polymers-logo

Journal Browser

Journal Browser

A Commemorative Issue in Honor of Professor Sir Fraser Stoddart: Functional Coordination Polymers

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Chemistry".

Deadline for manuscript submissions: 31 July 2026 | Viewed by 713

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
Interests: functional coordination polymer; supramolecular chemistry; crystallography; chiral coordination polymer; fluorescent sensor

Special Issue Information

Dear Colleagues,

Coordination polymers are a special type of polymer joined by metal. They represent an interdisciplinary research field with rich research results. The designability of coordination polymers and their exquisite structures with multifunctional properties position them as potential functional materials for a wide range of applications. Coordination polymers have thus aroused considerable interest in various fields such as chemistry, chemical engineering, materials science, energy science, biology, medicine, catalysis, environmental science, and so forth.  

This Special Issue is in memory of Sir Fraser Stoddart to honor his contribution to supramolecular coordination polymers. The Specail Issue focuses on the design, synthesis, structure and properties of functional coordination polymers and supramolecular coordination polymers, including, but not limit to, absorption, separation, sensors, chirality, catalysis, photoluminescence, nonlinear optical properties, magnetic properties, hydrogen storage, energy storage, drug delivery, self-healing materials, supramolecular polymers, hydrogen gels, water gels, bio-mimic materials, and computational studies on the relationship between structure and properties. 

Prof. Dr. Hui Li
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional coordination polymer
  • metal–organic framework
  • H-bonded metal–organic framework
  • bionic metal–organic framework
  • chiral coordination polymer
  • macrocyclic coordination polymer
  • dynamic covalent bonding
  • self-healing material

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6766 KB  
Article
Zn–IMP 3D Coordination Polymers for Drug Delivery: Crystal Structure and Computational Studies
by Hafiz Zeshan Aqil, Yanhong Zhu, Masooma Hyder Khan, Yaqoot Khan, Beenish Sandhu, Muhammad Irfan and Hui Li
Polymers 2026, 18(1), 119; https://doi.org/10.3390/polym18010119 - 31 Dec 2025
Viewed by 431
Abstract
Coordination polymers (CPs) are garnering attention in the field of medicine day by day. The goal is to develop a CP with biosafe and environment-friendly characteristics. Herein, we report two such novel 3D coordination polymers of zinc-inosine-5′-monophosphate (Zn-IMP) and bpe/azpy (as linkers) which [...] Read more.
Coordination polymers (CPs) are garnering attention in the field of medicine day by day. The goal is to develop a CP with biosafe and environment-friendly characteristics. Herein, we report two such novel 3D coordination polymers of zinc-inosine-5′-monophosphate (Zn-IMP) and bpe/azpy (as linkers) which were engineered as metal–organic frameworks that can be used as drug carriers for hydroxyurea (HU). We employed SCXRD, PXRD, solid-state CD, FTIR and TGA for crystal structure characterizations; the results achieved 3D coordination polymers which contain a P21 space group with chiral distorted tetrahedral geometry. Solution phase studies like UV–vis and CD were carried out to understand mechanistic pathways for interaction and chirality, respectively. We have also performed computational studies to evaluate the drug delivery capacity of both 3D CPs. Molecular docking and multi-pH molecular dynamics (MD) quantify that HU binds more strongly with CP−1 (ΔG =−10.87 ± 0.12) as compared to CP−2 (ΔG = −7.59 ± 0.26 kcal·mol−1), at normal and basic pH. MD simulation analysis indicated that a more compact and rigid cavity is observed by CP−1 as compared to CP−2 at physiological pH. Across acidic pH, for CP−1 the ligand RMSD increases markedly and U becomes slightly less negative, which indicated partial loss of contacts, thus releasing drugs in a tumor-like environment more easily. These result showed that CP−1 offers stronger binding, higher structural stability and a more pronounced pH-responsive release profile than CP−2, making CP-1 more promising candidate for targeted HU drug delivery, while CP−2 may serve as a weaker-binding, faster-release complement. Full article
Show Figures

Figure 1

Back to TopTop