Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermal Characterization
2.3. Pyrometallurgical Trials and Products Characterization
2.4. Thermodynamic Modeling
3. Results and Discussion
3.1. Chemical and Mineralogical Characterization
3.2. Thermal Behavior
3.3. Heat Capacity and Thermodynamic Functions
3.4. Reduction Trials of the Lead Paste–Jarosite-Na2CO3 Mixtures
3.5. Thermodynamic Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olcay, R.H.; Palacios, E.; Reyes, I.; Patiño, F.; Reyes, M.; Pérez, M.; Hernan, I.; Juárez, J.; Flores, M.İ. Behavior of toxic elements in the thermal decomposition of industrial sodium jarosite: A kinetic analysis. React. Kinet. Mech. Catal. 2025, 138, 107–124. [Google Scholar] [CrossRef]
- Frost, R.L.; Wills, R.; Kloprogge, J.; Martens, W. Thermal decomposition of ammonium jarosite (NH4)Fe3(SO4)2(OH)6. J. Therm. Anal. Calorim. 2006, 84, 489–496. [Google Scholar] [CrossRef]
- Jiménez, C.; Flores, M.; Romero, A.; Hernández, A.; López, J.; Cuéllar, L.; Colin, E. Recovery of silver and lead from jarosite residues by roasting and reducing pyrometallurgical processes. Metals 2024, 14, 954. [Google Scholar] [CrossRef]
- Jiménez, C.; Favela, M.; Romero, A.; Hernández, A.; Rodríguez, J.; Cruz, A.; Colin, E. Pyrometallurgical treatment of jarosite residue with a mixture of CaO, SiO2, and CaSi. J. Min. Metall. Sect. B 2024, 60, 205–214. [Google Scholar] [CrossRef]
- Salminen, J.; Nyberg, J.; Imris, M.; Magnus, B. Smelting jarosite and sulphur residue in a plasma furnace. In PbZn 2020, Proceedings of the 9th International Symposium on Lead and Zinc Processing, San Diego, CA, USA, 23–27 February 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 391–403. [Google Scholar]
- Rämä, M.; Nurmi, S.; Jokilaakso, A.; Klemettinen, L.; Taskinen, P.; Salminen, J. Thermal processing of jarosite leach residue for a safe disposable slag and valuable metals recovery. Metals 2018, 8, 744. [Google Scholar] [CrossRef]
- Ismael, M.R.; Carvalho, J.M. Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Miner. Eng. 2003, 16, 31–39. [Google Scholar] [CrossRef]
- Sinclair, R.J. The Extractive Metallurgy of Zinc; The Australasian Institute of Mining and Metallurgy: Carlton, VIC, Australia, 2005; Volume 13. [Google Scholar]
- Li, Y.; Wang, Y.; Chen, M.; Huang, T.; Yang, F.; Wang, J. Current status and technological progress in lead recovery from electronic waste. Int. J. Environ. Sci. Technol. 2023, 20, 1037–1052. [Google Scholar] [CrossRef]
- Nowińska, K.; Adamczyk, Z. Zinc and Lead Metallurgical Slags as a Potential Source of Metal Recovery: A Review. Materials 2023, 16, 7295. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Tang, C.; Klemettinen, L.; Rämä, M.; Wan, X.; Jokilaakso, A. A new pyrometallurgical recycling technique for lead battery paste without SO2 generation—A thermodynamic and experimental investigation. In Extraction 2018, Proceedings of the First Global Conference on Extractive Metallurgy, Ottawa, Canada, 26–29 August 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1109–1120. [Google Scholar] [CrossRef]
- Xie, S.; Zhao, B. Phase Equilibrium Studies of Nonferrous Smelting Slags: A Review. Metals 2024, 14, 278. [Google Scholar] [CrossRef]
- Sánchez, A.; Gutiérrez, V.; Cruz, A.; Sánchez, R. Lead production from recycled paste of lead acid batteries with SiC-Na2CO3. Russ. J. Non Ferr. Met. 2016, 57, 316–324. [Google Scholar] [CrossRef]
- Zulhan, Z.; Adzana, Z.; Munawaroh, M.; Yusro, A.H.; Christian, J.D.; Saputri, A.D.; Hidayat, T. Sulfur Removal and Iron Extraction from Natrojarosite Residue of Laterite Nickel Ore Processing by Reduction Roasting. Metals 2023, 13, 52. [Google Scholar] [CrossRef]
- Steinlechner, S.; Antrekowitsch, J. Thermodynamic considerations for a pyrometallurgical extraction of indium and silver from a jarosite residue. Metals 2018, 8, 335. [Google Scholar] [CrossRef]
- Majzlan, J.; Glaskák, P.; Fisher, R.A.; White, M.A.; Johnson, M.B.; Woodfield, B.F.; Boerio-Goates, J. Heat capacity, entropy, and magnetic properties of jarosite-group compounds. Phys. Chem. Miner. 2010, 37, 635–651. [Google Scholar] [CrossRef]
- Sánchez, J.E.; Cruz, A.; Flores, M.A.; Romero, A.; Pérez, M.; Gutiérrez, V.H.; Sánchez, R.G.; Jiménez, J.C. Waste minimization of lead paste and jarosite to recover a silver-rich alloy by the pyrometallurgical route. Recycling 2024, 9, 119. [Google Scholar] [CrossRef]
- Pérez, M.; Delgado, R.; Soto, M.; Reyes, A. Synthesis, thermodynamic, and kinetics of rubidium jarosite decomposition in calcium hydroxide solutions. Metall. Mater. Trans. B 2012, 43, 773–780. [Google Scholar] [CrossRef]
- ASTM E1269-11; Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry*. ASTM International: West Conshohocken, PA, USA, 2011. [CrossRef]
- ISO 11357-4:2021; Plastics—Differential Scanning Calorimetry (DSC)—Part 4: Determination of Specific Heat Capacity*. ISO: Geneva, Switzerland, 2021.
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; Pelton, A.D.; et al. FactSage Thermochemical Software and Databases, version 8.2. CRCT; Polytechnique Montréal and Thermfact Ltd.: Montreal, QC, Canada, 2022. [Google Scholar]
- Jak, E.; Hidayat, T.; Prostakova, V.; Shishin, D.; Shevchenko, M.; Hayes, P.C. Integrated experimental and thermodynamic modelling research for primary and recycling pyrometallurgy. In Proceedings of the EMC 2019, Düsseldorf, Germany, 23–26 June 2019; pp. 587–604. [Google Scholar]
- Kamberović, Ž.; Ranitović, M.; Manojlović, V.; Jevtić, S.; Gajić, N.; Štulović, M. Thermodynamic and kinetic analysis of jarosite Pb–Ag sludge thermal decomposition for hydrometallurgical utilization of valuable elements. J. Therm. Anal. Calorim. 2023, 148, 11799–11810. [Google Scholar] [CrossRef]
- Majzlan, J.; Stevens, R.; Boerio, J.; Woodfield, B.; Navrotsky, A.; Burns, P.; Crawford, M.; Amos, T. Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Phys. Chem. Miner. 2004, 31, 518–531. [Google Scholar] [CrossRef]
- Debye, P. Zur Theorie der spezifischen Waerme. Ann. Phys. 1912, 39, 789–839. [Google Scholar] [CrossRef]
- Bowman, S.; Pathak, A.; Agrawal, V.; Sharma, S. A simple method for obtaining heat capacity coefficients of minerals. Am. Mineral. 2024, 109, 624–627. [Google Scholar] [CrossRef]
- Guyot, F.; Richet, P. High-temperature heat capacity and phase transitions of CaTiO3 perovskite. Phys. Chem. Miner. 1993, 20, 141–146. [Google Scholar] [CrossRef]
- King, E.; Weller, M. High-temperature phase transformation and thermodynamic properties of Ca3(VO4)2. J. Am. Ceram. Soc. 2024, 107, 3094–3102. [Google Scholar] [CrossRef]
- Yi, J.; Gao, Z.; Li, S.; San, T.; Kong, X.; Yang, B.; Liu, D.; Xu, B.; Jiang, W. Separation and enrichment of Au and Ag from lead anode slime by a selective oxidation–vacuum volatilization–carbon reduction process. Metals 2024, 14, 693. [Google Scholar] [CrossRef]
Jarosite | Chemical Composition (wt. %) | |||||||||
PbTotal | STotal | Cu | Fe | Ag | Ca | Na | Si | Zn | NH4 | |
0.45 | 17.47 | 0.17 | 8.36 | 0.0143 | 16.31 | 0.46 | 1.10 | 4.88 | 1.2 | |
Lead Paste | 90.65 | 5.34 | 0.03 | 0.07 | 0.001 | - | - | - | - | - |
Chemical Composition | Cp (J/mol·K) | Temperature (K) | Source |
---|---|---|---|
(NH4)Fe3(SO4)2(OH)6 | Cp = 25,922.54 − 155.91T + 0.23335T2 | 355–400 | This work (Figure 8) |
(NH4)0.87(H3O)0.13Fe3(SO4)2(OH)6 | Cp = 280.6 + 0.6149T − 3.1997 × 106T−2 | 273–400 | [24] |
(H3O)Fe3(SO4)2(OH)6 | Cp = 287.2 + 0.6281T − 3.286 × 106T−2 | 273–400 | [24] |
NH4Fe3(SO4)2(OH)6 | Cp = 621.48 + 95.44·10−3T − 1.98·105T−2 | 298.15–450 | [16] |
KFe3(SO4)2(OH)6 | Cp ≈ 270–280 (estimated) | 298.15 | [16] |
NaFe3(SO4)2(OH)6 | Cp ≈ 270–280 (estimated) | 298.15 | [16] |
T(K) | Cp (J mol−1K−1) | S(J mol−1K−1) | H(T)–H(0) (kJ mol−1) | G(T) (J mol−1) |
---|---|---|---|---|
300 | 203.730 | 0.0146 | 0.0044 | 1.346 × 10−7 |
310 | 117.299 | 5.2864 | 1.6109 | −0.0916 |
320 | 40.7663 | 7.7159 | 2.3748 | −0.2972 |
330 | −14.9089 | 8.0239 | 2.4735 | −0.5292 |
340 | −40.3757 | 7.0990 | 2.1629 | −0.7384 |
350 | −24.7820 | 6.0470 | 1.8001 | −0.9046 |
400 | 854.0232 | 48.4068 | 18.1986 | −2.9274 |
450 | 1156.5326 | 168.1124 | 69.1554 | −14.4671 |
500 | 2121.6817 | 342.1404 | 152.2500 | −37.6884 |
550 | 1967.3402 | 543.2979 | 257.7541 | −74.7411 |
600 | 1878.8510 | 707.0119 | 351.8424 | −120.700 |
650 | 2214.2867 | 868.2924 | 452.7452 | −171.884 |
700 | 2846.0580 | 1054.1795 | 578.4111 | −228.0324 |
750 | 3646.5762 | 1277.0256 | 740.1994 | −290.1759 |
800 | 4491.3389 | 1539.6805 | 943.9773 | −359.8341 |
850 | 5252.7571 | 1835.8054 | 1188.4775 | −437.7874 |
900 | 5803.2420 | 2153.2198 | 1466.3679 | −524.2140 |
950 | 6014.1754 | 2473.5642 | 1762.7479 | −618.1087 |
1000 | 6008.0018 | 2780.3646 | 2061.8699 | −718.6789 |
1100 | 8808.7863 | 3463.9397 | 2781.0192 | −935.7418 |
1200 | 25,564.1042 | 4873.0176 | 4413.3036 | −1195.7301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez Vite, J.E.; Cruz Ramírez, A.; Flores Favela, M.E.; Sánchez Alvarado, R.G.; Romero Serrano, J.A.; García Hernández, M.; Jiménez Romero, T.d.R.; Jiménez Lugos, J.C. Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes. Recycling 2025, 10, 136. https://doi.org/10.3390/recycling10040136
Sanchez Vite JE, Cruz Ramírez A, Flores Favela ME, Sánchez Alvarado RG, Romero Serrano JA, García Hernández M, Jiménez Romero TdR, Jiménez Lugos JC. Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes. Recycling. 2025; 10(4):136. https://doi.org/10.3390/recycling10040136
Chicago/Turabian StyleSanchez Vite, Jose Enrique, Alejandro Cruz Ramírez, Manuel Eduardo Flores Favela, Ricardo Gerardo Sánchez Alvarado, José Antonio Romero Serrano, Margarita García Hernández, Teresita del Refugio Jiménez Romero, and Juan Cancio Jiménez Lugos. 2025. "Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes" Recycling 10, no. 4: 136. https://doi.org/10.3390/recycling10040136
APA StyleSanchez Vite, J. E., Cruz Ramírez, A., Flores Favela, M. E., Sánchez Alvarado, R. G., Romero Serrano, J. A., García Hernández, M., Jiménez Romero, T. d. R., & Jiménez Lugos, J. C. (2025). Thermodynamic Assessment of the Pyrometallurgical Recovery of a Pb-Ag Alloy from a Mixture of Ammonium Jarosite–Lead Paste Wastes. Recycling, 10(4), 136. https://doi.org/10.3390/recycling10040136