Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (162)

Search Parameters:
Keywords = wide band gap devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 11318 KiB  
Article
Addressing Challenges in Rds,on Measurement for Cloud-Connected Condition Monitoring in WBG Power Converter Applications
by Farzad Hosseinabadi, Sachin Kumar Bhoi, Hakan Polat, Sajib Chakraborty and Omar Hegazy
Electronics 2025, 14(15), 3093; https://doi.org/10.3390/electronics14153093 - 2 Aug 2025
Viewed by 143
Abstract
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, [...] Read more.
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, addressing key limitations in current state-of-the-art (SOTA) methods. Traditional approaches rely on expensive data acquisition systems under controlled laboratory conditions, making them unsuitable for real-world applications due to component variability, time delay, and noise sensitivity. Furthermore, these methods lack cloud interfacing for real-time data analysis and fail to provide comprehensive reliability metrics such as Remaining Useful Life (RUL). Additionally, the proposed CM method benefits from noise mitigation during switching transitions by utilizing delay circuits to ensure stable and accurate data capture. Moreover, collected data are transmitted to the cloud for long-term health assessment and damage evaluation. In this paper, experimental validation follows a structured design involving signal acquisition, filtering, cloud transmission, and temperature and thermal degradation tracking. Experimental testing has been conducted at different temperatures and operating conditions, considering coolant temperature variations (40 °C to 80 °C), and an output power of 7 kW. Results have demonstrated a clear correlation between temperature rise and Rds,on variations, validating the ability of the proposed method to predict device degradation. Finally, by leveraging cloud computing, this work provides a practical solution for real-world Wide Band Gap (WBG)-based PEC reliability and lifetime assessment. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

10 pages, 1855 KiB  
Article
TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
by Salaheddine Amezzoug, Haddou El Ghazi and Walid Belaid
Crystals 2025, 15(8), 693; https://doi.org/10.3390/cryst15080693 - 30 Jul 2025
Viewed by 284
Abstract
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells [...] Read more.
Intermediate-band photovoltaics promise single-junction efficiencies that exceed the Shockley and Queisser limit, yet viable material platforms and device geometries remain under debate. Here, we perform comprehensive two-dimensional device-scale simulations using Silvaco Atlas TCAD to analyze p-i-n In0.20Ga0.80N solar cells in which the intermediate band is supplied by In0.35Ga0.65N quantum dots located inside the intrinsic layer. Quantum-dot diameters from 1 nm to 10 nm and areal densities up to 116 dots per period are evaluated under AM 1.5G, one-sun illumination at 300 K. The baseline pn junction achieves a simulated power-conversion efficiency of 33.9%. The incorporation of a single 1 nm quantum-dot layer dramatically increases efficiency to 48.1%, driven by a 35% enhancement in short-circuit current density while maintaining open-circuit voltage stability. Further increases in dot density continue to boost current but with diminishing benefit; the highest efficiency recorded, 49.4% at 116 dots, is only 1.4 percentage points above the 40-dot configuration. The improvements originate from two-step sub-band-gap absorption mediated by the quantum dots and from enhanced carrier collection in a widened depletion region. These results define a practical design window centred on approximately 1 nm dots and about 40 dots per period, balancing substantial efficiency gains with manageable structural complexity and providing concrete targets for epitaxial implementation. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Active Feedback-Driven Defect-Band Steering in Phononic Crystals with Piezoelectric Defects: A Mathematical Approach
by Soo-Ho Jo
Mathematics 2025, 13(13), 2126; https://doi.org/10.3390/math13132126 - 29 Jun 2025
Viewed by 335
Abstract
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies [...] Read more.
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies encountered in rotating machinery. Conventional tuning methodologies, including synthetic negative capacitors or inductors integrated with piezoelectric defects, are constrained to fixed, offline, and incremental adjustments. To address these limitations, the present study proposes an active feedback approach that facilitates online, wide-range steering of defect bands in a one-dimensional PnC. Each defect is equipped with a pair of piezoelectric sensors and actuators, governed by three independently tunable feedback gains: displacement, velocity, and acceleration. Real-time sensor signals are transmitted to a multivariable proportional controller, which dynamically modulates local electroelastic stiffness via the actuators. This results in continuous defect-band frequency shifts across the entire band gap, along with on-demand sensitivity modulation. The analytical model that incorporates these feedback gains has been demonstrated to achieve a level of agreement with COMSOL benchmarks that exceeds 99%, while concurrently reducing computation time from hours to seconds. Displacement- and acceleration-controlled gains yield predictable, monotonic up- or down-shifts in defect-band frequency, whereas the velocity-controlled gain permits sensitivity adjustment without frequency drifts. Furthermore, the combined-gain operation enables the concurrent tuning of both the center frequency and the filtering sensitivity, thereby facilitating an instantaneous remote reconfiguration of bandpass filters. This framework establishes a new class of agile, adaptive ultrasonic devices with applications in ultrasonic imaging, structural health monitoring, and prognostics and health management. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

12 pages, 2688 KiB  
Communication
Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD
by Xiaochen Ma, Yuanheng Li, Xuan Liu, Deqiang Chen, Yong Le and Biao Zhang
Materials 2025, 18(13), 3073; https://doi.org/10.3390/ma18133073 - 28 Jun 2025
Viewed by 431
Abstract
Tantalum oxide is a wide bandgap material commonly used as an insulating dielectric layer for devices. In this work, hexagonal Ta2O5 (δ-Ta2O5) films doped with tungsten (W) were deposited on α-Al2O [...] Read more.
Tantalum oxide is a wide bandgap material commonly used as an insulating dielectric layer for devices. In this work, hexagonal Ta2O5 (δ-Ta2O5) films doped with tungsten (W) were deposited on α-Al2O3 (0001) by metal–organic chemical vapor deposition (MOCVD). The effects of W doping on the structural, morphology, and photoelectrical properties of the obtained films were studied. The results showed that all W-doped films were n-type semiconductors. The XRD measurement result exhibited that the increase in the W doping concentration leads to the changes in the preferred growth crystal plane of the films from δ-Ta2O5 (101¯1) to (0001). The 1.5% W-doped film possessed the best crystal quality and conductivity. The Hall measurement showed that the minimum resistivity of the film was 2.68 × 104 Ω∙cm, and the maximum carrier concentration was 7.39 × 1014 cm3. With the increase in the W concentration, the surface roughness of the film increases, while the optical bandgap decreases. The optical band gap of the 1.5% W-doped film was 3.92 eV. The W doping mechanisms were discussed. Full article
Show Figures

Figure 1

21 pages, 5911 KiB  
Article
Ultra-Thin Films of CdS Doped with Silver: Synthesis and Modification of Optical, Structural, and Morphological Properties by the Doping Concentration Effect
by Juan P. Molina-Jiménez, Sindi D. Horta-Piñeres, S. J. Castillo, J. L. Izquierdo and D. A. Avila
Coatings 2025, 15(4), 431; https://doi.org/10.3390/coatings15040431 - 7 Apr 2025
Cited by 1 | Viewed by 856
Abstract
Obtaining wide energy-gap semiconductor ultra-thin films is an important aspect for their application in sulfide-based solar cells. By reducing the optical losses associated with light reflection and exhibiting absorption edge shifts towards short wavelengths, these layers can optimize the amount of photons interacting [...] Read more.
Obtaining wide energy-gap semiconductor ultra-thin films is an important aspect for their application in sulfide-based solar cells. By reducing the optical losses associated with light reflection and exhibiting absorption edge shifts towards short wavelengths, these layers can optimize the amount of photons interacting with the active photovoltaic material, which increases the conversion efficiency of the solar cell. Ultra-thin CdS films were prepared by a low-cost chemical synthesis and the impact of silver doping on the optical, structural, and morphological properties was evaluated. SEM micrographs revealed that the layers are ultra-thin, homogeneous and uniform, with a reduction in particle size with increasing doping concentration. X-ray diffraction data confirmed the crystallization of CdS in the hexagonal phase for all prepared samples. A low concentration contributed to the formation of Ag2S in the monoclinic phase according to the diffractograms. The optical properties of the thin films revealed an absorption edge shift that increased the CdS band gap from 2.267 ± 0.007 to 2.353 ± 0.005 eV with increasing doping concentration, improving the spectral transmittance response. These results make these layers particularly useful for implementation in next-generation flexible photovoltaic devices. Full article
(This article belongs to the Special Issue Thin-Film Synthesis, Characterization and Properties)
Show Figures

Figure 1

22 pages, 11419 KiB  
Article
A Modified Model Dielectric Function for Analyzing Optical Spectra of InGaN Nanofilms on Sapphire Substrates
by Devki N. Talwar, Hao-Hsiung Lin and Jason T. Haraldsen
Nanomaterials 2025, 15(7), 485; https://doi.org/10.3390/nano15070485 - 24 Mar 2025
Viewed by 439
Abstract
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable [...] Read more.
Due to a lower InN bandgap energy Eg~0.7 eV, InxGa1xN/Sapphire epifilms are considered valuable in the development of low-dimensional heterostructure-based photonic devices. Adjusting the composition x and thickness d in epitaxially grown films has offered many possibilities of light emission across a wide spectral range, from ultraviolet through visible into near-infrared regions. Optical properties have played important roles in making semiconductor materials useful in electro-optic applications. Despite the efforts to grow InxGa1xN/Sapphire samples, no x- and d-dependent optical studies exist for ultrathin films. Many researchers have used computationally intensive methods to study the electronic band structures Ejk, and subsequently derive optical properties. By including inter-band transitions at critical points from Ejk, we have developed a semiempirical approach to comprehend the optical characteristics of InN, GaN and InxGa1xN. Refractive indices of InxGa1xN and sapphire substrate are meticulously integrated into a transfer matrix method to simulate d- and x-dependent reflectivity RE  and transmission TE spectra of nanostructured InxGa1xN/Sapphire epifilms. Analyses of RE and TE have offered accurate x-dependent shifts of energy gaps for InxGa1xN (x = 0.5, 0.7) in excellent agreement with the experimental data. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

30 pages, 11520 KiB  
Review
Progress in Tungsten Trioxide-Based Materials for Energy Storage and Smart Window Applications
by Khursheed Ahmad and Tae Hwan Oh
Crystals 2025, 15(1), 10; https://doi.org/10.3390/cryst15010010 - 25 Dec 2024
Cited by 1 | Viewed by 1109
Abstract
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used [...] Read more.
Previous years have witnessed a rapid surge in WO3-based experimental reports for the construction of energy storage devices (ESDs) and electrochromic devices (ECDs). WO3 is a highly electrochromic (EC) material with a wide band gap that has been extensively used for the construction of working electrodes for supercapacitor (SC) and ECD applications. Previously, WO3-based hybrid composites were explored for SC and ECD applications. In this review report, we have compiled the WO3-based hybrid electrode materials for SC and ECD applications. It is believed that the present review would benefit the researchers working on the fabrication of electrode materials for SC and ECD applications. In this review article, challenges and future perspectives have been discussed for the development of WO3-based SCs and ECDs. Full article
Show Figures

Figure 1

10 pages, 3120 KiB  
Article
Enhancing Resistive Switching in AlN-Based Memristors Through Oxidative Al2O3 Layer Formation: A Study on Preparation Techniques and Performance Impact
by Hongxuan Guo, Jiahao Yao, Siyuan Chen, Chong Qian, Xiangyu Pan, Kuibo Yin, Hao Zhu, Xu Gao, Suidong Wang and Litao Sun
Micromachines 2024, 15(12), 1499; https://doi.org/10.3390/mi15121499 - 16 Dec 2024
Cited by 1 | Viewed by 1500
Abstract
Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on [...] Read more.
Aluminum nitride (AlN) with a wide band gap (approximately 6.2 eV) has attractive characteristics, including high thermal conductivity, a high dielectric constant, and good insulating properties, which are suitable for the field of resistive random access memory. AlN thin films were deposited on ITO substrate using the radio-frequency magnetron sputtering technique. Al’s and Au’s top electrodes were deposited on AlN thin films to make a Au/Al/AlN/ITO sandwich structure memristor. The effects of the Al2O3 film on the on/off window and voltage characteristics of the device were investigated. The deposition time and nitrogen content in the sputtering atmosphere were changed to adjust the thickness and composition of AlN films, respectively. The possible mechanism of resistive switching was examined via analyses of the electrical resistive switching characteristics, forming voltage, and switching ratio. Full article
(This article belongs to the Special Issue Two-Dimensional Materials for Electronic and Optoelectronic Devices)
Show Figures

Figure 1

9 pages, 1231 KiB  
Article
Optimizing Wide Band Gap Cu(In,Ga)Se2 Solar Cell Performance: Investigating the Impact of “Cliff” and “Spike” Heterostructures
by Shiqing Cheng, Hongmei Liu and Qiaowen Lin
Materials 2024, 17(21), 5199; https://doi.org/10.3390/ma17215199 - 25 Oct 2024
Cited by 1 | Viewed by 1581
Abstract
In recent years, the efficiency of high-efficiency Cu(In,Ga)Se2 (CIGS) solar cells has been significantly improved, particularly for narrow-gap types. One of the key reasons for the enhancement of narrow-gap device performance is the formation of the “Spike” structure at the CdS/CIGS heterojunction [...] Read more.
In recent years, the efficiency of high-efficiency Cu(In,Ga)Se2 (CIGS) solar cells has been significantly improved, particularly for narrow-gap types. One of the key reasons for the enhancement of narrow-gap device performance is the formation of the “Spike” structure at the CdS/CIGS heterojunction interface. Wide-gap CIGS solar cells excel in modular production but lag behind in efficiency compared to narrow-gap cells. Some studies suggest that the “Cliff” structure at the heterojunction of wide-gap CIGS solar cells may be one of the factors contributing to this decreased efficiency. This paper utilizes the SCAPS software, grounded in the theories of semiconductor physics and photovoltaic effects, to conduct an in-depth analysis of the impact of “Cliff” and “Spike” heterojunction structures on the performance of wide band gap CIGS solar cells through numerical simulation methods. The aim is to verify whether the “Spike” structure is also advantageous for enhancing wide-gap CIGS device performance. The simulation results show that the “Spike” structure is beneficial for reducing interfacial recombination, thereby enhancing the VOC of wide-gap cells. However, an electronic transport barrier may form at the heterojunction interface, resulting in a decrease in JSC and FF, which subsequently reduces device efficiency. The optimal heterojunction structure should exhibit a reduced “Cliff” degree, which can facilitate the reduction of interfacial recombination while simultaneously preventing the formation of an electronic barrier, ultimately enhancing both VOC and device performance. Full article
Show Figures

Graphical abstract

2 pages, 157 KiB  
Editorial
Silicon Carbide: Material Growth, Device Processing, and Applications
by Marilena Vivona and Mike Jennings
Materials 2024, 17(18), 4571; https://doi.org/10.3390/ma17184571 - 18 Sep 2024
Cited by 2 | Viewed by 4151
Abstract
The continuous demand for electronic devices operating at increasing current and power levels, as well as at high temperatures and in harsh environments, has driven research into wide-band gap (WBG) semiconductors over the last three decades [...] Full article
(This article belongs to the Special Issue Silicon Carbide: Material Growth, Device Processing and Applications)
21 pages, 21508 KiB  
Article
Induction Coil Design Considerations for High-Frequency Domestic Cooktops
by Ahmet Erken and Atiye Hulya Obdan
Appl. Sci. 2024, 14(17), 7996; https://doi.org/10.3390/app14177996 - 7 Sep 2024
Cited by 1 | Viewed by 4074
Abstract
The use of wide band gap (WBG) semiconductor switches in power converters is increasing day by day due to their superior chemical and physical properties, such as electrical field strength, drift speed, and thermal conductivity. These new-generation power switches offer advantages over traditional [...] Read more.
The use of wide band gap (WBG) semiconductor switches in power converters is increasing day by day due to their superior chemical and physical properties, such as electrical field strength, drift speed, and thermal conductivity. These new-generation power switches offer advantages over traditional induction cooker systems, such as fast and environmentally friendly heating. The size of passive components can be reduced, and the decreasing inductance value of induction coils and capacitors with low ESR (equivalent series resistance) values contributes to total efficiency. Other design parameters, such as passive components with lower values, heatsinks with low volumes, cooling fans with low power, and induction coils with fewer turns, can offset the cost of WBG power devices. High-frequency operation can also be effective in heating non-ferromagnetic materials like aluminum and copper, making them suitable for heating these types of pans without complex induction coil and power converter designs. However, the use of these new generation power switches necessitates a re-examination of induction coil design. High switching frequency leads to a high resonance frequency in the power converter, which requires lower-value passive components compared to conventional cookers. The most important component is the induction coil, which requires fewer turns and magnetic cores. This study examines the induction heating equivalent circuit, discusses the general structure and design parameters of the induction coil, and performs FEM (finite element method) analyses using Ansys Maxwell. The results show that the induction coil inductance value in new-generation cookers decreases by 80% compared to traditional cookers, and the number of windings and magnetic cores decreases by 50%. These analyses, performed for high-power applications, are also performed for low-power applications. While the inductance value of the induction coil is 90 μH at low frequencies, it is reduced to the range of 5 μH to 20 μH at high frequencies. The number of windings is reduced by half or a quarter. The new-generation cooker system experimentally verifies the coil design based on the parameters derived from the analysis. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

13 pages, 12488 KiB  
Article
Improvement of SAW Resonator Performance by Petal-like Topological Insulator
by Jin Bai, Lixia Li and Chenyang Chai
Sensors 2024, 24(17), 5584; https://doi.org/10.3390/s24175584 - 28 Aug 2024
Viewed by 1045
Abstract
This article introduces a novel petal-like SAW topology insulator, which can transmit sound waves with low loss and high flexibility in an ultra-wide frequency band by simultaneously adjusting multiple structural parameters of phononic crystals. Using finite element analysis, it was found that adjusting [...] Read more.
This article introduces a novel petal-like SAW topology insulator, which can transmit sound waves with low loss and high flexibility in an ultra-wide frequency band by simultaneously adjusting multiple structural parameters of phononic crystals. Using finite element analysis, it was found that adjusting these parameters can generate a broadband gap of 55.8–65.7 MHz. This structure can also achieve defect immunity and sharp bending in waveguide transmission. When this topology insulator is applied to resonators, compared to traditional designs, the insertion loss is reduced by 22 dB, the on-load quality factor is increased by 227%, the off-load quality factor is increased by 1024.5%, and the quality sensitivity is improved by 3.7 times compared to bare devices. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

9 pages, 2245 KiB  
Article
Prediction of Two-Dimensional Janus Transition-Metal Chalcogenides: Robust Ferromagnetic Semiconductor with High Curie Temperature
by Zijin Wang, Ali Hamza Qureshi, Yuanyuan Duan, Yujie Liu, Yanbiao Wang, Jun Zhu, Jinlian Lu, Tianxia Guo, Yongjun Liu and Xiuyun Zhang
Molecules 2024, 29(16), 3915; https://doi.org/10.3390/molecules29163915 - 19 Aug 2024
Cited by 1 | Viewed by 1362
Abstract
Two-dimensional (2D) ferromagnetic semiconductors (FM SCs) provide an ideal platform for the development of quantum information technology in nanoscale devices. However, many developed 2D FM materials present a very low Curie temperature (TC), greatly limiting their application in spintronic devices. In [...] Read more.
Two-dimensional (2D) ferromagnetic semiconductors (FM SCs) provide an ideal platform for the development of quantum information technology in nanoscale devices. However, many developed 2D FM materials present a very low Curie temperature (TC), greatly limiting their application in spintronic devices. In this work, we predict two stable 2D transition metal chalcogenides, V3Se3X2 (X = S, Te) monolayers, by using first-principles calculations. Our results show that the V3Se3Te2 monolayer is a robust bipolar magnetic SC with a moderate bandgap of 0.53 eV, while V3Se3S2 is a direct band-gap FM SC with a bandgap of 0.59 eV. Interestingly, the ferromagnetisms of both monolayers are robust due to the V–S/Se/Te–V superexchange interaction, and TCs are about 406 K and 301 K, respectively. Applying biaxial strains, the FM SC to antiferromagnetic (AFM) SC transition is revealed at 5% and 3% of biaxial tensile strain. In addition, their high mechanical, dynamical, and thermal stabilities are further verified by phonon dispersion calculations and ab initio molecular dynamics (AIMD) calculations. Their outstanding attributes render the V3Se3Y2 (Y = S, Te) monolayers promising candidates as 2D FM SCs for a wide range of applications. Full article
Show Figures

Figure 1

22 pages, 19993 KiB  
Review
Mechanical Characterization of Sintered Silver Materials for Power Device Packaging: A Review
by Keisuke Wakamoto and Takahiro Namazu
Energies 2024, 17(16), 4105; https://doi.org/10.3390/en17164105 - 18 Aug 2024
Cited by 17 | Viewed by 3912
Abstract
This paper reviews sintered silver (s-Ag) die-attach materials for wide band gap (WBG) semiconductor packaging. WBG devices that die-attach with s-Ag have attracted a lot of attention owing to their low energy loss and high temperature operation capabilities. For their practical operation, a [...] Read more.
This paper reviews sintered silver (s-Ag) die-attach materials for wide band gap (WBG) semiconductor packaging. WBG devices that die-attach with s-Ag have attracted a lot of attention owing to their low energy loss and high temperature operation capabilities. For their practical operation, a reliability design should be established based on the failure of physics of the s-Ag die layer. This paper first focuses on the material characteristics of the s-Ag and tensile mechanical properties. Then, the s-Ag die-attach reliability is assessed with high-temperature storage, power cycling, and thermal shock tests. Each fracture mode was discussed by considering both the fracture surface analysis results and its mechanical properties. Finally, the effective reliability design parameters of the s-Ag die layer are introduced. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 9179 KiB  
Article
Hybrid ANPC Grid-Tied Inverter Design with Passivity-Based Sliding Mode Control Strategy
by Yifei Zhang, Kang Li and Li Zhang
Energies 2024, 17(15), 3655; https://doi.org/10.3390/en17153655 - 25 Jul 2024
Cited by 4 | Viewed by 1500
Abstract
Voltage source inverters are extensively used in the grid connection of renewable energy-sourced generators, and multilevel converters, in particular, have attracted a great deal of attention in recent years. This paper investigates the application of a novel passivity-based sliding mode (PSM) control scheme [...] Read more.
Voltage source inverters are extensively used in the grid connection of renewable energy-sourced generators, and multilevel converters, in particular, have attracted a great deal of attention in recent years. This paper investigates the application of a novel passivity-based sliding mode (PSM) control scheme on three-level grid-tie active Neutral-Point-Clamped (ANPC) inverters that yield fast and stable responses to grid impedance variations. Simulation studies confirm that this control scheme can produce high tracking performance and is also robust against grid load variations. Furthermore, to enhance ANPC efficiency, the loss distribution of switching devices controlled by the proposed strategy is evaluated. An optimal scheme is finally proposed for allocating silicon and Wide-Band-Gap switching devices, resulting in a hybrid ANPC inverter capable of achieving a desirable trade-off between the power losses and the device cost. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

Back to TopTop