TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. InGaN-Based Solar Cell Structure
2.2. Material Parameters and Physical Models
2.3. Electrical Parameters
3. Results and Discussion
3.1. The Influence of Quantum Dot Dimensions on Solar Cell Performance
3.2. Optimizing the Number of the Incorporated QDs
4. Conclusions
- Optimal quantum dot size: ~1 nm diameter;
- Optimal quantum dot density: ~40 dots per period;
- Expected efficiency improvement: >40% relative to conventional pn junctions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AM 1.5G | Air Mass 1.5 Global (standard solar spectrum) |
FF | Fill Factor |
IB | Intermediate Band |
IBSC | Intermediate-Band Solar Cell |
PCE | Power Conversion Efficiency |
TCAD | Technology Computer-Aided Design |
QD | Quantum Dot |
QD-IBSC | Quantum Dot Intermediate Band Solar Cell |
J–V | Current Density–Voltage |
P–V | Power–Voltage |
JSC | Short-Circuit Current Density |
VOC | Open-Circuit Voltage |
References
- Mesrane, A.; Rahmoune, F.; Mahrane, A.; Oulebsir, A. Design and Simulation of InGaN p-n Junction Solar Cell. Int. J. Photoenergy 2015, 2015, 594858. [Google Scholar] [CrossRef]
- Vilbois, L.; Cheknane, A.; Bensaoula, A.; Boney, C.; Benouaz, T. Simulation of a solar cell based on InGaN. Energy Procedia 2012, 18, 795–806. [Google Scholar] [CrossRef]
- Fabien, C.A.; Doolittle, W.A. Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells. Sol. Energy Mater. Sol. Cells 2014, 130, 354–363. [Google Scholar] [CrossRef]
- Fang, Y. Simulation of High Temperature InGaN Photovoltaic Devices; Arizona State University: Tempe, AZ, USA, 2017. [Google Scholar]
- Luque, A.; Martí, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 1997, 78, 5014. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; Stanley, C. Understanding intermediate-band solar cells. Nat. Photonics 2012, 6, 146–152. [Google Scholar] [CrossRef]
- Martí, A.; López, N.; Antolin, E.; Cánovas, E.; Stanley, C.; Farmer, C.; Cuadra, L.; Luque, A. Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Film. 2006, 511, 638–644. [Google Scholar] [CrossRef]
- Jenks, S.; Gilmore, R. Material selection for the quantum dot intermediate band solar cell. In Quantum Dot Solar Cells; Springer: Berlin/Heidelberg, Germany, 2013; pp. 135–166. [Google Scholar]
- Amin, S.A.; Hasan, M.T.; Islam, M.S. The effects of interdot spacing and dot size on the performance of InGaAs/GaAs QDIBSC. Int. J. Photoenergy 2017, 2017, 9160381. [Google Scholar] [CrossRef]
- Chettri, D.; Singh, T.J.; Singh, K.J. InAs/GaAs quantum dot solar cell. Int. J. Electron. Electr. Comput. Syst. 2017, 6, 221–224. [Google Scholar]
- Li, M.; Duan, J.; Jin, Z.; Pan, S.; Zhan, W.; Chen, J.; Yu, J.; Cheng, X.; Ni, Z.; Jin, C. Enhanced Radiation Hardness of InAs/GaAs Quantum Dot Lasers for Space Communication. Laser Photonics Rev. 2025, 19, 2500148. [Google Scholar] [CrossRef]
- Mano, T.; Ohtake, A.; Kuroda, T. Lattice-Mismatched Epitaxy of InAs on (111) A-Oriented Substrate: Metamorphic Layer Growth and Self-Assembly of Quantum Dots. Phys. Status Solidi (a) 2024, 221, 2300767. [Google Scholar] [CrossRef]
- Hughes, E.T.; Shang, C.; Selvidge, J.; Jung, D.; Wan, Y.; Herrick, R.W.; Bowers, J.E.; Mukherjee, K. Gradual degradation in InAs quantum dot lasers on Si and GaAs. Nanoscale 2024, 16, 2966–2973. [Google Scholar] [CrossRef]
- Eric, D.; Jiang, J.; Imran, A.; Khan, A.A. Structural optimization and engineering of In x Ga 1− x N quantum dot intermediate band solar cells with intrinsic GaN interlayers. Energy Adv. 2024, 3, 1632–1641. [Google Scholar] [CrossRef]
- Dussaigne, A.; Paillet, C.; Rochat, N.; Cooper, D.; Grenier, A.; Vézian, S.; Damilano, B.; Michon, A.; Hyot, B. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids. Commun. Mater. 2024, 5, 280. [Google Scholar] [CrossRef]
- Um, D.-Y.; Ra, Y.-H.; Park, J.-H.; Hong, G.-E.; Lee, C.-R. Near-IR emission of InGaN quasi-quantum dots on non-polar GaN nanowire structures. Nanoscale Adv. 2021, 3, 5036–5045. [Google Scholar] [CrossRef] [PubMed]
- El Aouami, A.; Feddi, K.; El Haouari, M.; El Yadri, M.; Afkir, N.B.; Zazoui, M.; Feddi, E.; Duque, C.; Dujardin, F. Impact of heavy hole levels on the photovoltaic conversion efficiency of InxGa1− xN/InN quantum dot intermediate band solar cells. Superlattices Microstruct. 2019, 129, 202–211. [Google Scholar] [CrossRef]
- Cañón-Bermúdez, J.D.; Mulcué-Nieto, L.F. Indium Aluminum Nitride: A Review on Growth, Properties, and Applications in Photovoltaic Solar Cells. Heliyon 2024, 10, e40322. [Google Scholar] [CrossRef]
- Abboudi, H.; El Ghazi, H.; En-Nadir, R.; Basyooni-M. Kabatas, M.A.; Jorio, A.; Zorkani, I. Efficiency of InN/InGaN/GaN Intermediate-Band Solar Cell under the Effects of Hydrostatic Pressure, In-Compositions, Built-in-Electric Field, Confinement, and Thickness. Nanomaterials 2024, 14, 104. [Google Scholar] [CrossRef]
- Aissat, A.; Benyettou, F.; Vilcot, J. Modeling and simulation of InGaN/GaN quantum dots solar cell. AIP Conf. Proc. 2016, 1758, 030014. [Google Scholar]
- Nawaz, M.; Ahmad, A. A TCAD-based modeling of GaN/InGaN/Si solar cells. Semicond. Sci. Technol. 2012, 27, 035019. [Google Scholar] [CrossRef]
- Nasr, A.; Aly, A.E.-M.M. Performance evaluation of quantum-dot intermediate-band solar cells. J. Electron. Mater. 2016, 45, 672–681. [Google Scholar] [CrossRef]
- Parajuli, D.; Shah, D.K.; KC, D.; Kumar, S.; Park, M.; Pant, B. Influence of doping concentration and thickness of regions on the performance of InGaN single junction-based solar cells: A simulation approach. Electrochem 2022, 3, 407–415. [Google Scholar] [CrossRef]
- Yang, G.; Liu, W.; Bao, Y.; Chen, X.; Ji, C.; Wei, B.; Yang, F.; Wang, X. Performance optimization of In (Ga) As quantum dot intermediate band solar cells. Discov. Nano 2023, 18, 67. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, M.; Huang, X.; Lebeau, J.; Li, T.; Wang, D.; Fu, H.; Fu, K.; Wang, X.; Lin, J. Toward high efficiency at high temperatures: Recent progress and prospects on InGaN-based solar cells. Mater. Today Energy 2023, 31, 101229. [Google Scholar] [CrossRef]
- Benaicha, M.; Dehimi, L.; Sengouga, N. Simulation of double junction In0. 46Ga0. 54N/Si tandem solar cell. J. Semicond. 2017, 38, 044002. [Google Scholar] [CrossRef]
- Belaid, W.; El Ghazi, H.; Zorkani, I.; Jorio, A. Pressure-related binding energy in (In, Ga) N/GaN double quantum wells under internal composition effects. Solid State Commun. 2021, 327, 114193. [Google Scholar] [CrossRef]
L (nm) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
) | 105.3 | 103.2 | 91.3 | 57.4 | 39.15 | 29.8 | 23.55 | 19.2 | 16.05 | 13.65 |
) | 191.5 | 141.6 | 106.57 | 84.27 | 68.67 | 57.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amezzoug, S.; El Ghazi, H.; Belaid, W. TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells. Crystals 2025, 15, 693. https://doi.org/10.3390/cryst15080693
Amezzoug S, El Ghazi H, Belaid W. TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells. Crystals. 2025; 15(8):693. https://doi.org/10.3390/cryst15080693
Chicago/Turabian StyleAmezzoug, Salaheddine, Haddou El Ghazi, and Walid Belaid. 2025. "TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells" Crystals 15, no. 8: 693. https://doi.org/10.3390/cryst15080693
APA StyleAmezzoug, S., El Ghazi, H., & Belaid, W. (2025). TCAD Design and Optimization of In0.20Ga0.80N/In0.35Ga0.65N Quantum-Dot Intermediate-Band Solar Cells. Crystals, 15(8), 693. https://doi.org/10.3390/cryst15080693