Their particle shape and size as well as physicochemical properties were characterized. MgO-lignin materials with biocomponent content (between 20% and 80% amount of total weight of filler) were used as a partially bio-structured [...] Read more.
Functional magnesium oxide-lignin hybrid materials were obtained via mechanical grinding. Their particle shape and size as well as physicochemical properties were characterized. MgO-lignin materials with biocomponent content (between 20% and 80% amount of total weight of filler) were used as a partially bio-structured modifier of low density polyethylene. The composites with 5% by weight of dual fillers and polyethylene grafted with maleic anhydride were compounded in a twin screw extruder working in co-rotating mode. The prepared blends were cast extruded using a single screw extruder and laboratory cast line. The properties of the obtained films were verified in case of their weldability. The seal strength as well as shear test and tear strength of the welded sheets were examined. The results showed that the shortest equivalent time required to perform correct weld occurred in the system, where the highest amount of lignin was used in hybrid filler MgO-L (1:5 w/w). From mechanical tests of welds, a sharp increase in ultimate seal force was noticed for almost all compositions with lignin, especially where MgO was coupled with a high lignin content. For those composition seal open force raised up to 37.0 N, from the value of 23.6 N, achieved for neat low density polyethylene (LDPE). Tear strength of weld sheets confirmed once more that LDPE composition with MgO-L (1:5 w/w) achieved the highest ultimate force with its value of 71.5 N, and it was ~20.0 N higher than in the case of neat LDPE. Full article
Show Figures

Figure 1

Open AccessArticle
Stability of a Melt Pool during 3D-Printing of an Unsupported Steel Component and Its Influence on Roughness
Materials 2020, 13(3), 808; https://doi.org/10.3390/ma13030808 - 10 Feb 2020
Viewed by 296
Abstract
The following work presents the results of an investigation of the cause–effect relationship between the stability of a melt pool and the roughness of an inclined, unsupported steel surface that was 3D-printed using the laser powder bed fusion (PBF-L/M) process. In order to [...] Read more.
The following work presents the results of an investigation of the cause–effect relationship between the stability of a melt pool and the roughness of an inclined, unsupported steel surface that was 3D-printed using the laser powder bed fusion (PBF-L/M) process. In order to observe the balling effect and decrease in surface quality, the samples were printed with no supporting structures placed on the downskin. The stability of the melt pool was investigated as a function of both the inclination angle and along the length of the melt pool. Single-track cross-sections were described by shape parameters and were compared and used to calculate the forces acting on the melt pool as the downskin was printed. The single-melt track tests were printed to produce a series of samples with increasing inclination angles with respect to the baseplate. The increasing angles enabled us to physically simulate specific solidification conditions during the sample printing process. As the inclination angle of the unsupported surface increased, the melt-pool altered in terms of its size, geometry, contact angles, and maximum length of stability. The balling phenomenon was observed, quantified, and compared using roughness tests; it was influenced by the melt track stability according to its geometry. The research results show that a higher linear energy input may decrease the roughness of unsupported surfaces with low inclination angles, while a lower linear energy input may be more effective with higher inclination angles. Full article
(This article belongs to the collection Laser Materials Processing)
Show Figures

Figure 1

Open AccessArticle
Effect of Ultrasonic Bending Vibration Introduced by the L-shaped Ultrasonic Rod on Solidification Structure and Segregation of Large 2A14 Ingots
Materials 2020, 13(3), 807; https://doi.org/10.3390/ma13030807 - 10 Feb 2020
Viewed by 215
Abstract
In order to achieve long-term and stable ultrasonic treatment in the direct chill semi-continuous casting process, a new L-shaped ceramic ultrasonic wave guide rod is designed to introduce ultrasonic bending vibration into 2A14 aluminum alloy melt. The effect of ultrasonic bending vibration on [...] Read more.
In order to achieve long-term and stable ultrasonic treatment in the direct chill semi-continuous casting process, a new L-shaped ceramic ultrasonic wave guide rod is designed to introduce ultrasonic bending vibration into 2A14 aluminum alloy melt. The effect of ultrasonic bending vibration on the solidification structure and composition segregation of large 2A14 aluminum alloy ingots (φ 830 mm × 6000 mm) in the process of semi-continuous casting were studied by means of a direct reading spectrometer, scanning electron microscope, metallographic microscope, and hardness test. The ultrasonic ingot treated by bending vibration was compared with the ingot without ultrasonic treatment and the ingot treated by the traditional straight-rod titanium alloy wave guide rod. The results show that, during the solidification of 2A14 aluminum alloy, ultrasonic treatment can significantly refine the grain, break up the agglomerated secondary phase, and make its distribution uniform. The macro-segregation degree of solute including the negative segregation at the edge of the ingots and the positive segregation in the center can be reduced. Through comparative analysis, the macrostructure of the ingot, treated by the L-shaped ceramic ultrasonic wave guide rod, was found to be better than that of the ingot treated by the traditional straight-rod titanium alloy wave guide rod. In particular, the grain refinement effect at the edge of the ingot was the best, the secondary phase was smaller, more solute elements can be dissolved into the α-Al matrix, and the ability of the L-shaped ultrasonic wave guide rod to restrain segregation was stronger at the edge of the ingot. Full article
(This article belongs to the Special Issue Ultrasound for Material Characterization and Processing)
Show Figures

Figure 1

Open AccessArticle
Effect of Diisocyanates as Compatibilizer on the Properties of BF/PBAT Composites by In Situ Reactive Compatibilization, Crosslinking and Chain Extension
Materials 2020, 13(3), 806; https://doi.org/10.3390/ma13030806 - 10 Feb 2020
Viewed by 253
Abstract
Due to the hydrophobic nature of poly (butylene terephthalate) (PBAT), and the hydrophilic nature of bamboo flour (BF), a BF/PBAT (50/50) blend shows low mechanical properties, and especially shows poor impact strength. In order to increase the interfacial adhesion between BF and PBAT, [...] Read more.
Due to the hydrophobic nature of poly (butylene terephthalate) (PBAT), and the hydrophilic nature of bamboo flour (BF), a BF/PBAT (50/50) blend shows low mechanical properties, and especially shows poor impact strength. In order to increase the interfacial adhesion between BF and PBAT, diisocyanate was used as a reactive compatibilizer to modify bamboo powder. A series of BF/PBAT composites were prepared by the method of mixing and melting in an internal mixer. After adding reactive compatibilizer 4,4′-methylenebis(phenyl isocyanate) (MDI), BF/PBAT (50/50) composites with high mechanical properties were successfully prepared. The tensile strength, elongation at break, and impact strength of the BF/MDI-2/PBAT composite with 2 wt % MDI content were increased by 1.9, 6.8, and 4.3 times respectively over the BF/PBAT blend without the added MDI. The higher toughening effect of MDI in BF/PBAT composites can be mainly ascribed to the improved interface bonding between BF and PBAT. The isocyanate group of MDI can react with the hydroxyl group on the BF surface and in situ formation of the carbamate group on the BF surface. The residual isocyanate can then react with the hydroxyl group of PBAT and form carbamate groups. The rheological behaviors demonstrate that addition of appropriate amounts of MDI, 1 wt % and 2 wt %, can promote the flowability of the molten BF/PBAT composites due to the decrease in interparticle interaction between bamboo powder and the increase in the thermal motion of the molecules. Full article
Show Figures

Figure 1

Open AccessArticle
Rodlike YMn2O5 Powders Derived from Hydrothermal Process Using Oxygen as Oxidant
Materials 2020, 13(3), 805; https://doi.org/10.3390/ma13030805 - 10 Feb 2020
Viewed by 218
Abstract
A facile approach is proposed herein to fabricate YMn2O5 powders with the hydrothermal method with oxygen as an oxidant. The structure and morphology of the as-synthesized YMn2O5 powders were characterized by XRD, SEM, and high-resolution transmission electron [...] Read more.
A facile approach is proposed herein to fabricate YMn2O5 powders with the hydrothermal method with oxygen as an oxidant. The structure and morphology of the as-synthesized YMn2O5 powders were characterized by XRD, SEM, and high-resolution transmission electron microscopy (HRTEM). The results manifested that the main factors that affected the formation of the rod-like YMn2O5 structures were the stirring time, hydrothermal temperature, and hydrothermal time. The oxidation time in the air had a remarkable effect on the final product by oxidizing Mn2+ ions to Mn3+ ions and Mn4+ ions. The obtained YMn2O5 powder was single crystalline and possessed a nanorod morphology, where the growth direction was along the c axis. The possible formation mechanism involved a dissolution–crystallization mechanism. Under the 397 nm excitation, the Mn4+ ions exhibited an intense orange emission at 596 nm. The energy bandgap of YMn2O5 powders was 1.18 eV. Full article
Show Figures

Figure 1

Open AccessArticle
Experimental Study on Water Recovery from Flue Gas Using Macroporous Ceramic Membrane
Materials 2020, 13(3), 804; https://doi.org/10.3390/ma13030804 - 10 Feb 2020
Viewed by 228
Abstract
In this work, a ceramic membrane tube with a pore size of 1 μm was used to conduct experimental research on moisture and waste heat recovery from flue gas. The length, inner/outer diameter, and porosity were 800 mm, 8/12 mm, and 27.2%, respectively. [...] Read more.
In this work, a ceramic membrane tube with a pore size of 1 μm was used to conduct experimental research on moisture and waste heat recovery from flue gas. The length, inner/outer diameter, and porosity were 800 mm, 8/12 mm, and 27.2%, respectively. In the experiments, the flue gas, which was artificially prepared, flowed on the shell side of membrane module. The water coolant passed through the membrane counter-currently with the gas. The effects of flue gas flow rate, flue gas temperature, water coolant flux, and water coolant temperature on the membrane recovery performance were analyzed. The results indicated that, upon increasing the flue gas flow rate and its temperature, both the amount of recycled water and the recovered heat increased. The amount of recycled water, recycled water rate, recovered heat, and heat recovery rate all decreased as the water coolant temperature increased. When the water coolant temperature exceeded 30 °C, the amount of recycled water dropped sharply. The maximum amounts of recycled water, recovered heat, and total heat transfer coefficient were 2.93 kg/(m2·h), 3.63 kW/m2, and 224.3 W/(m2·K), respectively. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

Open AccessArticle
Material-Oriented Shape Functions for FGM Plate Finite Element Formulation
Materials 2020, 13(3), 803; https://doi.org/10.3390/ma13030803 - 10 Feb 2020
Viewed by 212
Abstract
A four-noded finite element of a moderately thick plate made of functionally graded material (FGM) is presented. The base element is rectangular and can be extended to any shape using a transformation based on NURBS functions. The proposed 2D shape functions are consistent [...] Read more.
A four-noded finite element of a moderately thick plate made of functionally graded material (FGM) is presented. The base element is rectangular and can be extended to any shape using a transformation based on NURBS functions. The proposed 2D shape functions are consistent with the physical interpretation and describe the states of element displacement caused by unit displacements of nodes. These functions depend on the FGM’s material parameters and are called material-oriented. The shape function matrix is based on a superposition displacement field of two plate strips with 1D exact shape functions. A characteristic feature of the proposed formulation is full coupling of the membrane and bending states in the plate. The analytical form of the stiffness matrix and the nodal load vector was obtained, which leads to the numerical efficiency of the formulation. The element has been incorporated into Abaqus software with the use of Maple program. The finite element shows good convergence properties for different FGM models in the transverse direction to the middle plane of the plate. During derivation of the 2D plate element the formally exact 1D finite element for transverse nonhomogeneous FGM plate strip was developed. Full article
(This article belongs to the Special Issue Advances in Structural Mechanics Modeled with FEM)
Show Figures

Figure 1

Open AccessArticle
Effect of Rough Surface Platforms on the Mucosal Attachment and the Marginal Bone Loss of Implants: A Dog Study
Materials 2020, 13(3), 802; https://doi.org/10.3390/ma13030802 - 10 Feb 2020
Viewed by 227
Abstract
The preservation of peri-implant tissues is an important factor for implant success. This study aimed to assess the influence of the surface features of a butt-joint platform on soft-tissue attachment and bone resorption after immediate or delayed implant placement. All premolars and first [...] Read more.
The preservation of peri-implant tissues is an important factor for implant success. This study aimed to assess the influence of the surface features of a butt-joint platform on soft-tissue attachment and bone resorption after immediate or delayed implant placement. All premolars and first molars of eight Beagle dogs were extracted on one mandible side. Twelve-weeks later, the same surgery was developed on the other side. Five implants with different platform surface configurations were randomly inserted into the post-extracted-sockets. On the healed side, the same five different implants were randomly placed. Implants were inserted 1 mm subcrestal to the buccal bony plate and were connected to abutments. The primary outcome variables were the supracrestal soft tissue (SST) adaptation and the bone resorption related to the implant shoulder. The SST height was significantly larger in immediate implants (IC95% 3.9–4.9 mm) compared to delayed implants (IC95% 3.1–3.5 mm). Marginal bone loss tended to be higher in immediate implants (IC95% 0.4–0.9 mm) than in delayed implants (IC95% 0.3–0.8 mm). Linear-regression analysis suggested that the SST height was significantly affected by the configuration of the platform (0.3–1.9 mm). Roughened surface platforms resulted in higher SST height when compared to machined surface platforms. Marginal bone loss was less pronounced in roughened designs. Full article
(This article belongs to the Special Issue Materials in Implant Dentistry and Regenerative Medicine)
Show Figures

Figure 1

Open AccessReview
Progress and Status of Hydrometallurgical and Direct Recycling of Li-Ion Batteries and Beyond
Materials 2020, 13(3), 801; https://doi.org/10.3390/ma13030801 - 10 Feb 2020
Viewed by 298
Abstract
An exponential market growth of Li-ion batteries (LIBs) has been observed in the past 20 years; approximately 670,000 tons of LIBs have been sold in 2017 alone. This trend will continue owing to the growing interest of consumers for electric vehicles, recent engagement [...] Read more.
An exponential market growth of Li-ion batteries (LIBs) has been observed in the past 20 years; approximately 670,000 tons of LIBs have been sold in 2017 alone. This trend will continue owing to the growing interest of consumers for electric vehicles, recent engagement of car manufacturers to produce them, recent developments in energy storage facilities, and commitment of governments for the electrification of transportation. Although some limited recycling processes were developed earlier after the commercialization of LIBs, these are inadequate in the context of sustainable development. Therefore, significant efforts have been made to replace the commonly employed pyrometallurgical recycling method with a less detrimental approach, such as hydrometallurgical, in particular sulfate-based leaching, or direct recycling. Sulfate-based leaching is the only large-scale hydrometallurgical method currently used for recycling LIBs and serves as baseline for several pilot or demonstration projects currently under development. Conversely, most project and processes focus only on the recovery of Ni, Co, Mn, and less Li, and are wasting the iron phosphate originating from lithium iron phosphate (LFP) batteries. Although this battery type does not dominate the LIB market, its presence in the waste stream of LIBs causes some technical concerns that affect the profitability of current recycling processes. This review explores the current processes and alternative solutions to pyrometallurgy, including novel selective leaching processes or direct recycling approaches. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of Nickel and Titanium on Properties of Fe-Al-Si Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering
Materials 2020, 13(3), 800; https://doi.org/10.3390/ma13030800 - 10 Feb 2020
Viewed by 242
Abstract
This paper describes the structure and properties of an innovative Fe-Al-Si alloy with a reduced amount of silicon (5 wt. %) in order to avoid excessive brittleness. The alloy was produced by a combination of mechanical alloying and spark plasma sintering. Nickel and [...] Read more.
This paper describes the structure and properties of an innovative Fe-Al-Si alloy with a reduced amount of silicon (5 wt. %) in order to avoid excessive brittleness. The alloy was produced by a combination of mechanical alloying and spark plasma sintering. Nickel and titanium were independently tested as the alloying elements for this alloy. It was found that wear resistance, which reached values comparable with tool steels, could be further improved by the addition of nickel. Nickel also improved the high-temperature oxidation behavior, because it lowers the liability of the oxide layers to spallation. Both nickel and titanium increased the hardness of the alloy. Titanium negatively influenced oxidation behavior and wear resistance because of the presence of titanium dioxide in the oxide layer and the brittle silicides that caused chipping wear, respectively. Full article
Show Figures

Figure 1

Open AccessArticle
Experimental Study for the Stripping of PTFE Coatings on Al-Mg Substrates Using Dry Abrasive Materials
Materials 2020, 13(3), 799; https://doi.org/10.3390/ma13030799 - 10 Feb 2020
Viewed by 262
Abstract
Polytetrafluoroethylene (PTFE) coatings are used in many applications and processing industries. With their use, they wear out and lose properties and must be replaced by new ones if the cost of the element so advises. There are different stripping techniques, but almost all [...] Read more.
Polytetrafluoroethylene (PTFE) coatings are used in many applications and processing industries. With their use, they wear out and lose properties and must be replaced by new ones if the cost of the element so advises. There are different stripping techniques, but almost all of them are very difficult and require strict environmental controls. It is a challenge to approach the process through efficient and more sustainable techniques. In the present work, we have studied the stripping of PTFE coatings by projection with abrasives (1 step) as an alternative to carbonization + sandblasting procedures (2 steps). For this purpose, different types of abrasives have been selected: brown corundum, white corundum, glass microspheres, plastic particles, and a walnut shell. The tests were performed at pressures from 0.4 to 0.6 MPa on PTFE-coated aluminium substrates of EN AW-5182 H111 alloy. Stripping rates, surface roughness, and substrate hardness have been studied. Scanning electron microscopy (SEM) images of sandblasted specimens have also been obtained. All abrasives improved mechanical and surface properties in one-step vs. two-step processes. The abrasives of plastic and glass microspheres are the most appropriate for the one-step process, which increases the hardness and roughness level Ra in the substrate. Corundum abrasives enable the highest stripping rates. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Magnesium Reinforced with Inconel 718 Particles Prepared Ex Situ—Microstructure and Properties
Materials 2020, 13(3), 798; https://doi.org/10.3390/ma13030798 - 10 Feb 2020
Viewed by 251
Abstract
Magnesium samples reinforced with 0.7, 1.4, and 2.4 vol.% of Inconel 718 particles were prepared using a disintegrated melt deposition technique followed by hot extrusion. Mechanical properties, thermal expansion, and damping were studied with the aim of revealing the particle influence on the [...] Read more.
Magnesium samples reinforced with 0.7, 1.4, and 2.4 vol.% of Inconel 718 particles were prepared using a disintegrated melt deposition technique followed by hot extrusion. Mechanical properties, thermal expansion, and damping were studied with the aim of revealing the particle influence on the microstructure, texture, tensile and compressive behavior, thermal expansion coefficient, and internal friction. The flow stresses are significantly influenced by the test temperature and the vol.% of particles. A substantial asymmetry in the tensile and compressive properties was observed at lower temperatures. This asymmetry is caused by different deformation mechanisms operating in tension and compression. The fiber texture of extruded composite samples, refined grain sizes, and the increased dislocation density improved the mechanical properties. On the other hand, a decrease in the thermal expansion coefficient and internal friction was observed. Full article
(This article belongs to the Special Issue Mechanical and Physical Properties of Metallic Composites)
Show Figures

Graphical abstract

Open AccessEditorial
Bioengineering Methods of Analysis and Medical Devices: A Current Trends and State of the Art
Materials 2020, 13(3), 797; https://doi.org/10.3390/ma13030797 - 10 Feb 2020
Viewed by 255
Abstract
Implantology, prosthodontics, and orthodontics in all their variants, are medical and rehabilitative medical fields that have greatly benefited from bioengineering devices of investigation to improve the predictability of clinical rehabilitations. The finite element method involves the simulation of mechanical forces from an environment [...] Read more.
Implantology, prosthodontics, and orthodontics in all their variants, are medical and rehabilitative medical fields that have greatly benefited from bioengineering devices of investigation to improve the predictability of clinical rehabilitations. The finite element method involves the simulation of mechanical forces from an environment with infinite elements, to a simulation with finite elements. This editorial aims to point out all the progress made in the field of bioengineering and medicine. Instrumental investigations, such as finite element method (FEM), are an excellent tool that allows the evaluation of anatomical structures and any facilities for rehabilitation before moving on to experimentation on animals, so as to have mechanical characteristics and satisfactory load cycle testing. FEM analysis contributes substantially to the development of new technologies and new materials in the biomedical field. Thanks to the 3D technology and to the reconstructions of both the anatomical structures and eventually the alloplastic structures used in the rehabilitations it is possible to consider all the mechanical characteristics, so that they could be analyzed in detail and improved where necessary. Full article
(This article belongs to the Special Issue Dental Implants and Materials)
Show Figures

Figure 1

Open AccessArticle
Numerical and Experimental Analysis of Material Removal and Surface Defect Mechanism in Scratch Tests of High Volume Fraction SiCp/Al Composites
Materials 2020, 13(3), 796; https://doi.org/10.3390/ma13030796 - 10 Feb 2020
Viewed by 218
Abstract
This paper addresses a comprehensive and further insight into the sensitivity of material removal and the surface defect formation mechanism to scratch depth during single-grit scratch tests of 50 vol% SiCp/Al composites. The three-dimensional (3D) finite element model with more realistic 3D micro-structure, [...] Read more.
This paper addresses a comprehensive and further insight into the sensitivity of material removal and the surface defect formation mechanism to scratch depth during single-grit scratch tests of 50 vol% SiCp/Al composites. The three-dimensional (3D) finite element model with more realistic 3D micro-structure, particle-matrix interfacial behaviors, particle-particle contact behaviors, particle-matrix contact behaviors and a Johnson-Holmquist-Beissel (JHB) model of SiC was developed. The scratch simulation conducted at scratch velocity 10 mm/min and loading rate 40 N/min revealed that the scratch depth plays a crucial role in material removal and the surface forming process. Brittle fracturing of SiC particles and surface defects become more deteriorative under a large scratch depth ranging from 0.0385 to 0.0764 μm. The above phenomenon can be attributed to the influence of scratch depth on SiC particles’ transport; the increase in the amount of SiC particle transport resulting from an increase of scratch depth raises the occurrence of particle-particle collision which provides hard support and shock for the scratched particles; therefore, brittle fracturing gradually becomes the major removal mode of SiC particles as the scratch depth increases. On the deteriorative surface, various defects are observed; i.e., lateral cracks, interfacial debonding, cavies filled with residually broken particles, etc. The von Mises stress distribution shows that SiC particles bear vast majority of load, and thus present greater stress than the surrounding Al matrix. For example: their ratio of 3 to 30 under the scratch depth of 0.011 mm. Namely, SiC particles impede stress diffusion within the Al matrix. Finally, the SEM images of the scratched surface obtained from the single-grit scratch experiments verify the numerical analysis’s results. Full article
(This article belongs to the Special Issue Metal Matrix Composites)
Show Figures

Figure 1

Open AccessArticle
Degradation of Axial Ultimate Load-Bearing Capacity of Circular Thin-Walled Concrete-Filled Steel Tubular Stub Columns after Corrosion
Materials 2020, 13(3), 795; https://doi.org/10.3390/ma13030795 - 10 Feb 2020
Viewed by 237
Abstract
This work aimed to investigate the effects of steel tube corrosion on the axial ultimate load-bearing capacity (AULC) of circular thin-walled concrete-filled steel tubular (CFST) members. Circular thin-walled CFST stub column specimens were made of steel tubes with various wall-thicknesses. These CFST column [...] Read more.
This work aimed to investigate the effects of steel tube corrosion on the axial ultimate load-bearing capacity (AULC) of circular thin-walled concrete-filled steel tubular (CFST) members. Circular thin-walled CFST stub column specimens were made of steel tubes with various wall-thicknesses. These CFST column specimens were subjected to an accelerated corrosion test, where the steel tubes were corroded to different degrees of corrosion. Then, these CFST specimens with corroded steel tubes experienced an axial static loading test. Results show that the failure patterns of circular thin-walled CFST stub columns with corroded steel tubes are different from those of the counterpart CFST columns with ordinary wall-thickness steel tubes, which is a typical failure mode of shear bulging with slight local outward buckling. The ultimate strength and plastic deformation capacity of the CFST specimens decreased with the increasing degree of steel corrosion. The failure modes of the specimens still belonged to ductile failure because of the confinement of outer steel tube. The degree of steel tube corrosion, diameter-to-thickness ratio, and confinement coefficient had substantial influences on the AULC and the ultimate compressive strength of circular thin-walled CFST stub columns. A simple AULC prediction model for corroded circular thin-walled CFST stub columns was presented through the regression of the experimental data and parameter analysis. Full article
(This article belongs to the Special Issue Concrete and Construction Materials)
Show Figures

Figure 1

Open AccessCommunication
In-Situ Helium Implantation and TEM Investigation of Radiation Tolerance to Helium Bubble Damage in Equiaxed Nanocrystalline Tungsten and Ultrafine Tungsten-TiC Alloy
Materials 2020, 13(3), 794; https://doi.org/10.3390/ma13030794 - 10 Feb 2020
Viewed by 246
Abstract
The use of ultrafine and nanocrystalline materials is a proposed pathway to mitigate irradiation damage in nuclear fusion components. Here, we examine the radiation tolerance of helium bubble formation in 85 nm (average grain size) nanocrystalline-equiaxed-grained tungsten and an ultrafine tungsten-TiC alloy under [...] Read more.
The use of ultrafine and nanocrystalline materials is a proposed pathway to mitigate irradiation damage in nuclear fusion components. Here, we examine the radiation tolerance of helium bubble formation in 85 nm (average grain size) nanocrystalline-equiaxed-grained tungsten and an ultrafine tungsten-TiC alloy under extreme low energy helium implantation at 1223 K via in-situ transmission electron microscope (TEM). Helium bubble damage evolution in terms of number density, size, and total volume contribution to grain matrices has been determined as a function of He+ implantation fluence. The outputs were compared to previously published results on severe plastically deformed (SPD) tungsten implanted under the same conditions. Large helium bubbles were formed on the grain boundaries and helium bubble damage evolution profiles are shown to differ among the different materials with less overall damage in the nanocrystalline tungsten. Compared to previous works, the results in this work indicate that the nanocrystalline tungsten should possess a fuzz formation threshold more than one order of magnitude higher than coarse-grained tungsten. Full article
(This article belongs to the Special Issue Radiation Damage in Materials: Helium Effects)
Show Figures

Figure 1

Open AccessArticle
Heavy Metals Removing from Municipal Solid Waste Incineration Fly Ashes by Electric Field-Enhanced Washing
Materials 2020, 13(3), 793; https://doi.org/10.3390/ma13030793 - 10 Feb 2020
Viewed by 281
Abstract
Municipal solid waste incineration (MSWI) fly ash contains chlorides, heavy metals, and organic pollutants, which requires appropriate disposal to eliminate this risk. In this study, the effects of agents on heavy metals removal from MSWI fly ash by electric field-enhanced washing were systematically [...] Read more.
Municipal solid waste incineration (MSWI) fly ash contains chlorides, heavy metals, and organic pollutants, which requires appropriate disposal to eliminate this risk. In this study, the effects of agents on heavy metals removal from MSWI fly ash by electric field-enhanced washing were systematically studied. The results show that when these fly ashes were washed at a current density of 35 mA/cm2, polarity switching frequency of 40 Hz, Ethylenediaminetetraacetic acid (EDTA) dosage of 0.5 mol/L, and a pH of 2 for 4 h, almost all of the Cd and Ni could be were removed, with a removal efficiency of 100.00% and 99.59%, respectively. Meanwhile, it also shows a significant effect on Cu and Zn, with a removal efficiency higher than 85%. After washing, the results of the sequential extraction procedure showed that the residual forms of Pb, Cu, Zn, Cd, Ni, and As increased obviously. According to GB5085.3-2007, the toxicity of the treated MSWI fly ash were below their thresholds of 5 and 1 mg/L for Pb and Cd, respectively. Thus, a novel technology for heavy metals removal from MSWI fly ash is proposed. Full article
Show Figures

Figure 1

Open AccessArticle
Damping Property of Cement Mortar Incorporating Damping Aggregate
Materials 2020, 13(3), 792; https://doi.org/10.3390/ma13030792 - 09 Feb 2020
Viewed by 299
Abstract
This study proposes a new cement mortar incorporating damping aggregate (DA) and investigates the mechanical properties and damping property of the cement mortar. Four types of DA were prepared, lightweight aggregate presaturated water and three types of polymer emulsion. Further, the effects of [...] Read more.
This study proposes a new cement mortar incorporating damping aggregate (DA) and investigates the mechanical properties and damping property of the cement mortar. Four types of DA were prepared, lightweight aggregate presaturated water and three types of polymer emulsion. Further, the effects of polypropylene fiber and rubber powder on the performance of the cement mortar were studied. The experimental results showed that the damping ratio of specimens containing 70% DA was approximately three times higher than that of the reference mortar, with a slight decrease in the mechanical properties. Adding fiber was more effective than rubber powder in improving the damping ratio of the cement mortar, and the optimal dosage of fiber was 0.5%. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Open AccessArticle
Influence of O2 on the Erosion-Corrosion Performance of 3Cr Steels in CO2 Containing Environment
Materials 2020, 13(3), 791; https://doi.org/10.3390/ma13030791 - 09 Feb 2020
Viewed by 262
Abstract
With the introduction of O2 during oil and gas production, the erosion-corrosion rate of tubing steels increases; the objective of this report is to explore the reason for this. Erosion–corrosion experiments were performed in environments of CO2 and CO2–O [...] Read more.
With the introduction of O2 during oil and gas production, the erosion-corrosion rate of tubing steels increases; the objective of this report is to explore the reason for this. Erosion–corrosion experiments were performed in environments of CO2 and CO2–O2, respectively. Macrographs, microstructures, and the compositions of erosion-corrosion scales were investigated using a digital camera, scanning electron microscope (SEM), Kevex-SuperDry energy spectrometer (EDS) and X-ray diffraction (XRD). The results show that the erosion-corrosion products are composed of large FeCO3 particles and some amorphous product in the CO2 environment, while they are made up of FeCO3, Fe2O3, Fe3O4, and bits of amorphous product in the CO2–O2 environment. The interface between erosion-corrosion scales and the substrate of 3Cr steel is smooth, and Cr enrichment obviously exists in the erosion-corrosion products in the CO2 condition. However, the erosion-corrosion scale is loose and porous with little Cr enrichment in the CO2–O2 environment, which makes the protectiveness of the erosion–corrosion scale weak, and pitting corrosion occurs. The addition of O2 may destroy the protective FeCO3 scale and Cr enrichment in the erosion-corrosion scale, which may be the main reason for the decline in the level of protectiveness of the erosion-corrosion scale, making it weak in terms of preventing the corrosive medium from diffusing to the substrate. Full article
(This article belongs to the Section Corrosion and Materials Degradation)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Recycling of Cigarette Butts in Fired Clay Bricks: A New Laboratory Investigation
Materials 2020, 13(3), 790; https://doi.org/10.3390/ma13030790 - 09 Feb 2020
Viewed by 288
Abstract
Cigarette butts (CBs) are the most commonly littered waste material in the world. It is estimated that over 5.7 trillion cigarettes are consumed worldwide each year. Consequently, millions of tonnes of highly toxic waste are contaminating the environment. CBs are composed of cellulose [...] Read more.
Cigarette butts (CBs) are the most commonly littered waste material in the world. It is estimated that over 5.7 trillion cigarettes are consumed worldwide each year. Consequently, millions of tonnes of highly toxic waste are contaminating the environment. CBs are composed of cellulose acetate filters—a polymer with poor biodegradability—and which, depending upon the environmental conditions, can take many years to decompose. In this study, fired clay bricks were manufactured with 0.5%, 1%, 1.5%, and 2% CBs by mass and tested against control bricks with 0% CBs. The results revealed a decrease in compressive strength from 48.6 MPa for 0% CB content bricks to 30.8 MPa for 1% CB content bricks, and a decrease in dry density with the increase in CB content, from 2114 kg/m3 for the control bricks to 1983 kg/m3 and 1969 kg/m3 for 1% and 2% CB content bricks. The highest value of water absorption appeared for 2% CB content bricks, which reached an absorption rate of 13.1% compared to 9% for the control bricks. The energy required during the firing process was calculated with a saving of up to 10.20%, for bricks incorporating 1% CBs. The thermal conductivity of the samples showed a reduction of 17% from 1.078 to 0.898 W m−1·K−1 with the addition of 1% CBs. In addition, the manufactured bricks were tested for efflorescence, an initial rate of absorption (IRA), microstructural analysis, and shrinkage. A life-cycle assessment (LCA) is recommended to analyze the environmental impacts of bricks incorporating CBs. Full article
(This article belongs to the Special Issue Novel Sustainable Technologies for Recycling Waste Materials)
Show Figures

Figure 1

Open AccessArticle
Microstructure and Fracture Behavior of Special Multilayered Steel
Materials 2020, 13(3), 789; https://doi.org/10.3390/ma13030789 - 09 Feb 2020
Viewed by 293
Abstract
In this research, multilayered steel (MLS), which is composed of middle-carbon martensite steel, high-carbon martensite steel, and a pure Ni thin layer was obtained by the accumulative roll-bonding method. The microstructure and mechanical properties of the MLS were investigated by scanning electron microscopy [...] Read more.
In this research, multilayered steel (MLS), which is composed of middle-carbon martensite steel, high-carbon martensite steel, and a pure Ni thin layer was obtained by the accumulative roll-bonding method. The microstructure and mechanical properties of the MLS were investigated by scanning electron microscopy (SEM), Vickers microhardness, tensile, and bending tests. In-situ SEM tensile tests were used to observe the crack initiation and propagation processes during the tensile loading. The results show that the ultimate tensile strength and bending strength of the MLS can reach 946 MPa and 3153 MPa, and the maximum elongation can reach 18%, which is related to the better combined quality of the interface. The middle and larger martensite layer (ML) becomes the weakest link of tensile fracture and interfacial delamination of the MLS during the tensile processes, because there are lots of large hard blocks Cr23C6 phases distributed in the middle thicker ML layer. Besides, the MLS can withstand larger bending deformation. When the MLS was bent to 180 degrees, neither macro-cracks in the outer side of the bending parts nor interfacial delamination can be found. Full article
Show Figures

Graphical abstract

Open AccessArticle
Micro-Texture Analyses of a Cold-Work Tool Steel for Additive Manufacturing
Materials 2020, 13(3), 788; https://doi.org/10.3390/ma13030788 - 09 Feb 2020
Viewed by 268
Abstract
Small objects of an alloy tool steel were built by selective laser melting at different scan speeds, and their microstructures were analyzed using electron backscatter diffraction (EBSD). To present an explicit correlation with the local thermal cycles in the objects, prior austenite grains [...] Read more.
Small objects of an alloy tool steel were built by selective laser melting at different scan speeds, and their microstructures were analyzed using electron backscatter diffraction (EBSD). To present an explicit correlation with the local thermal cycles in the objects, prior austenite grains were reconstructed using the EBSD mapping data. Extensive growth of austenitic grains after solidification could be detected by the disagreement between the networks of carbides and austenite grain boundaries. A rapid laser scan at 2000 mm/s led to less growth, but retained a larger amount of austenite than a slow one at 50 mm/s. The rapid scan also exhibited definite evolution of Goss-type textures in austenite, which could be attributed to the growth of austenitic grains under a steep temperature gradient. The local variations in the microstructures and the textures enabled us to speculate the locally different thermal cycles determined by the different process conditions, that is, scan speeds. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Metals and Alloys)
Show Figures

Figure 1

Open AccessArticle
Color Stability and Micro-Hardness of Bulk-Fill Composite Materials after Exposure to Common Beverages
Materials 2020, 13(3), 787; https://doi.org/10.3390/ma13030787 - 09 Feb 2020
Viewed by 298
Abstract
Objectives: To assess the color stability and surface microhardness of Bulk-Fill composite materials available in the Saudi Arabia market. Methods: Five composite materials (Filtek Z350, Filtek Bulk-Fill, Tetric N-Ceram Bulk-Fill, Sonic Fill 2, and SDR) were investigated. Samples (n = 20; 10 [...] Read more.
Objectives: To assess the color stability and surface microhardness of Bulk-Fill composite materials available in the Saudi Arabia market. Methods: Five composite materials (Filtek Z350, Filtek Bulk-Fill, Tetric N-Ceram Bulk-Fill, Sonic Fill 2, and SDR) were investigated. Samples (n = 20; 10 mm in diameter and 2 mm in thickness) were fabricated using a stainless-steel mold and were immersed in tea, coffee, berry juice, and distilled water (control). Baseline (T0) shades of specimens were recorded using a spectrophotometer and after 10 (T1), 30 (T2), 60 (T3), and 90 days (T4) of immersion. Measurements were obtained against a black background and CIE L*a*b* data was used to calculate ΔE for each group. Vickers microhardness values were obtained at T0 and T4. Data was analyzed using mixed model repeated measure ANOVA at 0.05 significance level. Results: Time, material, and solution effects have statistically significant effect on ΔE. Tea was the most staining solution. Z350 was associated with the highest ΔE values while SDR showed the lowest values. No other materials showed significant difference between each other. Solutions were statistically different from each other. All materials were different from each other regarding microhardness. Conclusion: Bulk-Fill materials showed more color stability but lower microhardness values compared to universal resin control. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Open AccessReview
Selection of Collagen Membranes for Bone Regeneration: A Literature Review
Materials 2020, 13(3), 786; https://doi.org/10.3390/ma13030786 - 09 Feb 2020
Viewed by 329
Abstract
Several treatment modalities have been proposed to regenerate bone, including guided bone regeneration (GBR) where barrier membranes play an important role by isolating soft tissue and allowing bone to grow. Not all membranes biologically behave the same way, as they differ from their [...] Read more.
Several treatment modalities have been proposed to regenerate bone, including guided bone regeneration (GBR) where barrier membranes play an important role by isolating soft tissue and allowing bone to grow. Not all membranes biologically behave the same way, as they differ from their origin and structure, with reflections on their mechanical properties and on their clinical performance. Collagen membranes have been widely used in medicine and dentistry, because of their high biocompatibility and capability of promoting wound healing. Recently, collagen membranes have been applied in guided bone regeneration with comparable outcomes to non-resorbable membranes. Aim of this work is to provide a review on the main features, application, outcomes, and clinical employment of the different types of collagen membranes. Comparisons with non-resorbable membranes are clarified, characteristics of cross-linked collagen versus native collagen, use of different grafting materials and need for membrane fixation are explored in order to gain awareness of the indications and limits and to be able to choose the right membrane required by the clinical condition. Full article
Show Figures

Figure 1

Open AccessArticle
Low Temperature Synthesis of Phase Pure MoAlB Powder in Molten NaCl
Materials 2020, 13(3), 785; https://doi.org/10.3390/ma13030785 - 09 Feb 2020
Viewed by 289
Abstract
MoAlB fine powders were prepared in molten NaCl from Al, B and Mo powders. The effects of key parameters affecting the synthesis process and phase morphology were examined and the underpinning mechanisms proposed. MoAlB product particles exhibited different shapes/sizes, as follows: spherical grains [...] Read more.
MoAlB fine powders were prepared in molten NaCl from Al, B and Mo powders. The effects of key parameters affecting the synthesis process and phase morphology were examined and the underpinning mechanisms proposed. MoAlB product particles exhibited different shapes/sizes, as follows: spherical grains (1~3 μm), plate-like particles (<5 μm in diameter) and columnar crystals with lengths up to 20 μm and diameters up to 5 μm, resultant from different reaction processes. Phase pure MoAlB was synthesised under the following optimal conditions: use of 140% excess Al and 6 h of firing at 1000 °C. This temperature was at least 100 °C lower than required by other methods/techniques previously reported. At the synthesis condition, Mo first reacted with Al and B, forming Al8Mo3 and MoB, respectively, which further reacted with excess Al to form Al-rich Al–Mo phases and MoAlB. The Al-rich Al–Mo phases further reacted with the residual B, forming additional MoAlB. The molten NaCl played an important role in accelerating the overall synthesis process. Full article
(This article belongs to the Special Issue High Temperature Ceramic Materials)
Show Figures

Figure 1

Open AccessReview
Antimicrobial Nanostructured Coatings: A Gas Phase Deposition and Magnetron Sputtering Perspective
Materials 2020, 13(3), 784; https://doi.org/10.3390/ma13030784 - 08 Feb 2020
Viewed by 319
Abstract
Counteracting the spreading of multi-drug-resistant pathogens, taking place through surface-mediated cross-contamination, is amongst the higher priorities in public health policies. For these reason an appropriate design of antimicrobial nanostructured coatings may allow to exploit different antimicrobial mechanisms pathways, to be specifically activated by [...] Read more.
Counteracting the spreading of multi-drug-resistant pathogens, taking place through surface-mediated cross-contamination, is amongst the higher priorities in public health policies. For these reason an appropriate design of antimicrobial nanostructured coatings may allow to exploit different antimicrobial mechanisms pathways, to be specifically activated by tailoring the coatings composition and morphology. Furthermore, their mechanical properties are of the utmost importance in view of the antimicrobial surface durability. Indeed, the coating properties might be tuned differently according to the specific synthesis method. The present review focuses on nanoparticle based bactericidal coatings obtained via magneton-spattering and supersonic cluster beam deposition. The bacteria–NP interaction mechanisms are first reviewed, thus making clear the requirements that a nanoparticle-based film should meet in order to serve as a bactericidal coating. Paradigmatic examples of coatings, obtained by magnetron sputtering and supersonic cluster beam deposition, are discussed. The emphasis is on widening the bactericidal spectrum so as to be effective both against gram-positive and gram-negative bacteria, while ensuring a good adhesion to a variety of substrates and mechanical durability. It is discussed how this goal may be achieved combining different elements into the coating. Full article
(This article belongs to the Special Issue Antimicrobial Nanomaterials)
Show Figures

Figure 1

Open AccessArticle
Energy Absorption Behavior of Al-SiC-Graphene Composite Foam under a High Strain Rate
Materials 2020, 13(3), 783; https://doi.org/10.3390/ma13030783 - 08 Feb 2020
Viewed by 355
Abstract
The present work was addressed to the closed-cell aluminum (Al)-silicon carbide (SiC) particles (15 wt.%) with graphene (0.5 wt.%) reinforced hybrid composite foam, which was produced through the melt route process. Under the strain rates ranging from 500 s-1 to 2760 s [...] Read more.
The present work was addressed to the closed-cell aluminum (Al)-silicon carbide (SiC) particles (15 wt.%) with graphene (0.5 wt.%) reinforced hybrid composite foam, which was produced through the melt route process. Under the strain rates ranging from 500 s-1 to 2760 s-1, the compression deformation behavior of hybrid composite foam was executed. The compression results disclosed that plateau stress along with energy absorption of produced hybrid composite foam are heightened with strain rates and is also discovered to be responsive to the relative density under the confront domain of experiments. Analysis of Variance was deployed for optimizing parameters such as strain rates, mass, density, relative density, and pore size. Furthermore, the contribution of each optimized parameters on plateau stress and energy absorption were observed. Full article
Show Figures

Figure 1

Open AccessReview
Waste Rubber Recycling: A Review on the Evolution and Properties of Thermoplastic Elastomers
Materials 2020, 13(3), 782; https://doi.org/10.3390/ma13030782 - 08 Feb 2020
Viewed by 285
Abstract
Currently, plastics and rubbers are broadly being used to produce a wide range of products for several applications like automotive, building and construction, material handling, packaging, toys, etc. However, their waste (materials after their end of life) do not degrade and remain for [...] Read more.
Currently, plastics and rubbers are broadly being used to produce a wide range of products for several applications like automotive, building and construction, material handling, packaging, toys, etc. However, their waste (materials after their end of life) do not degrade and remain for a long period of time in the environment. The increase of polymeric waste materials’ generation (plastics and rubbers) in the world led to the need to develop suitable methods to reuse these waste materials and decrease their negative effects by simple disposal into the environment. Combustion and landfilling as traditional methods of polymer waste elimination have several disadvantages such as the formation of dust, fumes, and toxic gases in the air, as well as pollution of underground water resources. From the point of energy consumption and environmental issues, polymer recycling is the most efficient way to manage these waste materials. In the case of rubber recycling, the waste rubber can go through size reduction, and the resulting powders can be melt blended with thermoplastic resins to produce thermoplastic elastomer (TPE) compounds. TPE are multi-functional polymeric materials combining the processability of thermoplastics and the elasticity of rubbers. However, these materials show poor mechanical performance as a result of the incompatibility and immiscibility of most polymer blends. Therefore, the main problem associated with TPE production from recycled materials via melt blending is the low affinity and interaction between the thermoplastic matrix and the crosslinked rubber. This leads to phase separation and weak adhesion between both phases. In this review, the latest developments related to recycled rubbers in TPE are presented, as well as the different compatibilisation methods used to improve the adhesion between waste rubbers and thermoplastic resins. Finally, a conclusion on the current situation is provided with openings for future works. Full article
(This article belongs to the Special Issue Recent Advances in Rubber Recycling)
Show Figures

Figure 1

Open AccessArticle
First Electrochemical Sensor (Screen-Printed Carbon Electrode Modified with Carboxyl Functionalized Multiwalled Carbon Nanotubes) for Ultratrace Determination of Diclofenac
Materials 2020, 13(3), 781; https://doi.org/10.3390/ma13030781 - 08 Feb 2020
Viewed by 264
Abstract
A simple, sensitive and time-saving differential-pulse adsorptive stripping voltammetric (DPAdSV) procedure using a screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes (SPCE/MWCNTs-COOH) for the determination of diclofenac (DF) is presented. The sensor was characterized using optical profilometry, SEM, and cyclic voltammetry [...] Read more.
A simple, sensitive and time-saving differential-pulse adsorptive stripping voltammetric (DPAdSV) procedure using a screen-printed carbon electrode modified with carboxyl functionalized multiwalled carbon nanotubes (SPCE/MWCNTs-COOH) for the determination of diclofenac (DF) is presented. The sensor was characterized using optical profilometry, SEM, and cyclic voltammetry (CV). The use of carboxyl functionalized MWCNTs as a SPCE modifier improved the electron transfer process and the active surface area of sensor. Under optimum conditions, very sensitive results were obtained with a linear range of 0.1–10.0 nmol L−1 and a limit of detection value of 0.028 nmol L−1. The SPCE/MWCNTs-COOH also exhibited satisfactory repeatability, reproducibility, and selectivity towards potential interferences. Moreover, for the first time, the electrochemical sensor allows determining the real concentrations of DF in environmental water samples without sample pretreatment steps. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Graphical abstract

Open AccessArticle
Maintenance of the Austenite/Ferrite Ratio Balance in GTAW DSS Joints Through Process Parameters Optimization
Materials 2020, 13(3), 780; https://doi.org/10.3390/ma13030780 - 08 Feb 2020
Viewed by 259
Abstract
The present work describes the influence of the parameters employed in the gas tungsten arc welding process (GTAW) when nickel powder is used as a filler metal in 2304/2507 duplex stainless-steel dissimilar joints. Multi-objective optimization was applied in order to maintain the austenite/ferrite [...] Read more.
The present work describes the influence of the parameters employed in the gas tungsten arc welding process (GTAW) when nickel powder is used as a filler metal in 2304/2507 duplex stainless-steel dissimilar joints. Multi-objective optimization was applied in order to maintain the austenite/ferrite percentage in the welded zone. A microstructural and phase quantification analysis was performed in each sample through optical and scanning electron microscopes. It was found that a nickel powder addition combined with low heat input increased the biphasic ratio across the different zones of the dissimilar welded samples. Although the austenite volume fraction increased in the 2304 heat-affected zone (HAZ) near to 25%, it was not sufficient according to international standards. The obtained results led to the maintenance of the 50/50 phase percentage in the 2507 HAZ welded joint side, as well as to the increment of the austenite percentage in the 2304 HAZ. Full article
(This article belongs to the Special Issue Advances in Duplex Stainless Steels)
Show Figures

Figure 1

Previous Issue
Back to TopTop