Topic Editors

IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
IBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal

Antimicrobial Agents and Nanomaterials

Abstract submission deadline
30 April 2024
Manuscript submission deadline
30 September 2024
Viewed by
3248

Topic Information

Dear Colleagues,

Antimicrobial resistance (AMR) has come to represent a major problem that is attested across healthcare settings worldwide. AMR is caused by multidrug-resistant (MDR) microorganisms, or “superbugs”, which can evade many of the antibiotics used in clinical practice. Today, MDR microorganisms constitute a great clinical and economic burden. In fact, the current methods of clinical treatment have started to rely on more aggressive antibiotic therapy, leading to a decrease in the life quality of the infected patients and an increase in the associated therapeutic costs. Due to the failure of conventional antibiotics, we are now entering a new era of clinical treatment based on compounds. This is reflected, for example, in the development of antibacterial nanomaterials or nanoantibiotics. This Topic collection aims to identify novel strategies that may be used to overcome AMR, with a particular focus on the development of medical nanomaterials. Topics of interest include, but are not limited to, the following:

  • Antimicrobial polymers;
  • Antimicrobial peptides and peptidomimetics;
  • Synergic effects of antimicrobial agents;
  • Antimicrobial coatings;
  • Inhibitors of virulence factors;
  • Drug nanodelivery systems;

We welcome the contributions of authors working in this critical field of research.

Dr. Sandra Pinto
Prof. Dr. Vasco D. B. Bonifácio
Topic Editors

Keywords

  • multidrug resistant bacteria (MDR)
  • resistance mechanisms
  • antibiotics
  • novel antimicrobial agents
  • drug susceptibility

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Molecules
molecules
4.927 5.9 1996 13.4 Days 2300 CHF Submit
Pharmaceutics
pharmaceutics
6.525 6.0 2009 15.9 Days 2600 CHF Submit
Antibiotics
antibiotics
5.222 3.9 2012 12.6 Days 2200 CHF Submit
Microorganisms
microorganisms
4.926 4.1 2013 14.1 Days 2200 CHF Submit
Biomolecules
biomolecules
6.064 5.7 2011 16.6 Days 2300 CHF Submit
Marine Drugs
marinedrugs
6.085 8.1 2003 13.6 Days 2500 CHF Submit
Polymers
polymers
4.967 5.7 2009 12.4 Days 2400 CHF Submit
International Journal of Molecular Sciences
ijms
6.208 6.9 2000 15.9 Days 2500 CHF Submit

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as Preprints.org prior to publication. For more details about reprints, please visit https://www.preprints.org.

Published Papers (6 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
Article
In Vitro Studies of Nanoparticles as a Potentially New Antimicrobial Agent for the Prevention and Treatment of Lameness and Digital Dermatitis in Cattle
Int. J. Mol. Sci. 2023, 24(7), 6146; https://doi.org/10.3390/ijms24076146 - 24 Mar 2023
Viewed by 170
Abstract
Digital dermatitis (DD) is the second most prevalent disease in dairy cattle. It causes significant losses for dairy breeders and negatively impacts cows’ welfare and milk yield. Despite this, its etiology has not been entirely identified, and available data are limited. Antibiotic therapy [...] Read more.
Digital dermatitis (DD) is the second most prevalent disease in dairy cattle. It causes significant losses for dairy breeders and negatively impacts cows’ welfare and milk yield. Despite this, its etiology has not been entirely identified, and available data are limited. Antibiotic therapy is a practical method for managing animal health, but overuse has caused the evolution of antibiotic-resistant bacteria, leading to a loss in antimicrobial efficacy. The antimicrobial properties of metal nanoparticles (NPs) may be a potential alternative to antibiotics. The aim of this study was to determine the biocidal properties of AgNPs, CuNPs, AuNPs, PtNPs, FeNPs, and their nanocomposites against pathogens isolated from cows suffering from hoof diseases, especially DD. The isolated pathogens included Sphingomonas paucimobilis, Ochrobactrum intermedium I, Ochrobactrum intermedium II, Ochrobactrum gallinifaecis, and Actinomyces odontolyticus. Cultures were prepared in aerobic and anaerobic environments. The viability of the pathogens was then determined after applying nanoparticles at various concentrations. The in vitro experiment showed that AgNPs and CuNPs, and their complexes, had the highest biocidal effect on pathogens. The NPs’ biocidal properties and their synergistic effects were confirmed, which may forecast their use in the future treatment and the prevention of lameness in cows, especially DD. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

Article
Methacrylate Cationic Nanoparticles Activity against Different Gram-Positive Bacteria
Antibiotics 2023, 12(3), 533; https://doi.org/10.3390/antibiotics12030533 - 07 Mar 2023
Viewed by 444
Abstract
Nanotechnology is a developing field that has boomed in recent years due to the multiple qualities of nanoparticles (NPs), one of which is their antimicrobial capacity. We propose that NPs anchored with 2-(dimethylamino)ethyl methacrylate (DMAEMA) have antibacterial properties and could constitute an alternative [...] Read more.
Nanotechnology is a developing field that has boomed in recent years due to the multiple qualities of nanoparticles (NPs), one of which is their antimicrobial capacity. We propose that NPs anchored with 2-(dimethylamino)ethyl methacrylate (DMAEMA) have antibacterial properties and could constitute an alternative tool in this field. To this end, the antimicrobial effects of three quaternised NPs anchored with DMAEMA were studied. These NPs were later copolymerized using different methylmethacrylate (MMA) concentrations to evaluate their role in the antibacterial activity shown by NPs. Clinical strains of Staphylococcus aureus, S. epidermidis, S. lugdunensis and Enterococcus faecalis were used to assess antibacterial activity. The minimal inhibitory concentration (MIC) was determined at the different concentrations of NPs to appraise antibacterial activity. The cytotoxic effects of the NPs anchored with DMAEMA were determined in NIH3T3 mouse fibroblast cultures by MTT assays. All the employed NPs were effective against the studied bacterial strains, although increasing concentrations of the MMA added during the synthesis process diminished these effects without altering toxicity in cell cultures. To conclude, more studies with other copolymers are necessary to improve the antibacterial effects of NPs anchored with DMAEMA. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

Article
Development of a Novel Antibacterial Peptide, PAM-5, via Combination of Phage Display Selection and Computer-Assisted Modification
Biomolecules 2023, 13(3), 466; https://doi.org/10.3390/biom13030466 - 02 Mar 2023
Viewed by 526
Abstract
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application [...] Read more.
Antibacterial peptides (ABPs) have been proposed as potential candidates for alternative antibacterial agents due to the extensive dissemination of antibiotic resistance. However, ABP isolation from natural resources can be tedious without consistent yield. Moreover, many natural ABPs are not developed for clinical application due to potential toxicity to mammalian cells. Therefore, the objective of this study was to develop a potent ABP with minimal toxicity via phage display selection followed by computer-assisted modification. Briefly, a 12-mer phage-displayed peptide library was used to isolate peptides that bound to the cell surface of Pseudomonas aeruginosa with high affinity. The affinity-selected peptide with the highest selection frequency was modified to PAM-5 (KWKWRPLKRKLVLRM) with enhanced antibacterial features by using an online peptide database. Using in vitro microbroth dilution assay, PAM-5 was shown to be active against a panel of Gram-negative bacteria and selected Gram-positive bacteria. Interestingly, the peptide was stable in human plasma by exhibiting a similar bactericidal effect via ex vivo assay. Scanning electron microscopy and SYTOX Green uptake assay revealed that PAM-5 was able to cause membrane disruption and permeabilization of the bacteria. Additionally, the peptide was also able to bind to bacterial DNA as demonstrated by gel retardation assay. In the time-kill assay, PAM-5 was shown to kill the bacteria rapidly in 10 min. More importantly, PAM-5 was non-cytotoxic to Vero cells and non-haemolytic to human erythrocytes at all concentrations tested for the antibacterial assays. Thus, this study showed that the combination of phage display screening and computer-assisted modification could be used to develop potent novel ABPs, and PAM-5 derived from these approaches is worth to be further elucidated for its potential clinical use. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

Review
Hybrid Nanosystems of Antibiotics with Metal Nanoparticles—Novel Antibacterial Agents
Molecules 2023, 28(4), 1603; https://doi.org/10.3390/molecules28041603 - 07 Feb 2023
Viewed by 459
Abstract
The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the [...] Read more.
The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms’ resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

Article
Synthesis, In Silico Study, Antibacterial and Antifungal Activities of N-phenylbenzamides
Int. J. Mol. Sci. 2023, 24(3), 2745; https://doi.org/10.3390/ijms24032745 - 01 Feb 2023
Viewed by 620
Abstract
Antibiotic and antifungal resistance problems have been prevalent in recent decades. One of the efforts to solve the problems is to develop new medicines with more potent antibacterial and antifungal activity. N-phenylbenzamides have the potential to be developed as antibacterial and antifungal [...] Read more.
Antibiotic and antifungal resistance problems have been prevalent in recent decades. One of the efforts to solve the problems is to develop new medicines with more potent antibacterial and antifungal activity. N-phenylbenzamides have the potential to be developed as antibacterial and antifungal medicine. This study aimed to synthesize N-phenylbenzamides and evaluate their in silico and in vitro antibacterial and antifungal activities. The in silico studies conducted absorption, distribution, metabolism, excretion and toxicity (ADMET) predictions along with molecular docking studies. ADMET predictions used pkCSM software online, while the docking studies used MVD software (Molegro ® Virtual Docker version 5.5) on Aminoglycosid-2 ″-phosphotransferase-IIa (APH2 ″-IIa) enzyme with protein data bank (PDB) ID code 3HAV as antibacterial and aspartic proteinases enzyme (Saps) with PDB ID code 2QZX as an antifungal. In vitro, antibacterial and antifungal tests were carried out using the zone of inhibition (ZOI) method. The five N-phenylbenzamides (3ae) were successfully synthesized with a high yield. Based on in silico and in vitro studies, compounds 3ae have antibacterial and antifungal activities, where they can inhibit the growth of Gram-positive bacteria (Staphylococcus aureus), Gram-negative (Escherichia coli), and Candida albicans. Therefore, compounds 3ae can be developed as a topical antibacterial and antifungal agent. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

Article
Synthesis of Antimicrobial Chitosan-Silver Nanoparticles Mediated by Reusable Chitosan Fungal Beads
Int. J. Mol. Sci. 2023, 24(3), 2318; https://doi.org/10.3390/ijms24032318 - 24 Jan 2023
Viewed by 536
Abstract
Nanoparticles, especially silver nanoparticles (Ag NPs), have gained significant attention in recent years as potential alternatives to traditional antibiotics for treating infectious diseases due to their ability to inhibit the growth of microorganisms effectively. Ag NPs can be synthesized using fungi extract, but [...] Read more.
Nanoparticles, especially silver nanoparticles (Ag NPs), have gained significant attention in recent years as potential alternatives to traditional antibiotics for treating infectious diseases due to their ability to inhibit the growth of microorganisms effectively. Ag NPs can be synthesized using fungi extract, but the method is not practical for large-scale production due to time and biomass limitations. In this study, we explore the use of chitosan to encapsulate the mycelia of the white-rot fungus Stereum hirsutum and form chitosan fungal beads for use in multiple extractions and nanoparticle synthesis. The resulting nanoparticles were characterized using various techniques, including UV-vis spectrophotometry, transmission electron microscopy, dynamic light scattering, and X-ray diffraction analysis. The analysis revealed that the synthesized nanoparticles were composed of chitosan-silver nanoparticles (CS-Ag NPs) with a size of 25 nm. The chitosan fungal beads were reused in three extractions and nanoparticle synthesis before they lost their ability to produce CS-Ag NPs. The CS-Ag NPs showed potent antimicrobial activity against phytopathogenic and human pathogenic microorganisms, including Pseudomonas syringae, Escherichia coli, Staphylococcus aureus, and Candida albicans, with minimum inhibitory concentrations of 1.5, 1.6, 3.1, and 4 µg/mL, respectively. The antimicrobial activity of CS-Ag NPs was from 2- to 40-fold higher than Ag NPs synthesized using an aqueous extract of unencapsulated fungal biomass. The CS-Ag NPs were most effective at a pH of five regarding the antimicrobial activity. These results suggest that the chitosan fungal beads may be a promising alternative for the sustainable and cost-effective synthesis of CS-Ag NPs with improved antimicrobial activity. Full article
(This article belongs to the Topic Antimicrobial Agents and Nanomaterials)
Show Figures

Figure 1

Back to TopTop