Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (548)

Search Parameters:
Keywords = waste heat recovery system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3500 KB  
Proceeding Paper
Modelling Heat Recovery System for Efficiency Enhancement in Alkaline Electrolyser
by Mohamed Amin, Edward Antwi, Taimoor Khan, Romy Sommer, Qahtan Thabit and Johannes Gulden
Eng. Proc. 2026, 121(1), 19; https://doi.org/10.3390/engproc2025121019 - 16 Jan 2026
Viewed by 73
Abstract
The global energy landscape is transitioning towards cleaner solutions, with hydrogen emerging as a key energy source. To unlock hydrogen’s potential, it is crucial to prioritize the development of a more efficient, cost-effective, and environmentally friendly production process. Enhancing the efficiency and scalability [...] Read more.
The global energy landscape is transitioning towards cleaner solutions, with hydrogen emerging as a key energy source. To unlock hydrogen’s potential, it is crucial to prioritize the development of a more efficient, cost-effective, and environmentally friendly production process. Enhancing the efficiency and scalability of these technologies will not only reduce their environmental impact but also accelerate the adoption of hydrogen as a viable alternative energy solution, fostering a cleaner and more sustainable future. This paper presents a study on simulating a heat recovery system in an alkaline electrolyser consisting of 30 cells, which integrates a plate heat exchanger to preheat the water entering the system, and assessing how it affects efficiency. The study uses a thermal model, employing the concept of lumped thermal capacitance, to analyze the impact of the heat recovery system utilization on the overall performance of the electrolyser. MATLAB/Simulink was used to simulate and provide a detailed visualization of how recovery systems affect the electrolyser’s efficiency. The results of the simulations confirmed that incorporating a heat recovery system significantly improves the efficiency of alkaline electrolysers up to 8%. The study provides a promising outlook for the future of hydrogen production, emphasizing the potential of waste heat recovery systems to make green hydrogen production more viable and sustainable. Full article
Show Figures

Figure 1

28 pages, 5111 KB  
Article
A Novel Parallel-Preheating Supercritical CO2 Brayton Cycle for Waste Heat Recovery from Offshore Gas Turbines: Energy, Exergy, and Economic Analysis Under Variable Loads
by Dianli Qu, Jia Yan, Xiang Xu and Zhan Liu
Entropy 2026, 28(1), 106; https://doi.org/10.3390/e28010106 - 16 Jan 2026
Viewed by 37
Abstract
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for [...] Read more.
Supercritical carbon dioxide (SC-CO2) power cycles offer a promising solution for offshore platforms’ gas turbine waste heat recovery due to their compact design and high thermal efficiency. This study proposes a novel parallel-preheating recuperated Brayton cycle (PBC) using SC-CO2 for waste heat recovery on offshore gas turbines. An integrated energy, exergy, and economic (3E) model was developed and showed good predictive accuracy (deviations < 3%). The comparative analysis indicates that the PBC significantly outperforms the simple recuperated Brayton cycle (SBC). Under 100% load conditions, the PBC achieves a net power output of 4.55 MW, while the SBC reaches 3.28 MW, representing a power output increase of approximately 27.9%. In terms of thermal efficiency, the PBC reaches 36.7%, compared to 21.5% for the SBC, marking an improvement of about 41.4%. Additionally, the electricity generation cost of the PBC is 0.391 CNY/kWh, whereas that of the SBC is 0.43 CNY/kWh, corresponding to a cost reduction of approximately 21.23%. Even at 30% gas turbine load, the PBC maintains high thermoelectric and exergy efficiencies of 30.54% and 35.43%, respectively, despite a 50.8% reduction in net power from full load. The results demonstrate that the integrated preheater effectively recovers residual flue gas heat, enhancing overall performance. To meet the spatial constraints of offshore platforms, we maintained a pinch-point temperature difference of approximately 20 K in both the preheater and heater by adjusting the flow split ratio. This approach ensures a compact system layout while balancing cycle thermal efficiency with economic viability. This study offers valuable insights into the PBC’s variable-load performance and provides theoretical guidance for its practical optimization in engineering applications. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

27 pages, 1847 KB  
Article
Title Use of Waste Heat from Generator Sets as the Low-Temperature Heat Source for Heat Pumps
by Sławomir Rabczak, Krzysztof Nowak and Karol Nowak
Energies 2026, 19(2), 361; https://doi.org/10.3390/en19020361 - 12 Jan 2026
Viewed by 183
Abstract
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator [...] Read more.
This study investigates the feasibility of using waste heat from generator sets as the low-temperature heat source for heat pumps in off-grid energy systems, addressing the need for more efficient and self-sufficient heating solutions. A conceptual model was developed in which a generator and an air-to-water heat pump operate within an insulated thermal chamber, enabling the recovery of waste heat to maintain a stable 15 °C inlet temperature for the heat pump. Theoretical analysis was supplemented with preliminary experimental tests performed on a small generator placed in a thermally insulated enclosure. Measurements of temperature rise and heat output allowed for verification of the real heat-recovery efficiency, which reached approximately 28%. Based on real household heating demand, this study evaluated annual heat demand, heat pump electricity consumption, and fuel requirements for several recovery scenarios (28%, 45%, and 60%). The results show that maintaining a constant 15 °C source temperature significantly improves heat-pump efficiency, reducing annual electricity demand. Increasing heat-recovery efficiency from 28% to 60% reduces fuel consumption by more than half and lowers the annual operating costs. The findings confirm the potential of generator-supported heat-pump systems to enhance energy efficiency in off-grid applications and provide a sound basis for further optimization and real-scale validation. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

23 pages, 5975 KB  
Article
Flow Loss and Transient Hydrodynamic Analysis of a Multi-Way Valve for Thermal Management Systems in New Energy Vehicles
by Dehong Meng, Xiaoxia Sun, Yongwei Zhai, Li Wang, Panpan Song, Mingshan Wei, Ran Tian and Lili Shen
Energies 2026, 19(2), 287; https://doi.org/10.3390/en19020287 - 6 Jan 2026
Viewed by 224
Abstract
With the rapid advancement of integrated thermal management systems (ITMS) for new energy vehicles (NEVs), flow losses and hydrodynamic characteristics within multi-way valves have become critical determinants of system performance. In this study, a three-dimensional computational fluid dynamics model is established for a [...] Read more.
With the rapid advancement of integrated thermal management systems (ITMS) for new energy vehicles (NEVs), flow losses and hydrodynamic characteristics within multi-way valves have become critical determinants of system performance. In this study, a three-dimensional computational fluid dynamics model is established for a multi-way valve used in a representative NEV ITMS, where PAG46 coolant is employed as the working fluid. The steady-state pressure-loss characteristics under three typical operating modes—cooling, heating, and waste heat recovery—are investigated, together with the transient hydrodynamic response during mode switching. The steady-state results indicate that pressure losses are primarily concentrated in regions with abrupt changes in flow direction and sudden variations in cross-sectional area, and that the cooling mode generally exhibits the highest overall pressure loss due to the involvement of all flow channels and stronger flow curvature. Furthermore, a parametric analysis of the valve body corner chamfers and valve spool fillets reveals a non-monotonic dependence of pressure drop on chamfer radius, highlighting a trade-off between streamline smoothness and the effective flow cross-sectional area. Transient analysis, exemplified by the transition from heating to waste heat recovery mode, demonstrates that dynamic changes in channel opening induce a significant reconstruction of the internal velocity and pressure fields. Local high-velocity zones, transient pressure peaks, and pronounced fluctuations of hydraulic torque on the valve spool emerge during the switching process, imposing higher requirements on the torque output and motion stability of the actuator mechanism. Consequently, this study provides a theoretical basis and engineering guidance for the structural optimization and actuator matching of multi-way valves in NEV thermal management systems. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage and Applications—2nd Edition)
Show Figures

Figure 1

38 pages, 18012 KB  
Article
Regression-Assisted Ant Lion Optimisation of a Low-Grade-Heat Adsorption Chiller: A Decision-Support Technology for Sustainable Cooling
by Patricia Kwakye-Boateng, Lagouge Tartibu and Jen Tien-Chien
Technologies 2026, 14(1), 37; https://doi.org/10.3390/technologies14010037 - 5 Jan 2026
Viewed by 171
Abstract
Growing cooling demand and environmental concerns motivate research into alternative technologies capable of converting low-grade heat into useful cooling. This study proposes a regression-assisted multi-objective optimisation framework using the Ant Lion Optimiser and its multi-objective variant to jointly maximise the coefficient of performance [...] Read more.
Growing cooling demand and environmental concerns motivate research into alternative technologies capable of converting low-grade heat into useful cooling. This study proposes a regression-assisted multi-objective optimisation framework using the Ant Lion Optimiser and its multi-objective variant to jointly maximise the coefficient of performance (COP), cooling capacity (Qcc) and waste-heat recovery efficiency (ηe). Pareto-optimal solutions exhibit a one-dimensional ridge in which ηe declines, and COP and Qcc increase simultaneously. Within the explored bounds, non-dominated ranges span COP = 0.674–0.716, Qcc= 18.3–27.5 kW and ηe= 0.118–0.127, with a practical compromise near COP ≈ 0.695, Qcc ≈ 24 kW and ηe  0.122–0.123. Compared to the typical reported COP band for single-stage silica-gel/water ADCs, the practical compromise solution (COP ≈ 0.695) offers a conservative COP improvement of approximately 16% when benchmarked against COP = 0.6, while the compromise Qcc (Qcc ≈ 24 kW) represents a conservative increase of approximately 20% relative to the upper product-class reference (20 kW). A one-at-a-time sensitivity analysis with re-optimisation identifies the hot- and chilled-water inlet temperatures and exchanger conductance as the dominant decision variables and maps diminishing-return regions. This framework can effectively utilise low-grade heat in future low-carbon buildings and processes, supporting the configuration of ADC systems. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

34 pages, 1919 KB  
Review
Life Cycle Optimization of Circular Industrial Processes: Advances in By-Product Recovery for Renewable Energy Applications
by Kyriaki Kiskira, Sofia Plakantonaki, Nikitas Gerolimos, Konstantinos Kalkanis, Emmanouela Sfyroera, Fernando Coelho and Georgios Priniotakis
Clean Technol. 2026, 8(1), 5; https://doi.org/10.3390/cleantechnol8010005 - 5 Jan 2026
Viewed by 446
Abstract
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and [...] Read more.
The global shift toward renewable energy and circular economy models requires industrial systems that minimize waste and recover value across entire life cycles. This review synthesizes recent advances in by-product recovery technologies supporting renewable energy and circular industrial processes. Thermal, biological, chemical/electrochemical, and biotechnological routes are analyzed across battery and e-waste recycling, bioenergy, wastewater, and agri-food sectors, with emphasis on integration through Life Cycle Assessment (LCA), techno-economic analysis (TEA), and multi-criteria decision analysis (MCDA) coupled to process simulation, digital twins, and artificial intelligence tools. Policy and economic frameworks, including the European Green Deal and the Critical Raw Materials Act, are examined in relation to technology readiness and environmental performance. Hybrid recovery systems, such as pyro-hydro-bio configurations, enable higher resource efficiency and reduced environmental impact compared with stand-alone routes. Across all technologies, major hotspots include electricity demand, reagent use, gas handling, and concentrate management, while process integration, heat recovery, and realistic substitution credits significantly improve life cycle outcomes. Harmonized LCA-TEA-MCDA frameworks and digitalized optimization emerge as essential tools for scaling sustainable, resource-efficient, and low-impact industrial ecosystems consistent with circular economy and renewable energy objectives. Full article
Show Figures

Figure 1

20 pages, 2180 KB  
Article
Distributed Robust Optimization Scheduling for Integrated Energy Systems Based on Data-Driven and Green Certificate-Carbon Trading Mechanisms
by Yinghui Chen, Weiqing Wang, Xiaozhu Li, Sizhe Yan and Ming Zhou
Processes 2026, 14(1), 174; https://doi.org/10.3390/pr14010174 - 4 Jan 2026
Viewed by 311
Abstract
High renewable energy penetration in Integrated Energy Systems (IES) introduces significant challenges related to bilateral source-load uncertainty and low-carbon economic dispatch. To address these issues, this paper proposes a novel scheduling framework that synergizes data-driven scenario generation with multi-objective distributionally robust optimization (DRO). [...] Read more.
High renewable energy penetration in Integrated Energy Systems (IES) introduces significant challenges related to bilateral source-load uncertainty and low-carbon economic dispatch. To address these issues, this paper proposes a novel scheduling framework that synergizes data-driven scenario generation with multi-objective distributionally robust optimization (DRO). Specifically, a deep temporal feature extraction model based on Long Short-Term Memory Autoencoder (LSTM-AE) is integrated with K-Means clustering to generate four typical operation scenarios, effectively capturing complex source-load fluctuations. To further enhance system efficiency and environmental sustainability, a refined Power-to-Gas (P2G) model considering waste heat recovery is developed to realize energy cascading, coupled with a joint market mechanism that integrates Green Certificate Trading (GCT) and tiered carbon pricing. Building on this, a multi-objective DRO model based on Conditional Value at Risk (CVaR) is formulated to optimize the trade-off between operating costs and carbon emissions. Case studies based on California test data demonstrate that the proposed method reduces total operating costs by 9.0% and carbon emissions by 139.9 tons compared to traditional robust optimization (RO). Moreover, the results confirm that the system maintains operational safety even under extreme source-load fluctuation scenarios. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 3478 KB  
Article
Co-Planning of Electrolytic Aluminum Industrial Parks with Renewables, Waste Heat Recovery, and Wind Power Subscription
by Yulong Yang, Weiyang Liu, Zihang Zhang, Zhongwen Yan and Ruiming Zhang
Sustainability 2026, 18(1), 297; https://doi.org/10.3390/su18010297 - 27 Dec 2025
Viewed by 219
Abstract
Electrolytic aluminum is one of the most energy-intensive industrial processes and offers strong potential for demand-side flexibility and renewable energy integration. However, existing studies mainly focus on operational scheduling, while comprehensive planning frameworks at the industrial-park scale remain limited. This study proposes an [...] Read more.
Electrolytic aluminum is one of the most energy-intensive industrial processes and offers strong potential for demand-side flexibility and renewable energy integration. However, existing studies mainly focus on operational scheduling, while comprehensive planning frameworks at the industrial-park scale remain limited. This study proposes an optimal planning framework for electrolytic aluminum that co-optimizes renewable energy investments, waste heat recovery, and green power trading while capturing the temperature safety constraints of electrolytic cells. The electrolytic aluminum process is explicitly modeled with heat exchangers to enable combined cooling–heating–power supply for nearby users. A wind power priority subscription mechanism and green certificate compliance are incorporated to enhance practical applicability and support future decarbonization requirements. Moreover, a two-stage particle swarm-deterministic optimization scheme is developed to provide a tractable solution to the inherently nonconvex mixed-integer nonlinear model. Case studies based on a real plant in Xinjiang, China, demonstrate that the proposed framework can raise the green electricity aluminum share to 60.4%, reduce annual carbon emissions by 52.0%, and significantly increase total system profit compared with the benchmark configuration, highlighting its economic and sustainability benefits for industrial park development. Full article
Show Figures

Figure 1

30 pages, 2625 KB  
Article
Hybrid Neutrosophic Fuzzy Multi-Criteria Assessment of Energy Efficiency Enhancement Systems: Sustainable Ship Energy Management and Environmental Aspect
by Hakan Demirel, Mehmet Karadağ, Veysi Başhan, Yusuf Tarık Mutlu, Cenk Kaya, Muhammet Gul and Emre Akyuz
Sustainability 2026, 18(1), 166; https://doi.org/10.3390/su18010166 - 23 Dec 2025
Viewed by 331
Abstract
Improving ship energy efficiency has become a critical priority for reducing fuel consumption and meeting international decarbonization targets. In this study, eight major groups of energy efficiency improvement systems—including wind and solar energy technologies, hull and propeller modifications, air lubrication, green propulsion options, [...] Read more.
Improving ship energy efficiency has become a critical priority for reducing fuel consumption and meeting international decarbonization targets. In this study, eight major groups of energy efficiency improvement systems—including wind and solar energy technologies, hull and propeller modifications, air lubrication, green propulsion options, waste heat recovery, and engine power limitation—were evaluated against seven critical success factors. A hybrid neutrosophic fuzzy multi-criteria decision-making (MCDM) framework was employed to capture expert uncertainty and prioritize alternatives. Neutrosophic fuzzy sets were adopted because they more comprehensively represent uncertainty—simultaneously modeling truth, indeterminacy, and falsity, providing superior capability to address expert ambiguity compared with classical fuzzy, intuitionistic fuzzy, gray, or other uncertainty-handling frameworks. Trapezoidal Neutrosophic Fuzzy Analytic Hierarchy Process (AHP) (TNF-AHP) was first applied to determine the relative importance of the criteria, highlighting fuel savings and cost-effectiveness as dominant factors with 38% weight. Subsequently, the Fuzzy Combined Compromise Solution (F-CoCoSo) method was used to rank the alternatives. Results indicate that solar energy systems and wind-assisted propulsion consistently rank highest (with 3.35 and 2.92 performance scores) across different scenarios, followed by green propulsion technologies, while waste heat recovery and engine power limitation show lower performance. These findings not only provide a structured assessment of current technological options, but also offer actionable guidance for shipowners, operators, and policymakers seeking to prioritize investments in sustainable maritime operations. Full article
(This article belongs to the Special Issue Sustainable Maritime Governance and Shipping Risk Management)
Show Figures

Figure 1

18 pages, 2500 KB  
Proceeding Paper
Interface Engineering in Hybrid Energy Systems: A Case Study of Enhance the Efficiency of PEM Fuel Cell and Gas Turbine Integration
by Abdullatif Musa, Gadri Al-Glale and Magdi Hassn Mussa
Eng. Proc. 2025, 117(1), 15; https://doi.org/10.3390/engproc2025117015 - 18 Dec 2025
Viewed by 750
Abstract
Integrating electrochemical fuel cells and internal combustion engines can enhance the total efficiency and sustainability of power systems. This study presents a promising solution by integrating a Proton Exchange Membrane Fuel Cell (PEMFC) with a mini gas turbine, forming a hybrid system called [...] Read more.
Integrating electrochemical fuel cells and internal combustion engines can enhance the total efficiency and sustainability of power systems. This study presents a promising solution by integrating a Proton Exchange Membrane Fuel Cell (PEMFC) with a mini gas turbine, forming a hybrid system called the “Oya System.” This approach aims to mitigate the efficiency losses of gas turbines during high ambient temperatures. The hybrid model was designed using Aspen Plus for modelling and the EES simulation program for solving mathematical equations. The primary objective of this research is to enhance the efficiency of gas turbine systems, particularly under elevated ambient temperatures. The results demonstrate a notable increase in efficiency, rising from 37.97% to 43.06% at 10 °C (winter) and from 31.98% to 40.33% at 40 °C (summer). This improvement, ranging from 5.09% in winter to 8.35% in summer, represents a significant achievement aligned with the goals of the Oya System. Furthermore, integrating PEMFC contributes to environmental sustainability by utilising hydrogen, a clean energy source, and reducing greenhouse gas emissions. The system also enhances efficiency through waste heat recovery, further optimising performance and reducing energy losses. This research highlights the critical role of interface engineering in the hybrid system, particularly the interaction between the PEMFC and the gas turbine. Integrating these two systems involves complex interfaces that facilitate the transfer of electrochemistry, energy, and materials, optimising the overall performance. This aligns with the conference session’s focus on green technologies and resource efficiency. The Oya System exemplifies how innovative hybrid systems can enhance performance while promoting environmentally friendly processes. Full article
Show Figures

Figure 1

26 pages, 3837 KB  
Article
Design and Performance Analysis of MPPT Algorithms Applied to Multistring Thermoelectric Generator Arrays Under Multiple Thermal Gradients
by Emerson Rodrigues de Lira, Eder Andrade da Silva, Sergio Vladimir Barreiro Degiorgi, João Paulo Pereira do Carmo and Oswaldo Hideo Ando Junior
Energies 2025, 18(24), 6613; https://doi.org/10.3390/en18246613 - 18 Dec 2025
Viewed by 313
Abstract
Thermoelectric systems configured in multistring arrays of thermoelectric generators (TEGs) represent a promising solution for energy harvesting in environments with non-uniform thermal gradients. However, the presence of multiple maximum power points (MPPs) in such configurations poses significant challenges to energy extraction efficiency. This [...] Read more.
Thermoelectric systems configured in multistring arrays of thermoelectric generators (TEGs) represent a promising solution for energy harvesting in environments with non-uniform thermal gradients. However, the presence of multiple maximum power points (MPPs) in such configurations poses significant challenges to energy extraction efficiency. This study presents a comprehensive performance evaluation of four maximum power point tracking (MPPT) algorithms, Perturb and Observe (P&O), Incremental Conductance (InC), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA), applied to multistring thermoelectric generator (TEG) arrays under multiple and asymmetric thermal gradients. The simulated systems, modeled in MATLAB/Simulink, replicate real-world thermoelectric configurations by employing series-parallel topologies and eleven distinct thermal scenarios, including uniform, localized, and sinusoidal temperature distributions. The key contribution of this work lies in demonstrating the superior capability of metaheuristic algorithms (PSO and GA) to locate the global maximum power point (GMPP) in complex thermal environments, outperforming classical methods (P&O and InC), which consistently converged to local maxima under multi-peak conditions. Notably, PSO achieved the best average convergence time (0.23 s), while the GA recorded the fastest response (0.05 s) in the most challenging multi-peak scenarios. Both maintained high tracking accuracy (error ≈ 0.01%) and minimized power ripple, resulting in conversion efficiencies exceeding 97%. The study emphasizes the crucial role of algorithm selection in maximizing energy harvesting performance in practical TEG applications such as embedded systems, waste heat recovery, and autonomous sensor networks. Future directions include physical validation through prototypes, incorporation of dynamic thermal modeling, and development of hybrid or AI-enhanced MPPT strategies. Full article
Show Figures

Figure 1

35 pages, 1516 KB  
Review
Organic Rankine Cycle System Review: Thermodynamic Configurations, Working Fluids, and Future Challenges in Low-Temperature Power Generation
by Felix Donate Sánchez, Javier Barba Salvador and Carmen Mata Montes
Energies 2025, 18(24), 6561; https://doi.org/10.3390/en18246561 - 15 Dec 2025
Viewed by 1162
Abstract
In the context of the zero-carbon transition, this article provides a comprehensive review of Organic Rankine Cycle (ORC) technologies for low-grade heat recovery and conversion to power. It surveys a wide range of renewable and waste heat sources—including geothermal, solar thermal, biomass, internal [...] Read more.
In the context of the zero-carbon transition, this article provides a comprehensive review of Organic Rankine Cycle (ORC) technologies for low-grade heat recovery and conversion to power. It surveys a wide range of renewable and waste heat sources—including geothermal, solar thermal, biomass, internal combustion engine exhaust, and industrial process heat—and discusses the integration of ORC systems to enhance energy recovery and thermal efficiency. The analysis examines various configurations, from basic and regenerative cycles to advanced transcritical and supercritical designs, cascaded systems, and multi-source integration, evaluating their thermodynamic performance for different heat source profiles. A critical focus is placed on working fluid selection, where the landscape is being reshaped by stringent regulatory frameworks such as the EU F-Gas regulation, driving a shift towards low-GWP hydrofluoroolefins, natural refrigerants, and tailored zeotropic mixtures. The review benchmarks ORC against competing technologies such as the Kalina cycle, Stirling engines, and thermoelectric generators, highlighting relative performance characteristics. Furthermore, it identifies key trends, including the move beyond single-source applications toward integrated hybrid systems and the use of multi-objective optimization to balance thermodynamic, economic, and environmental criteria, despite persistent challenges related to computational cost and real-time control. Key findings confirm that ORC systems significantly improve low-grade heat utilization and overall thermal efficiency, positioning them as vital components for integrated zero-carbon power plants. The study concludes that synergistically optimizing ORC design, refrigerant choice in line with regulations, and system integration strategies is crucial for maximizing energy recovery and supporting the broader zero-carbon energy transition. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

28 pages, 12908 KB  
Article
Energy, Exergy, Economic, and Environmental (4E) Performance Analysis and Multi-Objective Optimization of a Compressed CO2 Energy Storage System Integrated with ORC
by Yitong Wu, Chairunnisa, Kyaw Thu and Takahiko Miyazaki
Energy Storage Appl. 2025, 2(4), 18; https://doi.org/10.3390/esa2040018 - 10 Dec 2025
Viewed by 405
Abstract
Current CO2-based energy storage systems still face several unsolved technical challenges, including strong thermal destruction between the multi-stage compression and expansion processes, significant exergy destruction in heat exchange units, limited utilization of low-grade heat, and the lack of an integrated comprehensive [...] Read more.
Current CO2-based energy storage systems still face several unsolved technical challenges, including strong thermal destruction between the multi-stage compression and expansion processes, significant exergy destruction in heat exchange units, limited utilization of low-grade heat, and the lack of an integrated comprehensive performance framework capable of simultaneously evaluating thermodynamic, economic, and environmental performance. Although previous studies have explored various compressed CO2 energy storage (CCES) configurations and CCES–Organic Rankine Cycle (ORC) couplings, most works treat the two subsystems separately, neglect interactions between the heat exchange loops, or overlook the combined effects of exergy losses, cost trade-offs, and CO2-emission reduction. These gaps hinder the identification of optimal operating conditions and limit the system-level understanding needed for practical application. To address these challenges, this study proposes an innovative system that integrates a multi-stage CCES system with ORC. The system introduces ethylene glycol as a dual thermal carrier, coupling waste-heat recovery in the CCES with low-temperature energy utilization in the ORC, while liquefied natural gas (LNG) provides cold energy to improve cycle efficiency. A comprehensive 4E (energy, exergy, economic, and environmental) assessment framework is developed, incorporating thermodynamic modeling, exergy destruction analysis, CEPCI-based cost estimation, and environmental metrics including primary energy saved (PES) and CO2 emission reduction. Sensitivity analyses on the high-pressure tank (HPT) pressure, heat exchanger pinch temperature difference, and pre-expansion pressure of propane (P30) reveal strong nonlinear effects on system performance. A multi-objective optimization combining NSGA-II and TOPSIS identifies the optimal operating condition, achieving 69.6% system exergy efficiency, a 2.07-year payback period, and 1087.3 kWh of primary energy savings. The ORC subsystem attains 49.02% thermal and 62.27% exergy efficiency, demonstrating synergistic effect between the CCES and ORC. The results highlight the proposed CCES–ORC system as a technically and economically feasible approach for high-efficiency, low-carbon energy storage and conversion. Full article
Show Figures

Figure 1

40 pages, 5505 KB  
Article
Thermo-Economic Assessment of the Organic Rankine Cycle Combined with an Ejector Cooling Cycle Driven by Low-Grade Waste Heat
by Wichean Singmai, Pichet Janpla, Kittiwoot Sutthivirode, Tongchana Thongtip and Natthawut Ruangtrakoon
Energies 2025, 18(24), 6408; https://doi.org/10.3390/en18246408 - 8 Dec 2025
Viewed by 358
Abstract
This paper proposes an energy, exergy, economic, and exergoeconomic (4E) analysis of an Organic Rankine Cycle (ORC) enhanced by an ejector refrigeration system. The two systems are combined via an intercooler, where the unwanted heat is transferred to the ejector cooling loop. The [...] Read more.
This paper proposes an energy, exergy, economic, and exergoeconomic (4E) analysis of an Organic Rankine Cycle (ORC) enhanced by an ejector refrigeration system. The two systems are combined via an intercooler, where the unwanted heat is transferred to the ejector cooling loop. The major objective is to reduce the discharge pressure of the expander so that higher power is achieved. However, the combined system requires more equipment and energy input, and, hence, 4E analysis is an efficient tool for assessing the feasibility of it in practical use based on a comprehensive analysis. This study aims to provide a systematic 4E-based evaluation of an ORC integrated with an ejector cooling cycle under realistic tropical conditions. The innovation of this work lies in combining unified thermodynamic, economic, and exergoeconomic assessments to quantify both performance enhancement and cost interactions attributable to condenser-side cooling. The findings offer significant insights into the dominant thermal–economic trade-offs, identify key cost drivers within the ORC + ECC configuration, and highlight operating conditions that maximize the power output and minimize the electricity generation cost. These results contribute practical guidelines for improving the feasibility and deployment of ORC–ejector systems for low-grade heat recovery applications. A theoretical model is formulated to examine both energy and exergy performance indicators together with key economic metrics. Parametric investigations are conducted to investigate the effects of the intercooler temperature (16–22 °C) and generator temperature (70–85 °C) on overall system performance. It is found that the integration of an ejector cooling cycle (ORC + ECC) can significantly enhance the thermo-economic potential of waste heat power generation systems compared to a standard ORC, from both exergoeconomic and LCOE perspectives. The exergoeconomic analysis identified that, while the expander dominates the cost of the standard ORC, the condenser and cooling tower become critical components of the ORC + ECC due to their high exergy-destruction costs. At the system level, the LCOE results confirm that the ORC + ECC can achieve 37–38% lower electricity generation costs compared to the standard ORC. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

21 pages, 3522 KB  
Article
An Experimental Analysis of the Influence of Pyrolytic Oil on the Spray Breakup Process
by Tilen Jernejc, Gorazd Bombek, Ignacijo Biluš, Luka Kevorkijan and Luka Lešnik
Clean Technol. 2025, 7(4), 108; https://doi.org/10.3390/cleantechnol7040108 - 3 Dec 2025
Viewed by 520
Abstract
Solid waste presents a very large problem in the developed world. Waste plastics, which make up a large part of solid waste, have high energy value, which is discarded if they are not treated properly. Most of the plastic found in solid waste [...] Read more.
Solid waste presents a very large problem in the developed world. Waste plastics, which make up a large part of solid waste, have high energy value, which is discarded if they are not treated properly. Most of the plastic found in solid waste is produced from petrochemical material, so it can be used in resource recovery processes to produce various materials. One promising resource recovery process is the pyrolysis process, from which pyrolytic oil, gas, and solid residue are obtained. Pyrolytic oils have properties that are similar to conventional fossil fuels, and are promising fuels for use in heat engines or heating applications. In the present work, HDPE plastic in the form of plastic bottles caps was collected from solid waste and used in a thermal pyrolysis process for the production of pyrolytic oil. The obtained oil was characterised, and the obtained results were compared to conventional fuels. The obtained oil was used further in an oil burner fuel injection application, in which the spray breakup characteristics were monitored and analysed using VisiSize particle characterisation systems. The obtained results were compared to those of conventional fuel. The results indicate that the difference in fuel properties influences the spray breakup process slightly, but the differences are rather small. This indicates that from a spray development perspective, pyrolytic oil can be used as a substitute for conventional fuels in oil burners. Full article
Show Figures

Figure 1

Back to TopTop