Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (583)

Search Parameters:
Keywords = transient charge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2179 KB  
Article
Truncated Equinine B Variants Reveal the Sequence Determinants of Antimicrobial Selectivity
by Mariele Staropoli, Theresa Schwaiger, Jasmina Tuzlak, Renata Biba, Lukas Petrowitsch, Johannes Fessler, Marin Roje, Matteo Cammarata, Nermina Malanović and Andreja Jakas
Mar. Drugs 2026, 24(1), 46; https://doi.org/10.3390/md24010046 (registering DOI) - 17 Jan 2026
Abstract
Equinin B (GQCQRKCLGHCSKKCPKHPQCRKRCIRRCFGYCL), a marine peptide from Actinia equina exhibits antibacterial activity against both Gram-positive and Gram-negative bacteria. To identify a smaller active region and explore tunable properties, three peptide fragments were synthesized: GQCQRKCLGHCS (EB1), KKCPKHPQCRK (EB2), and RCIRRCFGYCL [...] Read more.
Equinin B (GQCQRKCLGHCSKKCPKHPQCRKRCIRRCFGYCL), a marine peptide from Actinia equina exhibits antibacterial activity against both Gram-positive and Gram-negative bacteria. To identify a smaller active region and explore tunable properties, three peptide fragments were synthesized: GQCQRKCLGHCS (EB1), KKCPKHPQCRK (EB2), and RCIRRCFGYCL (EB3), yielding peptides with key AMP-like properties, including the most positively charged and most hydrophobic regions. Only the 11-residue C-terminal fragment showed selective activity against Gram-positive bacteria, including Staphylococcus epidermidis, Bacillus subtilis, and Enterococcus hirae, while remaining inactive against Escherichia coli. Peptide modifications, achieved by replacing cysteine residues with arginine, generally did not enhance activity, but in the C-terminal fragment EB3 they reduced hemolytic activity and increased bacterial specificity. Membrane depolarization assays confirmed that the unmodified fragment EB3 strongly disrupts bacterial membranes, whereas the modified variant showed minimal depolarization, highlighting its markedly reduced membrane-disruptive potential. In silico modelling revealed that the EB3 can adopt multiple membrane-disruption modes, from transient shallow pores to carpet-like mechanisms, while the cysteine-to-arginine variant interacts mainly via partial insertion anchored by arginine residues. Phenylalanine appears to interact with the membrane, and reducing hydrophobicity by its removal abolished antibacterial activity. These findings highlight the 11-residue C-terminal fragment as a tunable, membrane-targeting motif with mechanistic novelty, offering a blueprint for developing safer, selective antimicrobial peptides with reduced cytotoxicity. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

16 pages, 3094 KB  
Article
Effects of Lipopolysaccharides from Hafnia alvei PCM1200, Proteus penneri 12, and Proteus vulgaris 9/57 on Liposomal Membranes Composed of Natural Egg Yolk Lecithin (EYL) and Synthetic DPPC: An EPR Study and Computer Simulations
by Dariusz Man, Barbara Pytel and Izabella Pisarek
Membranes 2026, 16(1), 38; https://doi.org/10.3390/membranes16010038 - 8 Jan 2026
Viewed by 140
Abstract
The aim of this study was to investigate the effects of three lipopolysaccharides (LPS), obtained from Hafnia alvei PCM 1200, Proteus penneri 12, and Proteus vulgaris 9/57, on the fluidity of liposomal lipid membranes. The experiments were performed on liposomes composed of egg [...] Read more.
The aim of this study was to investigate the effects of three lipopolysaccharides (LPS), obtained from Hafnia alvei PCM 1200, Proteus penneri 12, and Proteus vulgaris 9/57, on the fluidity of liposomal lipid membranes. The experiments were performed on liposomes composed of egg yolk lecithin (EYL) in the liquid-crystalline phase and synthetic lecithin (DPPC) in the gel phase. The experimental results were compared with data obtained from a computational model of the membrane surface layer. Membrane fluidity was assessed using EPR spectroscopy with the spin probes TEMPO (surface layer; changes in the F parameter) and 16-DOXYL (hydrophobic core; changes in the τ parameter). In EYL liposomes, all LPS samples induced a reduction in surface-layer fluidity (decrease in the F/F0 ratio). In contrast, effects on the hydrophobic core (τ/τ0) were observed only at low dopant concentrations (<0.2%), above which membrane fluidity plateaued. In DPPC membranes, the response was more complex: local minima in F/F0 and maxima in τ/τ0 were detected, indicating transient alterations in membrane stiffening and plasticization that depended on the specific LPS applied. Computational simulations of the membrane surface further confirmed the greater susceptibility of low-mobility systems (corresponding to the gel phase) to dopant-induced perturbations. In the model, the best agreement with the EPR data was obtained when an effective dopant charge of q = 3 was assumed. Full article
Show Figures

Figure 1

13 pages, 1722 KB  
Article
Transient Electrophoresis in Suspensions of Charged Porous Particles
by Wei Z. Chen and Huan J. Keh
Fluids 2026, 11(1), 13; https://doi.org/10.3390/fluids11010013 - 30 Dec 2025
Viewed by 242
Abstract
The start-up of electrophoretic motion in a suspension of uniformly charged, porous, spherical particles within an arbitrary electrolyte solution under a suddenly applied electric field is investigated. The unsteady Stokes/Brinkman equations, modified to include the electric body force, are solved for the fluid [...] Read more.
The start-up of electrophoretic motion in a suspension of uniformly charged, porous, spherical particles within an arbitrary electrolyte solution under a suddenly applied electric field is investigated. The unsteady Stokes/Brinkman equations, modified to include the electric body force, are solved for the fluid velocity field using a unit cell model to account for the particle-particle interactions. An explicit expression for the transient electrophoretic velocity of a porous particle in a unit cell is derived in the Laplace transform domain as a function of the key governing parameters. The transient electrophoretic velocity, when normalized by its steady-state counterpart, increases monotonically with both elapsed time and the ratio of particle radius to Debye length, with other parameters held constant. It generally increases with the ratio of particle radius to permeation length and with porosity, while decreasing monotonically with an increase in the particle-to-fluid density ratio. Similar to its steady-state value, the transient electrophoretic mobility of the suspension is typically a decreasing function of the particle volume fraction. However, under conditions of small elapsed time and large density ratio, the transient mobility may exhibit an initial increase with particle volume fraction. Full article
(This article belongs to the Special Issue 10th Anniversary of Fluids—Recent Advances in Fluid Mechanics)
Show Figures

Figure 1

18 pages, 4023 KB  
Article
Electrochemical Tracking of Lithium Metal Anode Surface Evolution via Voltage Relaxation Analysis
by Yu-Jeong Min and Heon-Cheol Shin
Energies 2026, 19(1), 187; https://doi.org/10.3390/en19010187 - 29 Dec 2025
Viewed by 173
Abstract
The surface morphology of lithium metal electrodes evolves markedly during cycling, modulating interfacial kinetics and increasing the risk of dendrite-driven internal short circuits. Here, we infer this morphological evolution from direct-current (DC) signals by analyzing open-circuit voltage (OCV) transients after constant current interruptions. [...] Read more.
The surface morphology of lithium metal electrodes evolves markedly during cycling, modulating interfacial kinetics and increasing the risk of dendrite-driven internal short circuits. Here, we infer this morphological evolution from direct-current (DC) signals by analyzing open-circuit voltage (OCV) transients after constant current interruptions. The OCV exhibits a rapid initial decay followed by a transition to a slower long-time decay. With repeated plating, this transition shifts to earlier times, thereby increasing the contribution of long-term relaxation. We quantitatively analyze this behavior using an equivalent circuit with a transmission-line model (TLM) representing the electrolyte-accessible interfacial region of the electrode, discretized into ten depth-direction segments. Tracking segment-wise changes in resistances and capacitances with cycling enables morphology estimation. Repeated plating strongly increases the double-layer area near the current collector, while the charge-transfer-active surface shifts toward the separator side, showing progressively smaller and eventually negative changes toward the current-collector side. Together with the segment-resolved time constants, these trends indicate that lithium deposition becomes increasingly localized near the separator-facing surface, while the interior becomes more tortuous, consistent with post-mortem observations. Overall, the results demonstrate that DC voltage-relaxation analysis combined with a TLM framework provides a practical route to track lithium metal electrode surface evolution in Li-metal-based cells. Full article
Show Figures

Figure 1

31 pages, 5337 KB  
Article
Energy Management in Multi-Source Electric Vehicles Through Multi-Objective Whale Particle Swarm Optimization Considering Aging Effects
by Nikolaos Fesakis, Christos Megagiannis, Georgia Eirini Lazaridou, Efstratia Sarafoglou, Aristotelis Tzouvaras and Athanasios Karlis
Energies 2026, 19(1), 154; https://doi.org/10.3390/en19010154 - 27 Dec 2025
Viewed by 262
Abstract
As the adoption of electric vehicles increases, hybrid energy storage systems (HESS) combining batteries and supercapacitors mitigate the conflict between high energy capacity and power demand, particularly during acceleration and transient loads. However, frequent current fluctuations accelerate battery degradation, reducing long-term performance. This [...] Read more.
As the adoption of electric vehicles increases, hybrid energy storage systems (HESS) combining batteries and supercapacitors mitigate the conflict between high energy capacity and power demand, particularly during acceleration and transient loads. However, frequent current fluctuations accelerate battery degradation, reducing long-term performance. This study presents a multi-objective Whale–Particle Swarm Optimization Algorithm (MOWPSO) for tuning the control parameters of a HESS composed of a lithium-ion battery and a supercapacitor. The proposed full-active configuration with dual bidirectional DC converters enables precise current sharing and independent regulation of energy and power flow. The optimization framework minimizes four objectives: mean battery current amplitude, cumulative aging index, final state-of-charge deviation, and an auxiliary penalty term promoting consistent battery–supercapacitor cooperation. The algorithm operates offline to identify Pareto-optimal controller settings under the Federal Test Procedure 75 cycle, while the selected compromise solution governs real-time current distribution. Robustness is assessed through multi-seed hypervolume analysis, and results demonstrate over 20% reduction in battery aging and approximately 25% increase in effective cycle life compared to battery-only, rule-based and metaheuristic algorithm strategies control. Cross-cycle validation under highway and worldwide driving profiles confirms the controller’s adaptability and stable current-sharing performance without re-tuning. Full article
(This article belongs to the Special Issue Energy Management and Control System of Electric Vehicles)
Show Figures

Figure 1

16 pages, 6672 KB  
Article
The Impact of Self-Heating on Single-Event Transient Effect in Triple-Layer Stacked Nanosheets: A TCAD Simulation
by Yuanda Li, Jinshun Bi, Xuefei Liu, Abuduwayiti Aierken, Mingqiang Liu, Changsong Gao, Gang Wang, Degui Wang, Kelin Wang and Yundong Xuan
Electronics 2026, 15(1), 85; https://doi.org/10.3390/electronics15010085 - 24 Dec 2025
Viewed by 268
Abstract
This study investigates the impact of the self-heating effect (SHE) on single-event transient (SET) sensitivity in triple-layer stacked nanosheet transistors, using technology computer-aided design (TCAD) simulations. The results demonstrate that SHE significantly elevates the channel lattice temperature under DC bias, leading to notable [...] Read more.
This study investigates the impact of the self-heating effect (SHE) on single-event transient (SET) sensitivity in triple-layer stacked nanosheet transistors, using technology computer-aided design (TCAD) simulations. The results demonstrate that SHE significantly elevates the channel lattice temperature under DC bias, leading to notable degradation in DC performance metrics, including the drive current (ION) and the on/off current ratio. By employing a finer time resolution in the AC simulation, we observed that the device reaches thermal equilibrium on a picosecond timescale. Crucially, SHE is found to exacerbate SET sensitivity markedly. Compared to simulations without SHE, the presence of self-heating increases both the peak transient current and the collected charge at the drain terminal following heavy-ion strikes. Furthermore, the transient response is shown to depend on the thermal history; longer pre-strike heating times amplify the SET peak magnitude, whereas longer cooling times attenuate it. These findings underscore the critical importance of co-optimizing thermal management and radiation hardening in the design of advanced nanosheet technologies. Full article
Show Figures

Figure 1

17 pages, 4176 KB  
Article
Solvent-Mediated Control of Twisted Intramolecular Charge Transfer in 7-(Diethylamino)coumarin-3-carboxylic Acid
by Xilin Bai, Jing Xiao, Bingqi Du, Duidui Liu, Yanzhuo Wang, Shujing Shi and Jing Ge
Molecules 2026, 31(1), 76; https://doi.org/10.3390/molecules31010076 - 24 Dec 2025
Viewed by 471
Abstract
Understanding the influence of solvent environments on the excited-state charge transfer process remains a fundamental question in molecular photophysics and photochemistry. While twisted intramolecular charge transfer (TICT) is crucial in determining fluorescence efficiency and photostability, the combined effects of solvent polarity and hydrogen [...] Read more.
Understanding the influence of solvent environments on the excited-state charge transfer process remains a fundamental question in molecular photophysics and photochemistry. While twisted intramolecular charge transfer (TICT) is crucial in determining fluorescence efficiency and photostability, the combined effects of solvent polarity and hydrogen bonding interactions are still elusive. Here, we employ steady-state and femtosecond transient absorption (fs-TA) spectroscopy with density functional theory (DFT) calculations to investigate the excited-state dynamics of 7-(diethylamino)coumarin-3-carboxylic acid (7-DCCA) in different solvents. Our findings reveal that in highly polar solvents with strong hydrogen-donating and hydrogen-accepting capabilities, 7-DCCA undergoes significant TICT formation, resulting in fluorescence quenching. Conversely, in environments with low polarity or weak hydrogen-bonding interactions, this transformation is largely suppressed. Quantitative correlation analysis utilizing the Kamlet–Taft and Catalán four-parameter models further elucidates the synergistic role of solvent polarity and specific hydrogen-bonding parameters in modulating the steady-state spectral behavior of 7-DCCA. This study provides microscopic insights into solvent–charge transfer interactions and establishes a general framework for enhancing the luminescence efficiency and structural robustness of organic optoelectronic materials through strategic solvent engineering. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

15 pages, 6849 KB  
Article
Analysis of Blasting Damage Variations in Rocks of Different Strengths
by Yuantong Zhang, Wentao Ren, Peng Gu, Yang Chen and Bo Wang
Appl. Sci. 2026, 16(1), 137; https://doi.org/10.3390/app16010137 - 22 Dec 2025
Viewed by 213
Abstract
During drill-and-blast construction, complex and variable rock masses are frequently encountered. Owing to the transient nature of the explosion process and the randomness of crack propagation, the response of different rock masses to explosive loading is highly intricate. This study primarily investigates the [...] Read more.
During drill-and-blast construction, complex and variable rock masses are frequently encountered. Owing to the transient nature of the explosion process and the randomness of crack propagation, the response of different rock masses to explosive loading is highly intricate. This study primarily investigates the dynamic response of rock masses with varying strengths under two different charge configurations. First, four cement mortar specimens of differing strengths were prepared then subjected to general blasting and slit charge blasting, respectively. High-speed cameras and digital image correlation techniques were employed to capture and analyse stress wave propagation and crack propagation during detonation. Fractal dimension analysis was subsequently employed to quantify and compare the extent of damage in the specimens. Findings indicate that rock strength influences stress wave attenuation patterns: lower-strength rocks exhibit higher peak strains but faster decay rates. Crack propagation velocity was calculated by deploying monitoring points along fracture paths and defining fracture initiation thresholds. Higher rock strength correlates with both peak and average crack propagation velocities. Slit charge blasting effectively optimizes damage distribution, concentrating it within the intended directions while reducing chaotic fracturing. These findings provide scientific justification for blasting operations in complex rock formations. Full article
(This article belongs to the Special Issue Innovations in Blasting Technology and Rock Engineering)
Show Figures

Figure 1

17 pages, 3608 KB  
Article
Mechanochemically Synthesized Nanocrystalline Cu2ZnSnSe4 as a Multifunctional Material for Energy Conversion and Storage Applications
by Angel Agnes Johnrose, Devika Rajan Sajitha, Vengatesh Panneerselvam, Anandhi Sivaramalingam, Kamalan Kirubaharan Amirtharaj Mosas, Beauno Stephen and Shyju Thankaraj Salammal
Nanomaterials 2025, 15(24), 1866; https://doi.org/10.3390/nano15241866 - 12 Dec 2025
Viewed by 456
Abstract
Cu2ZnSnSe4 is a promising light-absorbing material for cost-effective and eco-friendly thin-film solar cells; however, its synthesis often leads to secondary phases that limit device efficiency. To overcome these challenges, we devised a straightforward and efficient method to obtain single-phase Cu [...] Read more.
Cu2ZnSnSe4 is a promising light-absorbing material for cost-effective and eco-friendly thin-film solar cells; however, its synthesis often leads to secondary phases that limit device efficiency. To overcome these challenges, we devised a straightforward and efficient method to obtain single-phase Cu2ZnSnSe4 nanocrystalline powders directly from the elements Cu, Zn, Sn, and Se via mechanochemical synthesis followed by vacuum annealing at 450 °C. Phase evolution monitored by X-ray diffraction (XRD) and Raman spectroscopy at two-hour milling intervals confirmed the formation of phase-pure kesterite Cu2ZnSnSe4 and enabled tracking of transient secondary phases. Raman spectra revealed the characteristic A1 vibrational modes of the kesterite structure, while XRD peaks and Rietveld refinement (χ2 ~ 1) validated single-phase formation with crystallite sizes of 10–15 nm and dislocation densities of 3.00–3.20 1015 lines/m2. Optical analysis showed a direct bandgap of ~1.1 eV, and estimated linear and nonlinear optical constants validate its potential for photovoltaic applications. Scanning electron microscopy (SEM) analysis showed uniformly distributed particles 50–60 nm, and energy dispersive X-ray (EDS) analysis confirmed a near-stoichiometric Cu:Zn:Sn:Se ratio of 2:1:1:4. X-ray photoelectron spectroscopy (XPS) identified the expected oxidation states (Cu+, Zn2+, Sn4+, and Se2−). Electrical characterization revealed p-type conductivity with a mobility (μ) of 2.09 cm2/Vs, sheet resistance (ρ) of 4.87 Ω cm, and carrier concentrations of 1.23 × 1019 cm−3. Galvanostatic charge–discharge testing (GCD) demonstrated an energy density of 2.872 Wh/kg−1 and a power density of 1083 W kg−1, highlighting the material’s additional potential for energy storage applications. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

17 pages, 4360 KB  
Article
Carbon Dot-Modified Quercetin Enables Synergistic Enhancement of Charge Transfer and Oxygen Adsorption for Efficient H2O2 Photoproduction
by Haojie Xu, Zenan Li, Jiaxuan Wang, Fan Liao, Hui Huang and Yang Liu
Nanomaterials 2025, 15(24), 1856; https://doi.org/10.3390/nano15241856 - 11 Dec 2025
Viewed by 326
Abstract
Hydrogen peroxide (H2O2) is a widely used green oxidant, yet its conventional industrial production via the anthraquinone process is energy-intensive and environmentally unfriendly. Photocatalytic oxygen reduction reaction (ORR) presents a sustainable alternative for H2O2 synthesis, but [...] Read more.
Hydrogen peroxide (H2O2) is a widely used green oxidant, yet its conventional industrial production via the anthraquinone process is energy-intensive and environmentally unfriendly. Photocatalytic oxygen reduction reaction (ORR) presents a sustainable alternative for H2O2 synthesis, but its practical application is limited by inefficient light absorption, low charge separation efficiency, and sluggish reaction kinetics. In this work, we developed a metal-free carbon-based photocatalyst (QCDs) acquired by modifying quercetin with carbon dots (CDs) for efficient photogeneration of H2O2. The optimized QCDs achieved a H2O2 production rate of 1116.32 μmol·h−1·g−1, which is 40.3% higher than that of pristine quercetin. Comprehensive analysis with transient potential scanning (TPS), transient photovoltage (TPV), and photocurrent transient (TPC) measurements reveal that the photocatalytic ORR follows a two-step single-electron pathway. It is worth noting that CDs not only promote the generation and transfer of photogenerated electrons but also boost oxygen adsorption. Our work demonstrates the synergy of integrating biomass-derived materials with nanostructural engineering and optimizing the system with data-driven approaches for enhanced photocatalysis. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

21 pages, 3248 KB  
Article
A Convolutional Sparse Periodic Transformer Network for Electric Vehicle Charging Demand Forecasting
by Lingxia Shi, Xu Lei and Ruinian Gao
Appl. Sci. 2025, 15(24), 12982; https://doi.org/10.3390/app152412982 - 9 Dec 2025
Viewed by 250
Abstract
Electric vehicle (EV) charging behavior exhibits strong spatio-temporal randomness, often leading to transient peak loads and an elevated risk of distribution network overloads. In addition, existing prediction models still face challenges in achieving high accuracy, computational efficiency, and effective modeling of multi-level periodic [...] Read more.
Electric vehicle (EV) charging behavior exhibits strong spatio-temporal randomness, often leading to transient peak loads and an elevated risk of distribution network overloads. In addition, existing prediction models still face challenges in achieving high accuracy, computational efficiency, and effective modeling of multi-level periodic patterns. To address these issues, this study proposes a novel architecture termed the Convolutional Sparse Periodic Transformer Network (CSPT-Net). At the front end of the architecture, the model incorporates a one-dimensional convolutional neural network (1D-CNN) to efficiently capture local temporal features. To improve computational efficiency, the traditional global attention mechanism is replaced with a sparse attention module. Furthermore, a customized periodic time-encoding module is designed to explicitly represent multi-scale temporal regularities such as daily, weekly, and holiday cycles. Extensive experiments on a large-scale dataset containing more than 70,000 real-world charging records demonstrate that CSPT-Net achieves state-of-the-art performance across all evaluation metrics. Specifically, CSPT-Net reduces the Mean Absolute Error (MAE) to 12.21 min and enhances training efficiency by over 58% compared with the standard Transformer baseline. These results confirm that CSPT-Net effectively balances predictive accuracy and computational efficiency while demonstrating superior robustness and generalization in complex real-world environments. Consequently, the proposed framework offers a reliable and high-performance data-driven foundation for power grid load management and charging infrastructure planning. Full article
Show Figures

Figure 1

13 pages, 2028 KB  
Article
Study on Transient Overvoltage and Surge Arrester Electrical Stresses in Offshore Wind Farms Under Multiple Lightning Strokes
by Jie Zhang, Yong Wang, Jun Xiong, Junxiang Liu, Lu Zhu, Chao Huang, Jianfeng Shi and Yongxia Han
J. Mar. Sci. Eng. 2025, 13(12), 2307; https://doi.org/10.3390/jmse13122307 - 4 Dec 2025
Viewed by 358
Abstract
Lightning strikes are a major cause of wind turbine (WT) damage, with approximately 80% of cloud-to-ground lightning strikes exhibiting a multi-stroke characteristic. Therefore, studying the transient overvoltages induced by multiple lightning strokes is essential for the effective lightning protection of offshore WTs. Firstly, [...] Read more.
Lightning strikes are a major cause of wind turbine (WT) damage, with approximately 80% of cloud-to-ground lightning strikes exhibiting a multi-stroke characteristic. Therefore, studying the transient overvoltages induced by multiple lightning strokes is essential for the effective lightning protection of offshore WTs. Firstly, a multiple-stroke lightning current model representative of Guangdong Province, China, is established based on data from the lightning location system and rocket-triggered lightning experiments. Simulations are then employed to analyze the transient overvoltage of a Guangdong offshore wind farm under multiple lightning strikes. Simulation results indicate that when a WT is subjected to a two-stroke lightning flash, with current amplitudes corresponding to a cumulative probability density of approximately 1%, the surge arrester A1 must be configured with four parallel columns to ensure the insulation safety of the equipment without sustaining damage. Additionally, adequate electrical clearance must be maintained between the power cable and the tower wall, or alternatively, a high-strength insulating material may be applied over the cable armor to prevent flashover. Moreover, it is observed that the front time of the impulse current flowing through the surge arrester is approximately 2 μs, significantly shorter than the front time specified in IEC 60099-4 for the repetitive charge transfer capability test of ZnO varistors. Hence, it is essential to consider local lightning intensity and distribution characteristics when studying the transient overvoltages in offshore wind farms, optimizing surge arrester configurations, and assessing the impulse withstand performance of ZnO varistors, in order to ensure the safe and stable operation of offshore WTs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 3556 KB  
Article
The Impact of Load-Dump Stress on p-GaN HEMTs Under Floating Gate Condition
by Zhipeng Shen, Yijun Shi, Lijuan Wu, Liang He, Xinghuan Chen, Yuan Chen, Dongsheng Zhao, Jiahong He, Gengbin Zhu, Huangtao Zeng and Guoguang Lu
Micromachines 2025, 16(12), 1369; https://doi.org/10.3390/mi16121369 - 30 Nov 2025
Viewed by 430
Abstract
This work investigates the impact of load-dump stress on p-GaN HEMTs under floating gate condition. The experiments show that preconditioning the device with a small load-dump stress (150 V, @td = 100 ms and tr = 8 ms) enhances its [...] Read more.
This work investigates the impact of load-dump stress on p-GaN HEMTs under floating gate condition. The experiments show that preconditioning the device with a small load-dump stress (150 V, @td = 100 ms and tr = 8 ms) enhances its robustness against a larger stress (190 V, @td = 100 ms and tr = 8 ms). If a large load-dump stress (≥160 V, @td = 100 ms and tr = 8 ms) is applied directly to the device’s drain, the device will burn out. This occurs because the rapidly changing drain voltage during a load-dump event can generate a capacitive coupling current, leading to transient positive charge accumulation in the gate region. Consequently, the channel under the gate is turned on, allowing a large current to flow through it. The coexistence of high current and high voltage leads to substantial Joule heating within the device, resulting in eventual burnout. When a small load-dump stress is initially applied, the resulting charging of electron traps in the gate region increases the threshold voltage. As a result, the device can withstand a larger load-dump stress before the channel turns on, which explains the device’s enhanced robustness. This work clarifies the failure threshold of p-GaN HEMTs under the load-dump stress, providing key support for improving the devices’ reliability in the practical applications. It can provide a basis for adding necessary protective measures in device circuit design, and clarify the triggering voltage threshold of protective measures to ensure that they can effectively avoid device damage due to the load-dump stress. Full article
(This article belongs to the Special Issue Power Semiconductor Devices and Applications, 3rd Edition)
Show Figures

Figure 1

11 pages, 674 KB  
Article
When Stroke Strikes Early: Unusual Causes of Intracerebral Hemorrhage in Young Adults
by Mian Urfy and Mariam Tariq Mir
J. Clin. Med. 2025, 14(23), 8475; https://doi.org/10.3390/jcm14238475 - 29 Nov 2025
Viewed by 878
Abstract
Background/Objectives: Intracerebral hemorrhage (ICH) is primarily a disease of older adults, commonly linked to chronic hypertension and cerebral amyloid angiopathy. In young adults, however, ICH is rare and often driven by distinct structural, hematologic, or vascular causes. Methods: Using the National Inpatient [...] Read more.
Background/Objectives: Intracerebral hemorrhage (ICH) is primarily a disease of older adults, commonly linked to chronic hypertension and cerebral amyloid angiopathy. In young adults, however, ICH is rare and often driven by distinct structural, hematologic, or vascular causes. Methods: Using the National Inpatient Sample (2016–2022), we identified hospitalizations with a primary diagnosis of ICH (ICD-10-CM: I61.x). Patients younger than 18 years were excluded. Patients were stratified into 18–39 vs. ≥40 years. Comorbidities were defined using validated ICD-10 codes (E08–E13 for diabetes mellitus, I10–I15 for hypertension), excluding transient hyperglycemia (R73.x). Weighted analyses using NIS discharge weights compared demographics, comorbidities, rare etiologies, and outcomes, including in-hospital mortality, length of stay (LOS), and total hospital charges. Survey-weighted multivariable logistic regression identified independent predictors of mortality. Results: Among 76,264 ICH hospitalizations, 4012 (5.3%) occurred in patients < 40 years. Compared with older adults, younger patients had lower prevalence of hypertension (47.8% vs. 84.1%) and diabetes (10.2% vs. 60.4%) but higher rates of substance use (27.7% vs. 15.6%). Rare etiologies were more frequent, including arteriovenous malformation/aneurysm (14.0% vs. 3.6%), Moyamoya disease (1.4% vs. 0.2%), sickle cell disease (1.1% vs. 0.1%), and pregnancy-related ICH (0.05%). In-hospital mortality was lower among young adults (15.7% vs. 21.7%, p < 0.001), though LOS was longer (12.1 vs. 8.7 days, p < 0.001), and mean hospital charges were higher ($228,000 vs. $125,000, p < 0.001). Conclusions: Young-adult ICH is uncommon but etiologically distinct, often associated with vascular malformations, hemoglobinopathies, and substance use. Despite lower mortality, these patients experience longer and more resource-intensive hospitalizations, underscoring a substantial clinical and economic burden. Full article
Show Figures

Figure 1

16 pages, 11356 KB  
Article
Extraction of Electron and Hole Drift Velocities in Thin 4H-SiC PIN Detectors Using High-Frequency Readout Electronics
by Andreas Gsponer, Sebastian Onder, Stefan Gundacker, Jürgen Burin, Matthias Knopf, Daniel Radmanovac, Simon Waid and Thomas Bergauer
Sensors 2025, 25(23), 7196; https://doi.org/10.3390/s25237196 - 25 Nov 2025
Viewed by 469
Abstract
Silicon carbide (SiC) has been widely adopted in the semiconductor industry, particularly in power electronics, because of its high temperature stability, high breakdown field, and fast switching speeds. Its wide bandgap makes it an interesting candidate for radiation-hard particle detectors in high-energy physics [...] Read more.
Silicon carbide (SiC) has been widely adopted in the semiconductor industry, particularly in power electronics, because of its high temperature stability, high breakdown field, and fast switching speeds. Its wide bandgap makes it an interesting candidate for radiation-hard particle detectors in high-energy physics and medical applications. Furthermore, the high electron and hole drift velocities in 4H-SiC enable devices suitable for ultra-fast particle detection and timing applications. However, currently, the front-end readout electronics used for 4H-SiC detectors constitute a bottleneck in investigations of the charge carrier drift. To address these limitations, a high-frequency readout board with an intrinsic bandwidth of 10 GHz was developed. With this readout, the transient current signals of a 4H-SiC diode with a diameter of 141 μm and a thickness of 50 μm upon UV laser, alpha particle, and high-energy proton beam excitation were recorded. In all three cases, the electron and hole drift can clearly be separated, which enables the extraction of the charge carrier drift velocities as a function of the electric field. These velocities, directly measured for the first time, provide a valuable comparison to Monte Carlo-simulated literature values and constitute an essential input for TCAD simulations. Finally, a complete simulation environment combining TCAD, the Allpix2 framework, and SPICE simulations is presented, which is in good agreement with the measured data. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop