Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (948)

Search Parameters:
Keywords = three-component reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1971 KB  
Article
Technology-Assisted Neuromotor Training for Improving Visuomotor Reaction Performance, Change-of-Direction Quickness, and Bilateral Task Execution in Junior Handball Players
by Mircea Boncuț, Nicola Mancini, Angel-Alex Hăisan, Delia Boncuț, Emilia Florina Grosu, Cornelia Popovici, Carlos Hervás-Gómez, Cristina Maria Man, Siria Mancini, Mariasole Antonietta Guerriero, Antonella De Maria and Vlad Teodor Grosu
J. Funct. Morphol. Kinesiol. 2026, 11(1), 42; https://doi.org/10.3390/jfmk11010042 - 20 Jan 2026
Abstract
Background: Reaction time and coordination are key performance components in team sports such as handball, particularly during the developmental years. Integrating visual and cognitive stimuli through smart technologies has been shown to facilitate motor skill development in young athletes. Methods: This study evaluated [...] Read more.
Background: Reaction time and coordination are key performance components in team sports such as handball, particularly during the developmental years. Integrating visual and cognitive stimuli through smart technologies has been shown to facilitate motor skill development in young athletes. Methods: This study evaluated the effects of a BlazePod-based training protocol on reaction time, visuomotor coordination, movement quickness, and change-of-direction performance in junior male handball players aged 12–14 years. Thirty-two athletes (mean age = 13.37 ± 0.29 years) were randomly assigned to an experimental group (n = 16), in which the traditional neuromotor/coordination block of regular practice was replaced with BlazePod-based drills three times per week for eight weeks, or to a control group (n = 16), which trained the same capacities with traditional handball-specific exercises without technology. Training frequency (3 sessions/week), session duration (90 min), and the workload of the 30 min neuromotor block were matched between groups. Motor performance was assessed using four tests: Focus Reactions, Fast Feet, Clap Challenge, and the Agility T-Test. Paired- and independent-samples t-tests were applied to compare pre- and post-intervention scores. Results: The experimental group showed significant within-group improvements in Focus Reactions (p = 0.002) and AgilTT_ShuffleLeft (p = 0.014), whereas the control group showed no improvements and a small but significant worsening in Focus Reactions. Between-group comparisons at post-test revealed significant differences in favor of the experimental group for Fast Feet (p = 0.036), Clap Challenge (p = 0.008), AgilTT_Overall (p < 0.001), and AgilTT_SprintBack (p = 0.003). Conclusions: The integration of BlazePod technology into handball training produced measurable improvements in reaction speed and lateral agility among junior players. These findings suggest that technology-assisted neuromotor training represents a viable training modality that can replace a traditional neuromotor block within youth handball practice while maintaining overall training dose. Full article
Show Figures

Figure 1

17 pages, 3284 KB  
Article
Performance of CuTiO3 Photocatalytic Oxidation for Treating Organic Peroxide Production Wastewater Under Visible Light
by Zichun Yan, Hongfu Li, Hao Yang and Shuo Li
Sustainability 2026, 18(2), 983; https://doi.org/10.3390/su18020983 - 18 Jan 2026
Viewed by 57
Abstract
To investigate the treatment performance of a CuTiO3 photocatalytic system for organic peroxide production wastewater under visible light, CuTiO3 powder prepared through the hydrothermal method was used for this experiment. The light absorption properties of the CuTiO3 catalyst were analyzed [...] Read more.
To investigate the treatment performance of a CuTiO3 photocatalytic system for organic peroxide production wastewater under visible light, CuTiO3 powder prepared through the hydrothermal method was used for this experiment. The light absorption properties of the CuTiO3 catalyst were analyzed using UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The effects of the initial pH, photocatalyst dosage, light intensity, and reaction duration on the photocatalytic reaction were examined. Before and after the reaction, the changes in pollutant components in water were characterized via three-dimensional excitation–emission matrix fluorescence spectrometry (3D-EEM) and gas chromatography–mass spectrometry (GC-MS); the changes in the concentrations of some pollutants were analyzed via wavelength scanning. The results indicated that CuTiO3 has a good response to visible light. Under the optimized conditions (initial pH = 5, CuTiO3 dosage = 1.2 g/L, light intensity = 1300 W/m2, duration = 4 h), the COD removal rate reached 58%, and the B/C (BOD5/COD) ratio of wastewater increased from 0.112 to 0.221, demonstrating a good pretreatment effect. GC-MS analysis demonstrated significant degradation effects on amide and hydride substances. Radical capture experiments verified hydroxyl radicals as the dominant species in CuTiO3 photocatalysis. Visible-light photocatalysis using CuTiO3 provides an efficient pretreatment pathway for organic peroxide production wastewater. Full article
13 pages, 697 KB  
Article
The Impact of a Rosemary Containing Drink on Cognition and Mood: The Role of Eye Blink Dynamics
by Leigh Martin Riby, Dimana Kardzhieva, Sam Fenwick, Sophia Fowler and Mark Moss
NeuroSci 2026, 7(1), 15; https://doi.org/10.3390/neurosci7010015 - 17 Jan 2026
Viewed by 131
Abstract
Rosemary (Salvia rosmarinus) has been linked to improvements in psychological wellbeing through cholinergic mechanisms. However, this study investigated whether individual differences in eye blink rate (EBR) and blink variability (EBV), which are proxies of dopaminergic activity and attentional control, influence the [...] Read more.
Rosemary (Salvia rosmarinus) has been linked to improvements in psychological wellbeing through cholinergic mechanisms. However, this study investigated whether individual differences in eye blink rate (EBR) and blink variability (EBV), which are proxies of dopaminergic activity and attentional control, influence the cognitive and mood-enhancing properties of a rosemary-containing drink. Forty-eight healthy adults completed a three-stimulus odd-ball cognitive task under rosemary or control conditions, while vertical electrooculograms were recorded. Event-related brain potentials (ERPs) were also measured using the P3a component at the Cz scalp electrode as an additional index of dopaminergic activity. Subjective mood and arousal (alert, contented, calm) were collected pre- and post-task using Bond–Lader visual analogue scales. Reaction times during the task were modelled with ex-Gaussian parameters (μ, σ, τ). Rosemary ingestion led to increased alertness and contentedness following the task. Cognitive effects were moderated by blink metrics, with significant interactions between rosemary and blink metrics for mean reaction time μ and response variability σ. Rosemary also increased P3a amplitudes, indicative of dopaminergic contribution. The effects of rosemary on cognition and mood were moderated by individual blink profiles, indicating that baseline neurocognitive state plays a role. Although cholinergic accounts are well established, this study highlights the use of proxies of dopamine to investigate broader neurotransmitter involvement in rosemary’s enhancing properties. Full article
Show Figures

Graphical abstract

19 pages, 3625 KB  
Article
Effect of MgO Content in LF Refining Slag on Inclusion Removal and Cleanliness Improvement in GCr15 Bearing Steel
by Zhijie Guo and Yanhui Sun
Materials 2026, 19(2), 360; https://doi.org/10.3390/ma19020360 - 16 Jan 2026
Viewed by 95
Abstract
In this study, a laboratory-scale slag–steel reaction experiment was conducted to systematically evaluate the influence of the initial MgO content (3–7 wt.%) in LF refining slag on the cleanliness of GCr15 bearing steel. The assessment was performed from multiple perspectives by comparing the [...] Read more.
In this study, a laboratory-scale slag–steel reaction experiment was conducted to systematically evaluate the influence of the initial MgO content (3–7 wt.%) in LF refining slag on the cleanliness of GCr15 bearing steel. The assessment was performed from multiple perspectives by comparing the total oxygen content (T[O]) in molten steel, the inclusion area fraction, and the inclusion number density after 30 min of slag–steel interaction. To further elucidate the thermodynamic driving forces and kinetic mechanisms governing inclusion capture by slag, a predictive slag adsorption model was developed using an in-house computational code coupled with FactSage 8.1. Under conditions of slag basicity R (CaO/SiO2) ranging from 4.0 to 8.0, MgO content varying from 0 to 7 wt.%, and a constant Al2O3 content of 32 wt.%, the chemical driving force ΔC (the mass-fraction difference between slag components and inclusions), the slag viscosity η, and the combined parameter ΔC/η were calculated at 1600 °C for three representative inclusion types: Al2O3, MgO·Al2O3, and MgO. In addition, the model was employed to quantitatively characterize the adsorption capacity of slag toward Mg–Al binary inclusions under varying MgO levels. Both experimental observations and model calculations demonstrate that the slag–steel reaction markedly enhances inclusion removal, as evidenced by pronounced decreases in T[O], inclusion number density, and inclusion area fraction after reaction. With increasing MgO content in slag, T[O] and inclusion-related indices exhibit a consistent trend of first decreasing and then increasing, reaching minimum values at an MgO level of 5 wt.%. Further analysis reveals a positive correlation between the apparent inclusion-removal rate constant ko and ΔC/η corresponding to MgO·Al2O3 inclusions. Moreover, the slag’s adsorption capacity toward Mg–Al binary inclusions decreases overall as the MgO fraction in inclusions increases. Notably, when the MgO content in inclusions exceeds 29 wt.%, the adsorption capacity undergoes an abrupt drop, indicating a pronounced cliff-like attenuation behavior. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 7264 KB  
Article
Study on the Efficiency and Mechanism of a Novel Copper-Based Composite Material Activated by Supramolecular Self-Assembly for Degrading Reactive Red 3BS
by Jiangming Dai, Xinrong Wang, Bo Chen and Liang Chen
Nanomaterials 2026, 16(2), 111; https://doi.org/10.3390/nano16020111 - 15 Jan 2026
Viewed by 205
Abstract
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade [...] Read more.
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade the Reactive Red 3BS dye within a sodium bicarbonate-activated hydrogen peroxide (BAP) system. This material was applied to degrade the Reactive Red 3BS dye using a sodium bicarbonate-activated hydrogen peroxide system. The morphology, crystal structure, and surface chemistry of the material were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Electron paramagnetic resonance (EPR) was employed to identify reactive species generated during the reaction. The effects of dye concentration, H2O2 concentration, MEL-Cu-6HNA dosage, and coexisting substances in water on degradation efficiency were systematically investigated, with active species identified via EPR. This study marks the first application of the supramolecular self-assembled CuO/Cu2O(SO4)2 composite material MEL-Cu-6HNA, prepared via pyrolysis, in a sodium bicarbonate-activated hydrogen peroxide system. It achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS dye. The three-dimensional sulfate framework and dual Cu2+ sites of the material significantly enhanced the degradation efficiency. MEL-Cu-6HNA achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS in a sodium bicarbonate-activated hydrogen peroxide system. The material’s three-dimensional sulfate framework and dual Cu2+ sites significantly enhanced interfacial electron transfer and Cu2+/Cu+ cycling activation capacity. ·OH served as the primary reactive oxygen species (ROS), with SO42−, 1O2, and ·O2 contributing to sustained radical generation. This system achieved 95% decolorization within 30 min, demonstrating outstanding green treatment potential and providing a reliable theoretical basis and practical pathway for efficient, low-energy treatment of dyeing wastewater. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

13 pages, 1082 KB  
Article
Impact of UGT1A1*28 Allele on the Safety and Effectiveness of Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer: Real-World Evidence
by Fernando do Pazo-Oubiña, Betel del Rosario García, Marta Miarons, Eva M. Legido Perdices, Elena Prado Mel, Ruth Ramos Díaz, Fernando Gutiérrez Nicolás and on behalf of the Estudio Mama-SSG Working Group
J. Clin. Med. 2026, 15(2), 574; https://doi.org/10.3390/jcm15020574 - 10 Jan 2026
Viewed by 216
Abstract
Background: The UGT1A1 gene is associated with the toxicity caused by SN38, the cytotoxic component of Sacituzumab govitecan (SG) used in the treatment of metastatic triple-negative breast cancer (mTNBC), among other approved indications. In this study, we aimed to analyze the effect of [...] Read more.
Background: The UGT1A1 gene is associated with the toxicity caused by SN38, the cytotoxic component of Sacituzumab govitecan (SG) used in the treatment of metastatic triple-negative breast cancer (mTNBC), among other approved indications. In this study, we aimed to analyze the effect of UGT1A1*28 allele on the safety and, secondarily, the effectiveness of SG in mTNBC. Methods: This was a multicenter, ambispective study that included patients treated with SG for mTNBC. Genotyping for UGT1A1*28 was performed using real-time polymerase chain reaction (PCR). Adverse events (AEs) of grade ≥ 2 during the first three cycles were compared between patients who were homozygous mutant (UGT1A1*28/*28) and those with wild-type (WT) or heterozygous genotypes. Effectiveness between the two groups was also compared using progression-free survival (PFS) and overall survival (OS) assessed with the Kaplan–Meier method. Results: A total of 81 patients were included: 37.0% were WT, 55.6% heterozygous, and 7.4% homozygous mutant. All UGT1A1 *28/*28 patients experienced grade ≥ 2 AEs (100% vs. 69.3%; p = 0.109), with a statistically significant association in the case of febrile neutropenia (33.3% vs. 6.7%; p = 0.025), and a trend towards higher rates of anemia and diarrhea (50.0% vs. 17.3%; p = 0.053). Genotype did not influence PFS or OS; however, dose reductions were associated with better survival outcomes. Conclusions: This real-world study shows a correlation between toxicity and the presence of the UGT1A1*28 mutation in patients treated with SG for mTNBC. Improving treatment tolerability through dose reductions may enhance SG effectiveness. These findings support the implementation of UGT1A1 genotyping in routine clinical practice. Full article
(This article belongs to the Special Issue Breast Cancer: Clinical Diagnosis and Personalized Therapy)
Show Figures

Figure 1

22 pages, 2746 KB  
Article
Characterization of Novel Sigma Receptor Ligands Derived from Multicomponent Reactions as Efficacious Treatments for Neuropathic Pain
by Ryosuke Shinouchi, Bengisu Turgutalp, Rohini S. Ople, Shainnel O. Eans, Ashai K. Williams, Haylee R. Hammond, Andras Varadi, Rebecca Notis Dardashti, Susruta Majumdar and Jay P. McLaughlin
Pharmaceuticals 2026, 19(1), 117; https://doi.org/10.3390/ph19010117 - 8 Jan 2026
Viewed by 233
Abstract
Background/Objectives: Neuropathic pain remains a significant clinical challenge, with current treatments often providing inadequate relief and adverse effects. Sigma receptors (SRs) modulate nociception and have emerged as potential therapeutic targets for neuropathic pain. Although putative sigma-1 receptor (S1R) ligands have demonstrated analgesic [...] Read more.
Background/Objectives: Neuropathic pain remains a significant clinical challenge, with current treatments often providing inadequate relief and adverse effects. Sigma receptors (SRs) modulate nociception and have emerged as potential therapeutic targets for neuropathic pain. Although putative sigma-1 receptor (S1R) ligands have demonstrated analgesic efficacy in preclinical models, their in vivo efficacy and safety profiles require further clarification. Methods: Analogs of well-known selective S1R ligand UVM147 were synthesized using 3-component Ugi reactions and examined in vitro for receptor affinity in radioligand competition binding assays and in vivo with mouse models of neuropathic and inflammatory pain and adverse effects. Results: Three novel heterocyclic compounds (RO-4-3, RO-5-3, and RO-7-3) displayed in vitro nanomolar affinity with varying selectivity for both SR subtypes (S1R and S2R). When screened in vivo at a dose of 30 mg/kg s.c. in mice first subjected to chronic constriction injury (CCI), RO-5-3 and RO-7-3 possessed anti-allodynic potential, while UVM147 was inactive. Upon full characterization, RO-5-3 significantly attenuated mechanical allodynia in a dose-dependent manner, while RO-7-3 was ineffective at higher doses. Both compounds dose-dependently attenuated nociceptive behaviors in the mouse formalin assay. RO-5-3 induced mild respiratory depression without impairing locomotor activity, whereas RO-7-3 caused transient respiratory depression and locomotor impairment. Additionally, RO-5-3, but not RO-7-3, induced conditioned place aversion consistent with potential S2R involvement. Conclusions: RO-5-3 exerts antinociceptive and anti-allodynic effects with minimal adverse behavioral effects, supporting the role of SRs in pain modulation. These results add to growing evidence supporting the development of SR ligands as efficacious therapeutics for neuropathic pain with fewer clinical liabilities. Full article
(This article belongs to the Special Issue Current Advances in Therapeutic Potential of Sigma Receptor Ligands)
Show Figures

Graphical abstract

17 pages, 2269 KB  
Article
Purification, Structural Characterization, and Antibacterial Evaluation of Poly-γ-Glutamic Acid from Bacillus subtilis
by Gobinath Chandrakasan, Genaro Martin Soto-Zarazúa, Manuel Toledano-Ayala, Priscila Sarai Flores-Aguilar and Said Arturo Rodríguez-Romero
Polymers 2026, 18(2), 172; https://doi.org/10.3390/polym18020172 - 8 Jan 2026
Viewed by 242
Abstract
Extracellular poly-γ-glutamic acid (γ-PGA) produced by Bacillus species demonstrates significant antibacterial properties, positioning it as a promising candidate for diverse biomedical and industrial applications. This study focused on molecular identification of Bacillus subtilis using Polymerase Chain Reaction (PCR) and evaluated the initial production [...] Read more.
Extracellular poly-γ-glutamic acid (γ-PGA) produced by Bacillus species demonstrates significant antibacterial properties, positioning it as a promising candidate for diverse biomedical and industrial applications. This study focused on molecular identification of Bacillus subtilis using Polymerase Chain Reaction (PCR) and evaluated the initial production of γ-PGA from a novel biological source of Bacillus subtilis. Shake flask fermentation was utilized for γ-PGA production, with three distinct growth media (Tryptic, MRS, and Mineral medium) assessed for their efficiency in polymer yield. Characterization of γ-PGA was conducted through FT-IR, HPLC, and GC-MS analyses. FT-IR spectroscopy confirmed the presence of characteristic functional groups such as carbonyl, amide, and hydroxyl groups. HPLC and GC-MS analyses provided insights into the polymer’s purity and molecular composition, highlighting components like methyl esters, hexanoic acid, and monomethyl esters. Furthermore, the study quantified γ-PGA production during a four-day shake flask fermentation period. These findings contribute significantly to bacterial characterization, optimization of fermentation processes, and the exploration of γ-PGA’s potential as an antibacterial agent. Future research directions include refining purification techniques to enhance γ-PGA’s antibacterial efficacy and expanding its applications across various fields. Full article
Show Figures

Graphical abstract

36 pages, 6309 KB  
Review
The Kabachnik–Fields Reaction: A Key Transformation in Organophosphorus Chemistry
by Giovanni Ghigo, Sara Nicoletti and Stefano Dughera
Reactions 2026, 7(1), 3; https://doi.org/10.3390/reactions7010003 - 4 Jan 2026
Viewed by 321
Abstract
The Kabachnik–Fields (KF) reaction is a versatile three-component method for the condensation of amines, carbonyl compounds, and P–H reagents, enabling efficient synthesis of α-aminophosphonates—key bioactive and functional molecules. This review critically examines the literature from the last 25 years. However, with regard to [...] Read more.
The Kabachnik–Fields (KF) reaction is a versatile three-component method for the condensation of amines, carbonyl compounds, and P–H reagents, enabling efficient synthesis of α-aminophosphonates—key bioactive and functional molecules. This review critically examines the literature from the last 25 years. However, with regard to mechanistic aspects, selected earlier seminal studies are also considered when necessary to provide a coherent and comprehensive mechanistic framework. Advances in catalyst-free methodologies, sustainable synthetic approaches, and Lewis and Brønsted acid catalysis are discussed, alongside developments in enantioselective KF reactions in the presence of chiral metal complexes or organocatalysts. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Graphical abstract

22 pages, 1555 KB  
Article
Toothbrush-Driven Handheld Droplet Generator for Digital LAMP and Rapid CFU Assays
by Xiaochen Lai, Yong Zhu, Mingpeng Yang and Xicheng Wang
Biosensors 2026, 16(1), 30; https://doi.org/10.3390/bios16010030 - 1 Jan 2026
Viewed by 269
Abstract
Droplet microfluidics enables high-throughput, compartmentalized reactions using minimal reagent volumes, but most implementations rely on precision-fabricated chips and external pumping systems that limit portability and accessibility. Here, we present a handheld vibrational droplet generator that repurposes a consumer electric toothbrush and a modified [...] Read more.
Droplet microfluidics enables high-throughput, compartmentalized reactions using minimal reagent volumes, but most implementations rely on precision-fabricated chips and external pumping systems that limit portability and accessibility. Here, we present a handheld vibrational droplet generator that repurposes a consumer electric toothbrush and a modified disposable pipette tip to produce nearly monodisperse water-in-oil droplets without microfluidic channels or syringe pumps. The device is powered by the toothbrush’s built-in motor and controlled by a simple 3D-printed adapter and adjustable counterweight that tune the vibration amplitude transmitted to the pipette tip. By varying the aperture of the pipette tip, droplets with diameters from ~100–300 µm were generated at rates of ~100 droplets s−1. Image analysis revealed narrow size distributions with coefficients of variation below 5% in typical operating conditions. We further demonstrate proof-of-concept applications in digital loop-mediated isothermal amplification (LAMP) and microbiological colony-forming unit (CFU) assays. A commercial feline parvovirus (FPV) kit manufactured by Beyotime Biotechnology Co., Ltd. (Shanghai, China), three template concentrations yielded emulsified reaction droplets that remained stable at 65 °C for 45 min and produced distinct fractions of fluorescent-positive droplets, allowing estimation of template concentration via a Poisson model. In a second set of experiments, the device was used as a droplet-based spreader to dispense diluted Escherichia coli suspensions onto LB agar plates, achieving uniform colony distributions across the plate at different dilution factors. The proposed handheld vibrational generator is inexpensive, easy to assemble from off-the-shelf components, and minimizes dead volume and cross-contamination because only the pipette tip contacts the sample. Although the current prototype still exhibits device-to-device variability and moving droplets in open containers complicate real-time imaging, these results indicate that toothbrush-based vibrational actuation can provide a practical and scalable route toward “lab-in-hand” droplet assays in resource-limited or educational settings. Full article
Show Figures

Figure 1

13 pages, 4410 KB  
Article
Genetic Control of Photosynthesis in Sugarcane During Successive Ratoon Cycles
by Chi Zhang, Yibin Wei, Yuzhi Xu, Abdullah Khan, Chunxiu Jiang, Huojian Li, Jun Chen, Yuling Wu, Zuli Yang, Jiafu Chen, Fangmei Liang, Jianlong Xu, Muqing Zhang and Yixue Bao
Biology 2026, 15(1), 75; https://doi.org/10.3390/biology15010075 - 31 Dec 2025
Viewed by 333
Abstract
This study analyzed the photosynthetic traits of 74 sugarcane genotypes using PAM-2500 and SPAD instruments over three years. Our findings revealed significant variations in photosynthetic characteristics among different genotypes and ratoon years, highlighting the complex interplay between genotype and ratoon age. Notably, the [...] Read more.
This study analyzed the photosynthetic traits of 74 sugarcane genotypes using PAM-2500 and SPAD instruments over three years. Our findings revealed significant variations in photosynthetic characteristics among different genotypes and ratoon years, highlighting the complex interplay between genotype and ratoon age. Notably, the heritability of these traits ranged from 0.70 to 0.86, indicating a strong genetic influence. Through principal component analysis, we identified three critical aspects of photosynthesis: efficiency and light utilization, electron transfer and reaction center status, and chlorophyll content, which collectively accounted for 99.9% of the observed variance. The germplasms were categorized into three efficiency groups—high, moderate, and low—based on their photosynthetic performance. Among these, 45 genotypes were classified as High Photosynthetic Efficiency (HPE), 19 as Moderate Photosynthetic Efficiency (MPE), and 10 as Low Photosynthetic Efficiency (LPE). Importantly, germplasms with high photosynthetic efficiency correlated with increased stalk weight and sucrose content, suggesting potential targets for breeding programs. These findings establish a quantitative framework linking photosynthetic performance with agronomic outputs, providing breeders with measurable selection criteria for developing next-generation sugarcane cultivars optimized for both biomass and sucrose production. Full article
Show Figures

Figure 1

22 pages, 5454 KB  
Article
Extreme Strengthening of Nickel by Ultralow Additions of SiC Nanoparticles: Synergy of Microstructure Control and Interfacial Reactions During Spark Plasma Sintering
by Leonid Agureev, Svetlana Savushkina and Artem Ashmarin
Inventions 2026, 11(1), 1; https://doi.org/10.3390/inventions11010001 - 29 Dec 2025
Viewed by 226
Abstract
Ni–ySiC system (where y = 0.001, 0.005, and 0.015 wt.%) composite materials with enhanced mechanical properties have been fabricated and comprehensively investigated. The composites were synthesized using a combined technology involving preliminary mechanical activation of powder components in a planetary mill followed by [...] Read more.
Ni–ySiC system (where y = 0.001, 0.005, and 0.015 wt.%) composite materials with enhanced mechanical properties have been fabricated and comprehensively investigated. The composites were synthesized using a combined technology involving preliminary mechanical activation of powder components in a planetary mill followed by consolidation via spark plasma sintering (SPS) at 850 °C. The microstructure and phase composition were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The physico-mechanical properties were evaluated by density measurements (hydrostatic weighing), three-point bending tests (25 °C and 400 °C), and Young’s modulus measurement using an ultrasonic method (25–750 °C). It was found that the introduction of ultralow amounts of SiC nanoparticles (0.001 wt.%) leads to an extreme increase in flexural strength: by 115% at 20 °C (up to 1130 MPa) and by 86% at 400 °C (up to 976 MPa) compared to pure nickel. Microstructural analysis revealed the formation of an ultrafine-grained structure (0.15–0.4 µm) with the presence of pyrolytic carbon and probable nickel silicide interlayers at the grain boundaries. Thermodynamic and kinetic modeling, including the calculation of chemical potentials and diffusion coefficients, confirmed the possibility of reactions at the Ni/SiC interface with the formation of nickel silicides (Ni2Si, NiSi) and free carbon. The scientific novelty of the work lies in establishing a synergistic strengthening mechanism combining the Hall–Petch, Orowan (dispersion), and solid solution strengthening effects, and in demonstrating the property extremum at an ultralow content of the dispersed phase (0.001 wt.%), explained from the standpoint of quantum-chemical analysis of phase stability. The obtained results are of practical importance for the development of high-strength and thermally stable nickel composites, promising for application in aerospace engineering. Full article
(This article belongs to the Section Inventions and Innovation in Applied Chemistry and Physics)
Show Figures

Figure 1

19 pages, 1902 KB  
Article
Modulation of Mast Cell Activation via MRGPRX2 by Natural Oat Extract
by Susanne Kaesler, Désirée Argiriu, Shyami M. Kandage, Karla Schönfeldt, Shalva Lekiashvili, Ceren N. Dengiz, Neslim Ercan, Caterina Iuliano, Martina Herrmann, Maria Reichenbach, Dominik Cichowski, Magda Babina, Miriam Hils, Martin Köberle and Tilo Biedermann
Int. J. Mol. Sci. 2026, 27(1), 334; https://doi.org/10.3390/ijms27010334 - 28 Dec 2025
Viewed by 501
Abstract
The Mas-related G protein-coupled receptor (MRGPR) X2 is expressed on skin mast cells and can be stimulated by an unusually broad spectrum of ligands, including specific drugs and even endogenous peptides. MRGPRX2 activation can induce mast cell degranulation and consequently mediator release, leading [...] Read more.
The Mas-related G protein-coupled receptor (MRGPR) X2 is expressed on skin mast cells and can be stimulated by an unusually broad spectrum of ligands, including specific drugs and even endogenous peptides. MRGPRX2 activation can induce mast cell degranulation and consequently mediator release, leading to inflammatory and hypersensitivity reactions. In addition, MRGPRX2 mediates pain and itching sensations, leading to increased efforts to identify MRGPRX2 inhibitors, including plant-derived compounds. Components within oat extracts have been shown to mediate anti-inflammatory and itch-relieving properties, but a possible inhibitory effect on MRGPRX2 activation has not yet been investigated. We aimed to fill this gap and explored whether an oat kernel extract can modulate MRGPRX2 activation. For this purpose, we established a mast cell model with the human LAD2 cell line and used it to investigate the consequences of exposure to oat extract. While we did not observe any influence on cell viability, we analyzed the impact of oat extract on MRGPRX2-mediated mast cell activation and degranulation initiated by the three confirmed MRGPRX2 ligands c48/80, substance P, and cortistatin 14. Exposure to oat extract resulted in a significant reduction in mast cell degranulation for all three ligands, as assessed by the release of β-hexosaminidase, tryptase, cell surface expression of CD63 and CD107a, and phosphorylation of ERK. All results were confirmed with primary human mast cells. Thus, we demonstrated for the first time that oat extract leads to a significant reduction in MRGPRX2 activation, pointing to a previously unrecognized capacity of natural compounds to modulate this pathway. Full article
(This article belongs to the Special Issue Mast Cells in Human Health and Diseases—3rd Edition)
Show Figures

Figure 1

28 pages, 3277 KB  
Article
Conditional Variational AutoEncoder to Predict Suitable Conditions for Hydrogenation Reactions
by Daniyar Mazitov, Timur Gimadiev, Assima Poyezzhayeva, Valentina Afonina and Timur Madzhidov
Molecules 2026, 31(1), 75; https://doi.org/10.3390/molecules31010075 - 24 Dec 2025
Viewed by 429
Abstract
Reaction conditions (RCs) are a crucial part of reaction definition, and their accurate prediction is an important component of chemical synthesis planning. The existence of multiple combinations of RCs capable of achieving the desired result complicates the task of condition recommendation. Herein, we [...] Read more.
Reaction conditions (RCs) are a crucial part of reaction definition, and their accurate prediction is an important component of chemical synthesis planning. The existence of multiple combinations of RCs capable of achieving the desired result complicates the task of condition recommendation. Herein, we propose a conditional variational autoencoder (CVAE) generative model to predict suitable RCs. The CVAE model has been customized to generate diverse sets of valid conditions, ensuring high flexibility and accuracy, while circumventing the necessity for enumeration or combinatorial search of potential RCs. The efficacy of the CVAE approaches was evaluated using hydrogenation reactions and other H2-mediated reactions, predicting the set of catalysts, additives (acid, base, and catalytic poison), ranges of temperature, and pressure. The CVAE models predicted conditions with different “heads”, each corresponding to specific condition components, and their respective losses. CVAE models were tested on two datasets: a small one containing 31K reactions with 2232 potential conditions’ combinations and a big one having 196K reactions with ~7 × 1042 potential conditions’ combinations to evaluate the model’s ability to predict varying complexity and diversity conditions. To optimize the accuracy of the models, we experimented with three latent distribution variants—Gaussian (g-CVAE), Riemannian Normalizing Flow (rnf-CVAE), and Hyperspherical Uniform (h-CVAE). In our experiments, the h-CVAE model demonstrated robust overall performance, making it the optimal choice for scenarios requiring high accuracy across multiple top-k predictions. Benchmarking analyses demonstrated the high performance of the CVAE models compared to state-of-the-art reaction condition prediction approaches. Full article
Show Figures

Figure 1

22 pages, 2556 KB  
Article
Ergonomic Risk Assessment of Professional Dance Using Motion Capture with Ergonomic Evaluation by the Rapid Entire Body Assessment (REBA)
by Verena Fehringer, Christian Maurer-Grubinger, Fabian Holzgreve, Daniela Ohlendorf and Eileen M. Wanke
Sensors 2026, 26(1), 70; https://doi.org/10.3390/s26010070 - 22 Dec 2025
Viewed by 503
Abstract
The aim of the present study was to assess physical demands in professional dance during daily training routine using kinematic data and to categorize it ergonomically using the Rapid Entire Body Assessment (REBA) tool. The three phases of daily classical ballet training of [...] Read more.
The aim of the present study was to assess physical demands in professional dance during daily training routine using kinematic data and to categorize it ergonomically using the Rapid Entire Body Assessment (REBA) tool. The three phases of daily classical ballet training of n = 28 professional dancers (16f/12m) were recorded with the inertial motion capture system MVN Link (Xsens, Netherlands), extracted and analyzed by MATLAB; subsequently, the ergonomic risk was determined. Female dancers trained significantly longer in the high-risk range than their male colleagues (f: 94%; m: 89%; p < 0.001). During the entire training, the female and male dancers had a mean REBA score of 6.31 and 6.03 resp., with phase 3 tending to have lower REBA values but an increased likelihood of injury due to fatigue and ground reaction forces. It can be recommended that the daily training should be critically examined and adjusted to anthropometric characteristics and the integration of regeneration phases, cardiopulmonary components, and targeted strength training programs to relieve vulnerable structures, as substantiated in the main text and should not exaggerate the main conclusions. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop