Tribo-Catalysis

A special issue of Lubricants (ISSN 2075-4442).

Deadline for manuscript submissions: closed (30 September 2025) | Viewed by 2783

Special Issue Editors


E-Mail Website
Guest Editor
Department of Physics “E.R. Caianiello” and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
Interests: nanomaterials; catalysis; tribocatalysis; lubricants; advanced materials; sustainable energy; green chemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Physics “E.R. Caianiello” and Centre NANO_MATES, University of Salerno, Via Giovanni Paolo II, 132-84084 Fisciano, Italy
Interests: nanomaterials; catalysis; tribocatalysis; lubricants; advanced materials; sustainable energy; green chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Tribo-catalysis, an advanced field that uses mechanical energy from the environment to initiate and drive catalytic reactions, has rapidly become a prominent area of scientific and technological research. By converting mechanical forces, such as friction, vibrations, or surface interactions, into energy capable of initiating chemical transformations, tribocatalysis provides a new approach to catalysis with far-reaching implications. Recent advances in materials science, particularly the development of transition metals and nanocomposites, have demonstrated significant potential in improving tribocatalytic performance. Key applications include hydrogen production, metal oxide reduction, and sustainable chemical synthesis, as well as tribological improvements such as reduced friction and wear in mechanical systems. Tribocatalysis also holds the promise of creating self-lubricating and self-healing materials by integrating chemical reactivity with improved surface performance under dynamic conditions. This innovative method has attracted considerable attention for its potential in sustainable energy production, environmental remediation, and advanced materials synthesis. Therefore, tribocatalysis represents a central focus for researchers aiming to develop efficient and environmentally friendly processes with transformative implications for industry and sustainability.

Dr. Claudia Cirillo
Dr. Mariagrazia Iuliano
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Lubricants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanocomposites
  • tribocatalysis
  • catalytic reactions
  • advanced materials
  • sustainable energy
  • tribological improvements
  • green chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2336 KB  
Article
Tribo-Catalytic Degradation of Methyl Orange Dye via Cu/Al2O3 Nanoparticles
by Claudia Cirillo, Mariagrazia Iuliano, Sana Abrar, Elena Navarrete Astorga and Maria Sarno
Lubricants 2025, 13(9), 418; https://doi.org/10.3390/lubricants13090418 - 17 Sep 2025
Viewed by 783
Abstract
In this study, we report, for the first time, the tribo-catalytic degradation of methyl orange (MO) using Cu/Al2O3 nanoparticles under mechanical stirring conditions. The hybrid catalyst was synthesized via a wet impregnation method and characterized through different techniques, confirming structural [...] Read more.
In this study, we report, for the first time, the tribo-catalytic degradation of methyl orange (MO) using Cu/Al2O3 nanoparticles under mechanical stirring conditions. The hybrid catalyst was synthesized via a wet impregnation method and characterized through different techniques, confirming structural integrity and compositional uniformity. When subjected to friction generated by a PTFE-coated magnetic stir bar, Cu/Al2O3 nanoparticles exhibited high tribo-catalytic activity, achieving up to 95% MO degradation within 10 h under dark conditions. The observed activity surpasses that of alumina alone and is attributed to the synergistic effects between copper and alumina, facilitating charge separation and enhancing reactive oxygen species (ROS) formation. Tribo-catalytic efficiency was further influenced by stirring speed and contact area, confirming the key role of mechanical friction. Reusability tests demonstrated stable performance over five cycles, highlighting the material’s durability and potential for practical environmental remediation applications. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 2078 KB  
Review
The Role of Tribocatalysis in Friction and Wear: A Review
by Diana Berman and Ali Erdemir
Lubricants 2025, 13(10), 442; https://doi.org/10.3390/lubricants13100442 - 8 Oct 2025
Viewed by 1634
Abstract
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid [...] Read more.
When exposed to high contact pressure and shear conditions, the sliding and/or rolling contact interfaces of moving mechanical systems can experience significant friction and wear losses, thereby impairing their efficiency, reliability, and environmental sustainability. Traditionally, these losses have been minimized using high-performance solid and liquid lubricants or surface engineering techniques like physical and chemical vapor deposition. However, increasingly harsh operating conditions of more advanced mechanical systems (including wind turbines, space mechanisms, electric vehicle drivetrains, etc.) render such traditional methods less effective or impractical over the long term. Looking ahead, an emerging and complementary solution could be tribocatalysis, a process that spontaneously triggers the formation of nanocarbon-based tribofilms in situ and on demand at lubricated interfaces, significantly reducing friction and wear even without the use of high-performance additives. These films often comprise a wide range of amorphous or disordered carbons, crystalline graphite, graphene, nano-onions, nanotubes, and other carbon nanostructures known for their outstanding friction and wear properties under the most demanding tribological conditions. This review highlights recent advances in understanding the underlying mechanisms involved in forming these carbon-based tribofilms, along with their potential applications in real-world mechanical systems. These examples underscore the scientific significance and industrial potential of tribocatalysis in further enhancing the efficiency, reliability, and environmental sustainability of future mechanical systems. Full article
(This article belongs to the Special Issue Tribo-Catalysis)
Show Figures

Graphical abstract

Back to TopTop