Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (242)

Search Parameters:
Keywords = tribo-testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5148 KB  
Article
Improving Tribological Properties of Oil-in-Water Lubricating Fluid Using Hybrid Protic Ionic Liquid and Nanoparticle Additives
by Raimondas Kreivaitis, Jolanta Treinytė, Artūras Kupčinskas, Milda Gumbytė and Ieva Gaidė
Lubricants 2026, 14(1), 3; https://doi.org/10.3390/lubricants14010003 - 22 Dec 2025
Viewed by 317
Abstract
Water is attractive as a base fluid due to its availability and environmental friendliness. To enhance its lubricity, environmentally friendly additives must be applied. This study combined protic ionic liquid and several nanoparticles to form hybrid additives for an oil-in-water lubricant. The performance [...] Read more.
Water is attractive as a base fluid due to its availability and environmental friendliness. To enhance its lubricity, environmentally friendly additives must be applied. This study combined protic ionic liquid and several nanoparticles to form hybrid additives for an oil-in-water lubricant. The performance of these additives was evaluated using wettability, tribo-testing, and worn-surface analysis. The tribo-test employed a ball-on-plate reciprocating tribometer that used bearing steel/bearing steel and WC/bearing steel friction pairs. The results were compared with those obtained using two commercial additives. It was found that the investigated additives are promising candidates for water-based lubricants, as they exhibit comparable wettability. Moreover, they outperform the reference samples in terms of lubricity. According to the results, the suggested lubrication mechanism includes enhanced wettability, composite tribo-film formation, surface polishing, and mending. Full article
(This article belongs to the Special Issue Lubrication Mechanism of Ionic Liquids)
Show Figures

Figure 1

13 pages, 6633 KB  
Article
Composite Oxidation Mechanism of Cu/Cu Contact Pairs During Current-Carrying Rolling in O2-N2-H2O Vapor Mixture
by Jianhua Cheng, Fei Li, Yuhang Li, Haihong Wu, Bohan Li, Chenfei Song, Zhibin Fu and Yongzhen Zhang
Materials 2025, 18(24), 5693; https://doi.org/10.3390/ma18245693 - 18 Dec 2025
Viewed by 257
Abstract
Oxidation is a critical factor contributing to material wear and the degradation of conductive performance during current-carrying tribological processes. The present study investigated the composite oxidation mechanisms that occurred during current-carrying rolling in mixed atmospheres containing O2 and H2O vapor. [...] Read more.
Oxidation is a critical factor contributing to material wear and the degradation of conductive performance during current-carrying tribological processes. The present study investigated the composite oxidation mechanisms that occurred during current-carrying rolling in mixed atmospheres containing O2 and H2O vapor. The results obtained in a dry N2/O2 mixture, humid N2, and humid N2/O2 mixture indicated that the oxidation mechanisms on current-carrying rolling surfaces involved thermal oxidation, tribo-oxidation, and anodic oxidation. XPS analysis confirmed that the primary oxidation product was CuO. Conductive atomic force microscopy (C-AFM) revealed that surface oxidation caused a significant reduction in conductive α-spots, leading to an increase in contact resistance. Contact resistance exhibited a quasi-linear relationship with the surface CuO content. Contact angle measurements and adhesion tests showed that the enhanced hydrophilicity of the oxidized surface and the resulting high adhesion contributed to an increase in the macroscopic friction coefficient. In humid N2/O2 with 50% relative humidity (RH), the friction coefficient rapidly exceeded 0.8 when the O2 content surpassed 25%. Wear morphology analysis demonstrated that this abrupt increase in the friction coefficient induced fatigue wear on the surface. Overall, the present study elucidated the composite oxidation mechanisms during current-carrying rolling and clarified the pathways through which oxidation affected current-carrying tribological performance. These findings may contribute to improved failure analysis and the safe, reliable operation of electrical contact pairs. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 10835 KB  
Article
Comparison Study on the Microstructure, Hardness and Wear Properties of Ti Alloy Composites Reinforced by Carbon Nanomaterials
by Nguyen Binh An, Tran Van Hau, Tran Bao Trung, Pham Van Trinh and Doan Dinh Phuong
Inorganics 2025, 13(12), 405; https://doi.org/10.3390/inorganics13120405 - 12 Dec 2025
Viewed by 393
Abstract
In this study, titanium alloy-based composites reinforced with carbon nanotubes (CNTs) and graphene (Gr) were fabricated via spark plasma sintering (SPS). The effects of CNT and Gr reinforcements on the microstructure, density, hardness, and tribological properties of the composites were systematically investigated. The [...] Read more.
In this study, titanium alloy-based composites reinforced with carbon nanotubes (CNTs) and graphene (Gr) were fabricated via spark plasma sintering (SPS). The effects of CNT and Gr reinforcements on the microstructure, density, hardness, and tribological properties of the composites were systematically investigated. The results revealed that CNTs and Gr were dispersed within the Ti alloy matrix. All composites exhibited high relative densities about 99%, confirming the strong densification capability of the SPS process. The incorporation of CNTs and Gr significantly enhanced the mechanical performance of the composites. The maximum hardness values of 445.8 HV and 430.5 HV were obtained for CNT/Ti and Gr/Ti composites containing 3 vol.% reinforcement, corresponding to improvements of 34% and 30%, respectively, compared with the unreinforced Ti alloy. Tribological tests further revealed notable reductions in the coefficient of friction and wear rate for both CNT/Ti and Gr/Ti composites. These enhancements are attributed to the formation of a lubricating tribo-film composed of carbonaceous species and oxide particles (TiO2, Al2O3) on the worn surfaces. Among the two reinforcements, the obtained results indicated that CNTs are more effective in enhancing hardness, whereas graphene provides superior improvement in wear resistance of Ti alloy-based composites. Overall, this work demonstrated that the combination of Ti alloys with nanocarbon reinforcements is an effective approach to simultaneously enhance their mechanical and tribological performance. Full article
(This article belongs to the Special Issue Novel Metal Matrix Composite Materials)
Show Figures

Figure 1

21 pages, 11427 KB  
Article
The Effect of Heat Treatment on the Abrasive Wear Resistance of Boron-Alloyed Armor Steel Welded Joints
by Martyna Zemlik, Beata Białobrzeska, Mateusz Stachowicz and Łukasz Konat
Appl. Sci. 2025, 15(24), 12860; https://doi.org/10.3390/app152412860 - 5 Dec 2025
Viewed by 323
Abstract
As a result of welding processes in boron-alloyed martensitic armor steels, unfavorable microstructural changes occur, leading to a significant reduction in the mechanical properties of both the weld metal and the base material. The dendritic structure of the weld metal and the partial [...] Read more.
As a result of welding processes in boron-alloyed martensitic armor steels, unfavorable microstructural changes occur, leading to a significant reduction in the mechanical properties of both the weld metal and the base material. The dendritic structure of the weld metal and the partial tempering in the heat-affected zone contribute to the decreased durability of structural components, thereby deteriorating their performance. This issue is particularly important since such steels are widely used not only in the defense industry but also in the mining, construction, transportation, and metallurgical sectors, where they operate under conditions of intensive abrasive wear. For this reason, the authors attempted to improve the mechanical properties of welded joints of boron-alloyed martensitic armor steel (with a nominal hardness of 500 HBW) through post-weld heat treatment. The welded joint was evaluated based on metallographic examinations using light microscopy and scanning electron microscopy, as well as abrasive wear tests carried out on a T-07 tribotester. The conducted investigations demonstrated that, under loose abrasive conditions (using electrofused alumina), heat treatment increased the wear resistance of the joints by 55% compared to the as-welded condition. The obtained results were compared with selected grades of Hardox steel commonly used in industrial applications. Full article
(This article belongs to the Special Issue Advanced Welding Technology and Its Applications)
Show Figures

Figure 1

42 pages, 1598 KB  
Review
Nanoscale Characterization of Nanomaterial-Based Systems: Mechanisms, Experimental Methods, and Challenges in Probing Corrosion, Mechanical, and Tribological Properties
by Md Ashraful Hoque and Chun-Wei Yao
Nanomaterials 2025, 15(23), 1824; https://doi.org/10.3390/nano15231824 - 2 Dec 2025
Viewed by 1119
Abstract
Nanomaterial-based systems (NBS) have emerged as transformative elements in advanced surface engineering, offering superior corrosion resistance, mechanical strength, and tribological resilience governed by unique phenomena inherent to the nanoscale. However, bridging the knowledge gap between these enhanced physicochemical properties and the metrological tools [...] Read more.
Nanomaterial-based systems (NBS) have emerged as transformative elements in advanced surface engineering, offering superior corrosion resistance, mechanical strength, and tribological resilience governed by unique phenomena inherent to the nanoscale. However, bridging the knowledge gap between these enhanced physicochemical properties and the metrological tools required to quantify them remains a critical challenge. This review provides a comprehensive examination of the fundamental mechanisms, state-of-the-art experimental techniques, and computational strategies employed to probe NBS behavior. The article first elucidates the core mechanisms driving performance, including passive barrier formation, stimuli-responsive active corrosion inhibition, grain boundary strengthening, and the formation of protective tribo-films by 2D nanomaterial-based systems. Subsequently, the article evaluates the transition from conventional macroscopic testing to high-resolution in situ characterization, highlighting the capabilities of High-Speed Atomic Force Microscopy (HS-AFM), Liquid Cell Transmission Electron Microscopy (LC-TEM), and nanoindentation in visualizing dynamic defect evolution and measuring localized mechanical responses. Furthermore, the indispensable role of computational materials science—specifically Molecular Dynamics (MD) and Machine Learning (ML)—in predictive modeling and elucidating atomic-scale interactions is discussed. Finally, persistent challenges regarding substrate interference, sample heterogeneity, and instrumentation limits are addressed, concluding with a perspective on future research directions focused on standardization, operando testing, and the development of AI-driven “Digital Twins” for accelerated testing and material optimization. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

18 pages, 2169 KB  
Article
AI-Driven Rheological and Tribological Performance Modeling of Transmission Oil Blended with Castor Oil and Enhanced with CeO2 and MWCNTs Additives for Sustainable Lubrication Systems
by Vijaya Sarathi Timmapuram, Sudhanshu Dogra and Ankit Kotia
Lubricants 2025, 13(12), 523; https://doi.org/10.3390/lubricants13120523 - 30 Nov 2025
Viewed by 405
Abstract
This study examines the rheological and tribological behavior of bio-based nano-lubricants enhanced with cerium oxide (CeO2) and multi-walled carbon nanotubes (MWCNTs), alongside the application of artificial intelligence (AI) models for performance prediction. Rheological results confirmed non-Newtonian, shear-thinning behavior across all formulations. [...] Read more.
This study examines the rheological and tribological behavior of bio-based nano-lubricants enhanced with cerium oxide (CeO2) and multi-walled carbon nanotubes (MWCNTs), alongside the application of artificial intelligence (AI) models for performance prediction. Rheological results confirmed non-Newtonian, shear-thinning behavior across all formulations. CeO2-based lubricants exhibited significantly higher viscosities at 40 °C (up to ~3700 mPa·s at low shear), which decreased sharply with shear, indicating strong particle interactions. In contrast, MWCNT-based lubricants maintained moderate viscosities (90–365 mPa·s at 40 °C) with improved flowability due to nanotube alignment. At 100 °C, both systems showed viscosity reduction, stabilizing between 8 and 18 mPa·s, which favors pumpability in high-temperature applications. Tribological testing revealed distinct performance characteristics. CeO2 lubricants showed slightly higher coefficients of friction (0.144–0.169) but excellent wear resistance, achieving the lowest wear rate of 1.66 × 10−6 mm3/N-m. MWCNT-based lubricants offered stable and lower CoF values (0.116–0.148) while also providing very low wear rates, with MCO6 achieving 1.62 × 10−6 mm3/N-m. However, ternary blends (C20T80 and M20T80) displayed moderate CoF but significantly higher wear rates (up to 2.92 × 10−5 mm3/N-m), suggesting that blending improves dispersion but weakens tribo-film stability. To complement the experimental findings, support vector regression (SVR), artificial neural networks (ANN), and AdaBoost algorithms were employed to predict key performance parameters based on compositional and thermal input data. The models demonstrated high prediction accuracy, validating the feasibility of AI-driven formulation screening. These results highlight the complementary potential of CeO2 and MWCNT additives for high-performance bio-lubricant development and emphasize the role of machine learning in accelerating material optimization for sustainable lubrication systems. Full article
(This article belongs to the Special Issue Rheology of Lubricants in Lubrication Engineering)
Show Figures

Figure 1

23 pages, 3467 KB  
Article
Non-Equilibrium Molecular Dynamics Simulations of Different Base Oils (Mineral and Vegetable) and an Oil Blend
by Jack Nasr and Diana-Luciana Cursaru
Lubricants 2025, 13(11), 486; https://doi.org/10.3390/lubricants13110486 - 6 Nov 2025
Viewed by 574
Abstract
In a previous experimental study, a high-frequency reciprocating rig tribotester was used to test several base oils, including a mineral oil and a vegetable oil, as well as a blend of the two, with and without the addition of carbon-based nanoparticles. The results [...] Read more.
In a previous experimental study, a high-frequency reciprocating rig tribotester was used to test several base oils, including a mineral oil and a vegetable oil, as well as a blend of the two, with and without the addition of carbon-based nanoparticles. The results showed synergy between certain nanoparticles and the oil blend. As such, in this study, molecular dynamics simulations are conducted on three systems to find the model that most accurately represents the experimental setup. These systems consist of lubricant molecules sandwiched between two iron oxide surfaces. The lubricant molecules represent the three types of lubricant used in the experimental study: hexadecane for the mineral base oil, a mixture of fatty acids for the rapeseed oil, and a mixture of both hexadecane and fatty acids for the oil blend. Three system sizes were considered: the first with 100 molecules, the second with 200 molecules, and the third with 300 molecules. The density, velocity, and temperature profiles, as well as the shear rate and coefficient of friction, are analyzed. The results show that the 300-molecule systems show a similar trend to that observed in the experimental study, with the vegetable oil model having the lowest coefficient of friction, followed by the blend model and finally the hexadecane model. The different analyzed profiles provide valuable insights into the interactions within the lubricant film. Full article
Show Figures

Figure 1

25 pages, 6510 KB  
Article
Enhancing Dry-Sliding Wear Performance of a Powder-Metallurgy-Processed “Metal Matrix–Carbide” Composite via Laser Surface Modification
by Yuliia Chabak, Vasily Efremenko, Yevhen Barma, Ivan Petrišinec, Bohdan Efremenko, František Kromka, Ivan Sili and Taras Kovbasiuk
Eng 2025, 6(11), 313; https://doi.org/10.3390/eng6110313 - 5 Nov 2025
Cited by 1 | Viewed by 708
Abstract
The increasing demand for enhanced wear resistance and mechanical integrity in tooling applications has driven the development of advanced surface engineering strategies for high-alloy steels. Böhler K390 MICROCLEAN, a powder-metallurgical V–Cr–Mo–W cold work tool steel with high vanadium content, features a composite metal [...] Read more.
The increasing demand for enhanced wear resistance and mechanical integrity in tooling applications has driven the development of advanced surface engineering strategies for high-alloy steels. Böhler K390 MICROCLEAN, a powder-metallurgical V–Cr–Mo–W cold work tool steel with high vanadium content, features a composite metal matrix–carbide microstructure, consisting of uniformly distributed coarse vanadium carbides and finer carbides (M7C3, M6C/MC) embedded in a ferritic matrix. This study investigated the effects of non-melting laser surface treatment (LST) applied to both as-received and bulk heat-treated K390 specimens. Microstructural characterization using SEM, EBSD, XRD, and EDX revealed the formation of a hardened surface layer comprising a structureless mixture of ultrafine-grained martensite and retained austenite, localized around vanadium carbides. Lattice parameter analysis and Williamson–Hall evaluation demonstrated increased carbon content, lattice distortion, and crystallite size reduction, contributing to high dislocation density (6.4 × 1014 to 2.6 × 1015 m−2) and enhanced hardness. Microhardness was increased by up to 160% compared to the initial state (reaching 835–887 HV20), and dry-sliding testing showed up to 3.94 times reduced volume loss and decreased friction coefficients. Wear occurred via the formation and delamination of thin oxide tribo-layers, which enhanced the wear behavior. The combined approach of bulk heat treatment followed by LST produced a graded microstructure with superior mechanical stability, offering clear advantages for extending tool life under severe contact loads in stamping and forming operations. Full article
(This article belongs to the Special Issue Advances in Precision Machining and Surface Engineering of Materials)
Show Figures

Figure 1

17 pages, 11255 KB  
Article
Effect of Current Density on Mechanical and Tribological Properties of Wear-Resistant Cr Coatings
by Mária Hagarová, Gabriela Baranová, Alica Mašlejová, Peter Horňak, Dávid Csík, Marek Vojtko and Martin Truchlý
Crystals 2025, 15(11), 936; https://doi.org/10.3390/cryst15110936 - 30 Oct 2025
Viewed by 573
Abstract
As a functional coating, the wear-resistant Cr coating is of considerable importance in metal plating. In the present paper, S235 steel samples were electrodeposited with 5 µm thick Cr coating at current densities of 15, 27 and 40 A dm−2. Nanoindentation [...] Read more.
As a functional coating, the wear-resistant Cr coating is of considerable importance in metal plating. In the present paper, S235 steel samples were electrodeposited with 5 µm thick Cr coating at current densities of 15, 27 and 40 A dm−2. Nanoindentation was performed to measure the hardness of samples with electroplated Cr coating. Under the defined electroplating process conditions, the Cr coating hardness varied as a function of current density: the minimum average HIT value of 11.4 GPa was measured at a current density of 15 A dm−2 and the maximum average HIT value of 12.9 GPa was measured at 40 A dm−2. Tribological characteristics of coated samples were determined using the ball-on-disc tribo-method with surface evaluation of tribo-track on the confocal and electron microscope. The Cr coating deposited at 15 A dm−2 had the lowest wear resistance with a wear rate of 12.76 × 10−15 m3 (Nm)−1. The Cr coating deposited at 40 A dm−2 had the highest wear resistance on the sample with a wear rate of 3.84 × 10−15 m3 (Nm)−1. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

30 pages, 4411 KB  
Review
The Tribological Behavior of Electron Beam Powder Bed Fused Ti-6Al-4V: A Review
by Mohammad Sayem Bin Abdullah and Mamidala Ramulu
Metals 2025, 15(11), 1170; https://doi.org/10.3390/met15111170 - 23 Oct 2025
Viewed by 664
Abstract
This article comprehensively reviews the tribological behavior of a Ti-6Al-4V alloy manufactured via electron beam powder bed fusion (EB-PBF), an additive manufacturing process for aerospace and biomedical applications. EB-PBF Ti-6Al-4V demonstrates wear resistance that is superior or comparable to conventional Ti-6Al-4V. The reported [...] Read more.
This article comprehensively reviews the tribological behavior of a Ti-6Al-4V alloy manufactured via electron beam powder bed fusion (EB-PBF), an additive manufacturing process for aerospace and biomedical applications. EB-PBF Ti-6Al-4V demonstrates wear resistance that is superior or comparable to conventional Ti-6Al-4V. The reported average friction coefficient ranges between ~0.22 and ~0.75 during sliding wear in dry and lubricated conditions against metallic and ceramic counterparts when loading 1–50 N under varied surface and heat treatment conditions, and between 1.29 and 2.2 during fretting wear against EB-PBF Ti-6Al-4V itself. The corresponding average specific wear rates show a broad range between ~8.20 × 10−5 mm3/Nm and ~1.30 × 10−3 mm3/Nm during sliding wear. Lubrication reduces the wear rates and/or the friction coefficient. Wear resistance can be improved via machining and heat treatment. Wear anisotropy is reported and primarily attributed to microhardness variations, which can be mitigated through lubrication and post-processing. The effects of applied load and frequency on EB-PBF Ti-6Al-4V are also discussed. The wear resistance at elevated temperatures shows a mixed trend that depends on the counterpart material and the testing methods. Wear mechanisms involve oxide tribo-layer formation, abrasive wear, and adhesive wear. Current limitations, future research directions, and a standardization framework are also discussed. Full article
Show Figures

Figure 1

11 pages, 5142 KB  
Article
Enhancing the Output Performance of Fiber-TENG Through Graphite Doping and Its Application in Human Motion Sensing
by You-Jun Huang, Jen-I Chuang and Chen-Kuei Chung
Sensors 2025, 25(20), 6409; https://doi.org/10.3390/s25206409 - 17 Oct 2025
Viewed by 524
Abstract
Triboelectric nanogenerators (TENG) are mechanical energy harvesters characterized by high sensitivity and simple structure and are currently being widely developed for use in human body motion sensing. Among them, fiber-based TENGs (FTENG) are particularly suitable for wearable human motion sensors due to their [...] Read more.
Triboelectric nanogenerators (TENG) are mechanical energy harvesters characterized by high sensitivity and simple structure and are currently being widely developed for use in human body motion sensing. Among them, fiber-based TENGs (FTENG) are particularly suitable for wearable human motion sensors due to their unique structure, which offers flexibility, high durability, and comfort. However, studies involving doping to further modify the electrical output characteristics of FTENGs are very limited. Here, we propose an innovative approach that combines graphite (GP) doping with fiber-based TENG fabrication, successfully developing a graphite-doped polyester fiber-based TENG (GP@PET-TENG). Proper graphite doping can increase the amount of transferred charge and thus improve the output electrical performance of TENG, but this method has rarely been explored in FTENG. With the incorporation of 3%wt graphite, the open-circuit voltage of the GP@PET-TENG increased from 103.3 V to 202.1 V, and the short-circuit current increased from 60.7 μA to 105.1 μA, compared to the pure polyester fiber based TENG (PET-TENG). The device achieved a maximum output power of 4.15 mW (2.59 W/m2), demonstrates the capability to charge various capacitors, and successfully lit up 200 LEDs. By attaching the GP@PET tribo-layer to human skin, a single-electrode mode TENG can be formed, which captures the subject’s motion signals through skin contact and separation, converting them into voltage outputs. In fist-clenching and wrist-bending tests, motion-induced voltage signals up to 0.6 V were recorded, demonstrating the potential applications in rehabilitation assistance and mechanical control. Full article
Show Figures

Figure 1

25 pages, 11220 KB  
Article
Industrial Internet of Things (IIoT)-Based Monitoring of Frictional, Vibration, and Sound Generation in Lubricated Automotive Chains
by Shubrajit Bhaumik, Krishnamoorthy Venkatsubramanian, Sharvani Varadharajan, Suruthi Meenachinathan, Shail Mavani, Vitalie Florea and Viorel Paleu
Technologies 2025, 13(10), 465; https://doi.org/10.3390/technologies13100465 - 14 Oct 2025
Viewed by 573
Abstract
This work assesses the frictional wear of lubricated transmission chains, correlating the coefficient of friction, root mean square (RMS) acoustic emissions, and vibrations induced by friction, incorporating Industrial Internet of Things (IIoT) components. The work is divided into two phases: understanding the frictional [...] Read more.
This work assesses the frictional wear of lubricated transmission chains, correlating the coefficient of friction, root mean square (RMS) acoustic emissions, and vibrations induced by friction, incorporating Industrial Internet of Things (IIoT) components. The work is divided into two phases: understanding the frictional interactions between the steel pins of commercial transmission chain and high chrome steel plate (mimicking the interaction between the pin and roller of the chain) using a reciprocating tribometer (20 N, 2.5 Hz, 15.1 stroke length) in the presence of three commercial lubricant aerosols (Grade A, Grade B, and Grade C) and analyzing the frictional wear, sound, and vibration signals generated during the tribo-tests. In the second phase, the findings from the laboratory scale are validated using a commercial transmission chain under aerosol lubrication. Results indicated that the coefficient of friction in the case of dry conditions was 41% higher than that of Grade A aerosol and Grade C aerosol and 28% higher than that of Grade B aerosol. However, the average wear scar diameter on the pin with Grade C (0.401 ± 0.129 mm) was higher than that on the pins with Grades A (0.209 ± 0.159 mm) and B (0.204 ± 0.165 mm). Grade A and Grade B aerosols exhibited similar frictional conditions, while the wear-scar diameter in Grade C was the highest among Grades A and B but still less than in dry conditions. Analyzing the sound and vibrations generated during the friction test, it can be seen that the dry condition produced approximately 60% more sound level than the Grade A and Grade B conditions, and 41% more sound than the Grade C condition. The laboratory results were validated with a real-time transmission chain using an in-house chain wear test rig. Results from the chain wear test rig indicated that the elongation of the chain with Grade B is the least amongst the aerosols and dry conditions. The surface characterizations of the steel pins also indicated intense deep grooves and surface damage in dry conditions, with Grade A exhibiting the most severe damage, followed by Grade C, and the least severe in Grade B. Additionally, dark patches were visually observed on the rollers of the lubricated commercial chains, indicating stressed areas on the rollers, while polished wear was observed on the rollers under dry conditions. Full article
(This article belongs to the Section Manufacturing Technology)
Show Figures

Figure 1

26 pages, 11935 KB  
Article
Effect of SiO2 and MoS2 Particles as Lubricant Additives on Lubrication Performance in Sheet Metal Forming
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk and Joanna Zielińska-Szwajka
Materials 2025, 18(19), 4605; https://doi.org/10.3390/ma18194605 - 4 Oct 2025
Cited by 1 | Viewed by 844
Abstract
Modifying lubricants with hard material particles improves lubricant performance by allowing the particles to penetrate the contact area and separate the contacting surfaces. The use of solid particles as additives in fluid lubricants presents a promising avenue for providing effective lubrication under high [...] Read more.
Modifying lubricants with hard material particles improves lubricant performance by allowing the particles to penetrate the contact area and separate the contacting surfaces. The use of solid particles as additives in fluid lubricants presents a promising avenue for providing effective lubrication under high loads in sheet metal forming. This article presents the results of friction tests using the bending under tension friction tribotester. Low-carbon DC01 steel sheets were used as the test material. The main goal of the study was to determine the effect of lubricant modification by adding MoS2 and SiO2 particles and the modification of 145Cr6 steel countersamples on the coefficient of friction (CoF), changes in friction-induced surface roughness and friction mechanisms. The surfaces of the countersamples were modified using electron beam melting and the ion implantation of lead (IPb). It was found that increasing the SiO2 and MoS2 content in DC01/145Cr6 and DC01/IPb contacts under base oil lubrication conditions resulted in a decrease in the CoF value. For the countersample subjected to electron beam melting, considering all friction conditions, the CoF decreased between 31.9% and 37.5%. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 14004 KB  
Article
Study of the Tribological Properties of Self-Fluxing Nickel-Based Coatings Obtained by Gas-Flame Spraying
by Dastan Buitkenov, Nurmakhanbet Raisov, Temirlan Alimbekuly and Balym Alibekova
Crystals 2025, 15(10), 862; https://doi.org/10.3390/cryst15100862 - 30 Sep 2025
Viewed by 489
Abstract
Self-fluxing Ni-based coatings (NiCrFeBSiC) were deposited through gas-flame spraying and evaluated in three conditions: as-sprayed, flame-remelted, and furnace-heat-treated (1025 °C/5 min). Phase analysis (XRD) revealed FeNi3 together with strengthening carbides/borides (e.g., Cr7C3, Fe23(C,B)6); post-treatments [...] Read more.
Self-fluxing Ni-based coatings (NiCrFeBSiC) were deposited through gas-flame spraying and evaluated in three conditions: as-sprayed, flame-remelted, and furnace-heat-treated (1025 °C/5 min). Phase analysis (XRD) revealed FeNi3 together with strengthening carbides/borides (e.g., Cr7C3, Fe23(C,B)6); post-treatments increased lattice order. Cross-sectional image analysis showed progressive densification (thickness ~805 → 625 → 597 µm) and a drop in porosity from 7.866% to 3.024% to 1.767%. Surface roughness decreased from Ra = 31.860 to 14.915 to 13.388 µm. Near-surface microhardness rose from 528.7 ± 2.3 to 771.6 ± 4.6 to 922.4 ± 5.7 HV, while adhesion strength (ASTM C633) improved from 18 to 27 to 34 MPa. Wettability followed the densification trend, with the contact angle increasing from 53.152° to 79.875° to 89.603°. Under dry ball-on-disk sliding against 100Cr6, the friction coefficient decreased and stabilized (0.648 ± 0.070 → 0.173 ± 0.050 → 0.138 ± 0.003), and the counterbody wear-scar area shrank by ~95.6% (0.889 → 0.479 → 0.0395 mm2). Wear-track morphology evolved from abrasive micro-cutting (as-sprayed) to reduced ploughing (flame-remelted) and a polishing-like regime with a thin tribo-film (furnace). Potentiodynamic tests indicated the lowest corrosion rate after furnace treatment (CR ≈ 0.005678 mm·year−1). Overall, furnace heat treatment provided the best structure–property balance (lowest porosity and Ra, highest HV and adhesion, lowest and most stable μ, and superior corrosion resistance) and is recommended to extend the service life of NiCrFeBSiC coatings under dry sliding. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

15 pages, 2336 KB  
Article
Tribo-Catalytic Degradation of Methyl Orange Dye via Cu/Al2O3 Nanoparticles
by Claudia Cirillo, Mariagrazia Iuliano, Sana Abrar, Elena Navarrete Astorga and Maria Sarno
Lubricants 2025, 13(9), 418; https://doi.org/10.3390/lubricants13090418 - 17 Sep 2025
Viewed by 852
Abstract
In this study, we report, for the first time, the tribo-catalytic degradation of methyl orange (MO) using Cu/Al2O3 nanoparticles under mechanical stirring conditions. The hybrid catalyst was synthesized via a wet impregnation method and characterized through different techniques, confirming structural [...] Read more.
In this study, we report, for the first time, the tribo-catalytic degradation of methyl orange (MO) using Cu/Al2O3 nanoparticles under mechanical stirring conditions. The hybrid catalyst was synthesized via a wet impregnation method and characterized through different techniques, confirming structural integrity and compositional uniformity. When subjected to friction generated by a PTFE-coated magnetic stir bar, Cu/Al2O3 nanoparticles exhibited high tribo-catalytic activity, achieving up to 95% MO degradation within 10 h under dark conditions. The observed activity surpasses that of alumina alone and is attributed to the synergistic effects between copper and alumina, facilitating charge separation and enhancing reactive oxygen species (ROS) formation. Tribo-catalytic efficiency was further influenced by stirring speed and contact area, confirming the key role of mechanical friction. Reusability tests demonstrated stable performance over five cycles, highlighting the material’s durability and potential for practical environmental remediation applications. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Figure 1

Back to TopTop