Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD
Abstract
1. Introduction
2. Materials and Methods
2.1. Equipment and Materials
2.2. Process Parameters
2.3. Characterization Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Kumar, H.; Vura, S.; Pratiyush, A.S.; Charan, V.S.; Dolmanan, S.B.; Tripathy, S.; Muralidharan, R.; Nath, D.N. Investigation of Ta2O5 as an alternative high-k dielectric for InAlN/GaN MOS-HEMT on Si. IEEE Trans. Electron Devices 2019, 66, 1230–1235. [Google Scholar] [CrossRef]
- Xu, W.D.; Zhang, G.Q.; Feng, X.J. Room temperature fabricated high performance IAZO thin film transistors with dual-active-layer structure and sputtered Ta2O5 gate insulator. J. Alloys Compd. 2021, 862, 158030. [Google Scholar] [CrossRef]
- Yu, E.S.; Kim, S.G.; Kang, S.J.; Lee, H.S.; Lee, J.M.; Moon, S.J.; Bae, B.S. Low voltage a-IGZO thin film transistor using tantalum oxide by thermal oxidation. Electron. Mater. Lett. 2024, 20, 102–110. [Google Scholar] [CrossRef]
- Wu, G.M.; Sahoo, A.K.; Chen, D.W.; Chang, J.W. A comparative study of e-beam deposited gate dielectrics on channel width-dependent performance and reliability of a-IGZO thin-film transistors. Materials 2018, 11, 2502. [Google Scholar] [CrossRef]
- Mohammadian, N.; Faraji, S.; Sagar, S.; Das, B.C.; Turner, M.L.; Majewski, L.A. One-Volt, solution-processed organic transistors with self-assembled monolayer-Ta2O5 gate dielectrics. Materials 2019, 12, 2563. [Google Scholar] [CrossRef] [PubMed]
- Mohta, N.; Mech, R.K.; Sanjay, S.; Muralidharan, R.; Nath, D.N. Artificial synapse based on back-gated MoS2 field-effect transistor with high-k Ta2O5 dielectrics. Phys. Status Solidi A 2020, 217, 2000254. [Google Scholar] [CrossRef]
- Upadhyay, B.B.; Surapaneni, S.; Yadav, Y.K.; Bhardwaj, N.N.; Suvachintak, N.; Ganguly, S.; Saha, D. High-performance GaN HEMTs with ION/IOFF ≈ 1010 and gate leakage current <10−11 A mm−1 using Ta2O5 dielectric. Phys. Status Solidi A 2022, 219, 2100839. [Google Scholar]
- Partida-Manzanera, T.; Roberts, J.W.; Bhat, T.N.; Zhang, Z.; Tan, H.R.; Dolmanan, S.B.; Sedghi, N.; Tripathy, S.; Potter, R.J. Comparative analysis of the effects of tantalum doping and annealing on atomic layer deposited (Ta2O5)X(Al2O3)1-X as potential gate dielectrics for GaN/AlXGa1-X N/GaN high electron mobility transistors. J. Appl. Phys. 2016, 119, 025303. [Google Scholar] [CrossRef]
- Lee, C.T.; Chiou, Y.L. Photoelectrochemical oxidation-treated AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors with oxidized layer/Ta2O5/Al2O3 gate dielectric stack. Appl. Phys. Lett. 2013, 103, 082104. [Google Scholar] [CrossRef]
- Sreenadh, S.; Swaroop Ganguly, S.; Dipankar Saha, D. On-demand performance optimization of AlGaN/GaN high-electron mobility transistors using stoichiometric variation of dielectric alloy AlxTayO. J. Appl. Phys. 2024, 136, 14. [Google Scholar]
- Partida-Manzanera, T.; Zaidi, Z.H.; Roberts, J.W.; Dolmanan, S.B.; Lee, K.B.; Houston, P.A.; Chalker, P.R.; Tripathy, S.; Potter, R.J. Comparison of atomic layer deposited Al2O3 and (Ta2O5)0.12(Al2O3)0.88 gate dielectrics on the characteristics of GaN-capped AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors. J. Appl. Phys. 2019, 126, 034102. [Google Scholar] [CrossRef]
- Kang, J.-W.; Cho, W.-J. Improved pH sensitivity and reliability for extended gate field-effect transistor sensors using high-K sensing membranes. J. Nanosci. Nanotechnol. 2019, 19, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Costina, A.; Wöhrmann, M.; Schiffer, M.; Schneider-Ramelow, M. Manufacturing and Characterization of Thin-Film Tantalum Pentoxide Integrated Capacitors. In Proceedings of the 2024 IEEE 10th Electronics System-Integration Technology Conference (ESTC), Berlin, Germany, 11–13 September 2024; pp. 1–6. [Google Scholar]
- Yu, X.; Huang, J.; Zhao, J.; Zhou, C.; Xin, C.; Guo, Q. Topotactic formation of poriferous (Al, C)–Ta2O5 mesocrystals for improved visible—Light photocatalysis. J. Environ. Manag. 2022, 304, 114289. [Google Scholar] [CrossRef]
- Yang, X.; Roy, A.; Alhabradi, M.; Alruwaili, M.; Chang, H.; Tahir, A.A. Fabrication and characterization of tantalum–iron composites for photocatalytic hydrogen evolution. Nanomaterials 2023, 13, 2464. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, C.; Wang, L.; Liu, Z.; Liu, G.; Ma, X.; Cheng, H.-M. Photocatalysis: Constructing a Metallic/Semiconducting TaB2/Ta2O5 Core/Shell Heterostructure for Photocatalytic Hydrogen Evolution. Adv. Energy Mater. 2014, 4, 1400057. [Google Scholar] [CrossRef]
- Yota, J. Characterization of ALD Ta2O5, Al2O3, and Ta2O5/Al2O3 nanolaminate as metal-insulator-metal capacitor dielectric for GaAs HBT technology. ECS Trans. 2022, 109, 27. [Google Scholar] [CrossRef]
- Teyssedou, C.; Chaillou, J.; Roch-Jeune, I.; Troadec, D.; Huve, M.; Roussel, P.; Lethien, C. Electrolytic micro-capacitors based on tantalum films for high voltage applications. Adv. Mater. Technol. 2024, 6, 2400682. [Google Scholar] [CrossRef]
- Hussain, M.; Jeong, W.; Kang, I.-S.; Choi, K.-K.; Abbas Jaffery, S.H.; Ali, A.; Hussain, T.; Ayaz, M.; Hussain, S.; Jung, J. Highly fast response of Pd/Ta2O5/SiC and Pd/Ta2O5/Si Schottky diode-based hydrogen sensors. Sensors 2021, 21, 1042. [Google Scholar] [CrossRef]
- Aranthady, C.; Shanbhag, G.V.; Sundaram, N.G. Polyaniline/(Ta2O5–SnO2) hybrid nanocomposite for efficient room temperature CO gas sensing. RSC. Adv. 2022, 12, 15759–15766. [Google Scholar] [CrossRef]
- Shao, W.; Lu, J.; Zheng, Z.; Liu, R.; Wang, X.; Zhao, Z.; Lu, Y.; Zhu, L.; Ye, Z. Heterojunctions on Ta2O5 MWCNT for ultrasensitive ethanol sensing at room temperature. ACS Appl. Mater. Interfaces 2023, 15, 4315–4328. [Google Scholar] [CrossRef]
- Tsai, S.-C.; Lo, H.-Y.; Huang, C.-Y.; Wu, M.-C.; Tseng, Y.-T.; Shen, F.-C.; Ho, A.-Y.; Chen, J.-Y.; Wu, W.-W. Structural analysis and performance in a dual-mechanism conductive filament memristor. Adv. Electron. Mater. 2021, 7, 2100605. [Google Scholar] [CrossRef]
- Kim, B.; Kim, I.-S.; Woo, J.-U.; Chae, S.-J.; Go, S.-H.; Nahm, S. Self-rectifying and artificial synaptic characteristics of amorphous Ta2O5 thin film grown on two-dimensional metal-oxide nanosheet. Appl. Surf Sci. 2023, 609, 155353. [Google Scholar] [CrossRef]
- Singh, E.R.; Alam, M.W.; Singh, N.K. Capacitive and RRAM forming-free memory behavior of electron-beam deposited Ta2O5 thin film for nonvolatile memory application. ACS Appl. Electron. Mater. 2023, 5, 3462–3469. [Google Scholar] [CrossRef]
- Capote, E.M.; Gleckl, A.; Guerrero, J.; Rezac, M.; Wright, R.; Smith, J.R. In-vacuum measurements of optical scatter versus annealing temperature for amorphous Ta2O5 and TiO2:Ta2O5 thin films. J. Opt. Soc. Am. A 2021, 38, 534–541. [Google Scholar] [CrossRef]
- Magesa, F.; Wu, Y.; Dong, S.; Tian, Y.; Li, G.; Vianney, J.M.; Buza, J.; Liu, J.; He, Q. Electrochemical sensing fabricated with Ta2O5 nanoparticle-electrochemically reduced graphene oxide nanocomposite for the detection of oxytetracycline. Biomolecules 2020, 10, 110. [Google Scholar] [CrossRef]
- Jiang, M.; Ma, R.; Xu, J.; Munroe, P.; Xie, Z.-H. Fabrication of a Ag2O/SiO2/Ta2O5 nanocomposite coating for orthopaedic applications: Anticorrosion, photocatalytical and antimicrobial activities. Ceram. Int. 2023, 49, 28297–28312. [Google Scholar] [CrossRef]
- Ourefelli, A.; Hajjaji, A.; Trabelsi, K.; Khezami, L.; Bessais, B.; Aminabhavi, T.M.; Kiwi, J.; Rtimi, S. Innovative electrochemical synthesis of highly defective Ta2O5/Cu2O nanotubes inactivating bacteria under low-intensity solar irradiation. Chem. Eng. J. 2023, 468, 143769. [Google Scholar] [CrossRef]
- Suraya Ngadiman, N.L.; Rani, R.A.; Makhsin, S.R.; Zoolfakar, A.S. Improving the performance of anodized TA2O5 humidity sensors through surface modification with gold nanoparticles. Sens. Actuators A-Phys. 2023, 364, 114788. [Google Scholar] [CrossRef]
- Ismail, A.A.; Faisal, M.; Harraz, F.A.; Al-Hajry, A.; Al-Sehemi, A.G. Synthesis of mesoporous sulfur-doped Ta2O5 nanocomposites and their photocatalytic activities. J. Colloid Interface Sci. 2016, 471, 145–154. [Google Scholar] [CrossRef]
- Shi, X.; Ma, D.; Ma, Y.; Hu, A. N-doping Ta2O5 nanoflowers with strong adsorption and visible light photocatalytic activity for efficient removal of methylene blue. J. Photochem. Photobiol. A Chem. 2017, 332, 487–496. [Google Scholar] [CrossRef]
- Spassov, D.; Atanassova, E.; Paskaleva, A. Lightly Al-doped Ta2O5: Electrical properties and mechanisms of conductivity. Microelectron. Reliab. 2011, 51, 2102–2109. [Google Scholar] [CrossRef]
- Miura, K.; Arai, Y.; Hanaizumi, O. Observation of Blue-Light Emission Band from Eu-Doped Ta2O5 Thin Films Prepared Using Co-Sputtering. Mater. Sci. Appl. 2015, 6, 676–680. [Google Scholar]
- Ashraf, L.; Waseem, S.; Kayani, Z.; Ullah, F.; Ramay, S.; Saleem, M. Magnetron sputtered Zn-Ta2O5 thin films for electronic, thermoelectric, and optical applications. Solid State Commun. 2024, 394, 115718. [Google Scholar] [CrossRef]
- Le, Y.; Ma, X.; Xiao, H.; Luan, C.; Zhang, B.; Ma, J. High performance UV photodetectors based on W doped δ-Ta2O5 single crystalline films. Appl. Phys. Lett. 2023, 122, 252103. [Google Scholar] [CrossRef]
- Wang, D.; Ma, X.; Chen, R.; Le, Y.; Zhang, B.; Xiao, H.; Luan, C.; Ma, J. Solar-blind ultraviolet photodetectors based on Ta-doped β-Ga2O3 heteroepitaxial films. Opt. Mater. 2022, 129, 112491. [Google Scholar] [CrossRef]
- Le, Y.; Ma, X.; Wang, D.; Xiao, H.; Luan, C.; Zhang, B.; Ma, J. Heteroepitaxial growth of the d-Ta2O5 films on a-Al2O3 (0001). J. Mater. Sci. Mater. Electron. 2022, 33, 1503–1510. [Google Scholar] [CrossRef]
- Cullity, B. Element of X-Ray Diffraction; Addison-Wesley: London, UK, 1959; p. 99. [Google Scholar]
- Sahu, B.R.; Kleinman, L. Theoretical study of structural and electronic properties of β−Ta2O5 and δ−Ta2O5. Phys. Rev. B 2004, 69, 165202. [Google Scholar] [CrossRef]
- González-Borrero, P.P.; Sato, F.; Medina, A.N.; Baesso, M.L.; Bento, A.C.; Baldissera, G.; Perssn, C.; Niklasson, G.A.; Granqvist, C.G.; Ferreira da Silva, A. Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 2010, 96, 061909. [Google Scholar] [CrossRef]
- Du, X.; Li, Z.; Luan, C.; Wang, W.; Wang, M.; Feng, X.; Xiao, H.; Ma, J. Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD. J. Mater. Sci. 2015, 50, 3252–3257. [Google Scholar] [CrossRef]
- Li, J.; Dai, W.; Wu, G.; Guan, N.; Li, L. Fabrication of films on tantalum substrate for Ta2O5 films on tantalum substrate for efficient photocatalysis. Catal. Commun. 2015, 65, 24–29. [Google Scholar] [CrossRef]
- Zhou, C.; Ma, L.; Feng, Y.; Kuo, C.; Ku, Y.; Liu, C.; Cheng, X.; Li, J.; Si, Y.; Huang, H.; et al. Enhanced polarization switching characteristics of HfO2 ultrathin films via acceptor-donor co-doping. Nat. Commun. 2024, 15, 2893. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Gong, L.; Liu, X.; Tao, Y.; Zhang, W.; Chen, S.; Meng, H.; Chen, J. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. Electron. Spectresc. Relat. Phenom. 2012, 185, 112–118. [Google Scholar] [CrossRef]
- Manciu, F.S.; Enriquez, J.L.; Durrer, W.G.; Yun, Y.; Ramana, C.V.; Gullapalli, S.K. Spectroscopic analysis of tungsten oxide thin films. J. Mater. Res. 2010, 25, 2401–2406. [Google Scholar] [CrossRef]
- Li, Q.; Liang, C.; Tian, Z.; Zhang, J.; Zhang, H.; Cai, W. Core–shell TaxO@Ta2O5 structured nanoparticles: Laser ablation synthesis in liquid, structure and photocatalytic property. CrystEngComm 2012, 14, 3236–3240. [Google Scholar] [CrossRef]
- Le, Y.; Ma, X.; Wang, D.; Xiao, H.; Luan, C.; Ma, J. Synthesis of δ-Ta2O5 heteroepitaxial films on YVO4 (100) substrates. Mater. Sci. Semicond. Process. 2021, 135, 106065. [Google Scholar] [CrossRef]
- Babelon, P.; Dequiedt, A.; Mostefa-Sba, H.; Bourgeois, S.; Sibillot, P.; Sacilotti, M. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films 1998, 322, 63–67. [Google Scholar] [CrossRef]
Sample No. | Mo Source | Bubbler Temp. (°C) | Bubbler Pressure (Torr) | Carrier Gas Flow Rate (sccm) | Molar Flow Rate (mol/min) | Film Thickness (nm) | Deposition Rate (nm/min) |
---|---|---|---|---|---|---|---|
S0–S4 | Ta | 90 °C | 20 | 45 | 3.96 × 10−6 | 208 | 0.693 |
S1 | W | 20 °C | 290 | 3 | 2.00 × 10−8 | 220 | 0.733 |
S2 | W | 20 °C | 290 | 9 | 6.00 × 10−8 | 260 | 0.867 |
S3 | W | 20 °C | 290 | 15 | 1.00 × 10−7 | 258 | 0.86 |
S4 | W | 20 °C | 290 | 21 | 1.40 × 10−7 | 257 | 0.857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, Y.; Liu, X.; Chen, D.; Le, Y.; Zhang, B. Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD. Materials 2025, 18, 3073. https://doi.org/10.3390/ma18133073
Ma X, Li Y, Liu X, Chen D, Le Y, Zhang B. Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD. Materials. 2025; 18(13):3073. https://doi.org/10.3390/ma18133073
Chicago/Turabian StyleMa, Xiaochen, Yuanheng Li, Xuan Liu, Deqiang Chen, Yong Le, and Biao Zhang. 2025. "Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD" Materials 18, no. 13: 3073. https://doi.org/10.3390/ma18133073
APA StyleMa, X., Li, Y., Liu, X., Chen, D., Le, Y., & Zhang, B. (2025). Growth and Characterization of n-Type Hexagonal Ta2O5:W Films on Sapphire Substrates by MOCVD. Materials, 18(13), 3073. https://doi.org/10.3390/ma18133073