Abstract
This article comprehensively reviews the tribological behavior of a Ti-6Al-4V alloy manufactured via electron beam powder bed fusion (EB-PBF), an additive manufacturing process for aerospace and biomedical applications. EB-PBF Ti-6Al-4V demonstrates wear resistance that is superior or comparable to conventional Ti-6Al-4V. The reported average friction coefficient ranges between ~0.22 and ~0.75 during sliding wear in dry and lubricated conditions against metallic and ceramic counterparts when loading 1–50 N under varied surface and heat treatment conditions, and between 1.29 and 2.2 during fretting wear against EB-PBF Ti-6Al-4V itself. The corresponding average specific wear rates show a broad range between ~8.20 × 10−5 mm3/Nm and ~1.30 × 10−3 mm3/Nm during sliding wear. Lubrication reduces the wear rates and/or the friction coefficient. Wear resistance can be improved via machining and heat treatment. Wear anisotropy is reported and primarily attributed to microhardness variations, which can be mitigated through lubrication and post-processing. The effects of applied load and frequency on EB-PBF Ti-6Al-4V are also discussed. The wear resistance at elevated temperatures shows a mixed trend that depends on the counterpart material and the testing methods. Wear mechanisms involve oxide tribo-layer formation, abrasive wear, and adhesive wear. Current limitations, future research directions, and a standardization framework are also discussed.