Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,397)

Search Parameters:
Keywords = strong stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 (registering DOI) - 2 Aug 2025
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

15 pages, 1691 KiB  
Article
tRNA Modifications: A Tale of Two Viruses—SARS-CoV-2 and ZIKV
by Patrick Eldin and Laurence Briant
Int. J. Mol. Sci. 2025, 26(15), 7479; https://doi.org/10.3390/ijms26157479 (registering DOI) - 2 Aug 2025
Abstract
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage [...] Read more.
tRNA modifications are crucial for efficient protein synthesis, impacting codon recognition, tRNA stability, and translation rates. RNA viruses hijack the host’s translational machinery, including the pool of modified tRNA, to translate their own genomes. However, the mismatch between viral and host codon usage can lead to a limited availability of specific tRNA leading to ribosome stalling, posing a significant challenge for efficient protein translation. While some viruses address this challenge through codon optimization, we show here that SARS-CoV-2 (Coronavirus) and the Zika virus (ZIKV; Flavivirus) adopt a different approach, manipulating the host tRNA epitranscriptome. Analysis of codon bias indices confirmed a substantial divergence between viral and host codon usage, revealing a strong preference in viral genes for codons decoded by tRNAs requiring U34 wobble modification. Monitoring tRNA modification dynamics in infected cells showed that both SARS-CoV2 and ZIKV enhance U34 tRNA modifications during infection. Strikingly, impairing U34 tRNAs profoundly impacted viral replication, underscoring the strict reliance of SARS-CoV-2 and ZIKV on manipulating the host tRNA epitranscriptome to support the efficient translation of their genome. Full article
Show Figures

Figure 1

30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 (registering DOI) - 2 Aug 2025
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

22 pages, 3023 KiB  
Article
Improving Grain Safety Using Radiation Dose Technologies
by Raushangul Uazhanova, Meruyert Ametova, Zhanar Nabiyeva, Igor Danko, Gulzhan Kurtibayeva, Kamilya Tyutebayeva, Aruzhan Khamit, Dana Myrzamet, Ece Sogut and Maxat Toishimanov
Agriculture 2025, 15(15), 1669; https://doi.org/10.3390/agriculture15151669 (registering DOI) - 1 Aug 2025
Abstract
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various [...] Read more.
Reducing post-harvest losses of cereal crops is a key challenge for ensuring global food security amid the limited arable land and growing population. This study investigates the effectiveness of electron beam irradiation (5 MeV, ILU-10 accelerator) as a physical decontamination method for various cereal crops cultivated in Kazakhstan. Samples were irradiated at doses ranging from 1 to 5 kGy, and microbiological indicators—including Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms (QMAFAnM), yeasts, and molds—were quantified according to national standards. Experimental results demonstrated an exponential decline in microbial contamination, with a >99% reduction achieved at doses of 4–5 kGy. The modeled inactivation kinetics showed strong agreement with the experimental data: R2 = 0.995 for QMAFAnM and R2 = 0.948 for mold, confirming the reliability of the exponential decay models. Additionally, key quality parameters—including protein content, moisture, and gluten—were evaluated post-irradiation. The results showed that protein levels remained largely stable across all doses, while slight but statistically insignificant fluctuations were observed in moisture and gluten contents. Principal component analysis and scatterplot matrix visualization confirmed clustering patterns related to radiation dose and crop type. The findings substantiate the feasibility of electron beam treatment as a scalable and safe technology for improving the microbiological quality and storage stability of cereal crops. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

23 pages, 3153 KiB  
Article
Research on Path Planning Method for Mobile Platforms Based on Hybrid Swarm Intelligence Algorithms in Multi-Dimensional Environments
by Shuai Wang, Yifan Zhu, Yuhong Du and Ming Yang
Biomimetics 2025, 10(8), 503; https://doi.org/10.3390/biomimetics10080503 (registering DOI) - 1 Aug 2025
Abstract
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence [...] Read more.
Traditional algorithms such as Dijkstra and APF rely on complete environmental information for path planning, which results in numerous constraints during modeling. This not only increases the complexity of the algorithms but also reduces the efficiency and reliability of the planning. Swarm intelligence algorithms possess strong data processing and search capabilities, enabling them to efficiently solve path planning problems in different environments and generate approximately optimal paths. However, swarm intelligence algorithms suffer from issues like premature convergence and a tendency to fall into local optima during the search process. Thus, an improved Artificial Bee Colony-Beetle Antennae Search (IABCBAS) algorithm is proposed. Firstly, Tent chaos and non-uniform variation are introduced into the bee algorithm to enhance population diversity and spatial searchability. Secondly, the stochastic reverse learning mechanism and greedy strategy are incorporated into the beetle antennae search algorithm to improve direction-finding ability and the capacity to escape local optima, respectively. Finally, the weights of the two algorithms are adaptively adjusted to balance global search and local refinement. Results of experiments using nine benchmark functions and four comparative algorithms show that the improved algorithm exhibits superior path point search performance and high stability in both high- and low-dimensional environments, as well as in unimodal and multimodal environments. Ablation experiment results indicate that the optimization strategies introduced in the algorithm effectively improve convergence accuracy and speed during path planning. Results of the path planning experiments show that compared with the comparison algorithms, the average path planning distance of the improved algorithm is reduced by 23.83% in the 2D multi-obstacle environment, and the average planning time is shortened by 27.97% in the 3D surface environment. The improvement in path planning efficiency makes this algorithm of certain value in engineering applications. Full article
(This article belongs to the Section Biological Optimisation and Management)
Show Figures

Figure 1

14 pages, 879 KiB  
Article
Axially Disubstituted Silicon(IV) Phthalocyanine as a Potent Sensitizer for Antimicrobial and Anticancer Photo-Sonodynamic Therapy
by Marcin Wysocki, Daniel Ziental, Zekeriya Biyiklioglu, Malgorzata Jozkowiak, Jolanta Dlugaszewska, Hanna Piotrowska-Kempisty, Emre Güzel and Lukasz Sobotta
Int. J. Mol. Sci. 2025, 26(15), 7447; https://doi.org/10.3390/ijms26157447 (registering DOI) - 1 Aug 2025
Abstract
The unique properties of phthalocyanines (Pcs), such as strong absorption, high photostability, effective singlet oxygen generation, low toxicity and biocompatibility, versatile chemical modifications, broad spectrum of antimicrobial activity, and synergistic effects with other treatment modalities, make them a preferred superior sensitizer in the [...] Read more.
The unique properties of phthalocyanines (Pcs), such as strong absorption, high photostability, effective singlet oxygen generation, low toxicity and biocompatibility, versatile chemical modifications, broad spectrum of antimicrobial activity, and synergistic effects with other treatment modalities, make them a preferred superior sensitizer in the field of antimicrobial photodynamic therapy. The photodynamic and sonodynamic activity of 3-(3-(diethylamino)phenoxy)propanoxy substituted silicon(IV) Pc were evaluated against bacteria and cancer cells. Stability and singlet oxygen generation upon light irradiation and ultrasound (1 MHz, 3 W) were assessed with 1,3-diphenylisobenzofuran. The phthalocyanine revealed high photostability in DMF and DMSO, although the singlet oxygen yields under light irradiation were low. On the other hand, the phthalocyanine revealed excellent sonostability and caused a high rate of DPBF degradation upon excitation by ultrasounds at 1 MHz. The silicon phthalocyanine presented significant bacterial reduction growth, up to 5 log against MRSA and S. epidermidis upon light excitation, whereas the sonodynamic effect was negligible. The phthalocyanine revealed high activity in both photodynamic and sonodynamic manner toward hypopharyngeal tumor (FaDu, 95% and 42% reduction, respectively) and squamous cell carcinoma (SCC-25, 96% and 62% reduction, respectively). The sensitizer showed ca. 30% aldehyde dehydrogenase inhibition in various concentrations and up to 85% platelet-activating factor acetylhydrolase for 0.25 μM, while protease-activated protein C was stimulated up to 66% for 0.75 μM. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

13 pages, 1623 KiB  
Article
Effect of Absolute Ethanol and Thermal Treatment on Shrinkage and Mechanical Properties of TPU Electrospun Nanofiber Membranes
by Lei Wang, Ming Kong, Shengchun Wang, Chunsheng Li and Min Yang
Coatings 2025, 15(8), 897; https://doi.org/10.3390/coatings15080897 (registering DOI) - 1 Aug 2025
Abstract
Thermoplastic polyurethane (TPU) electrospun fiber membranes possess unique micro-nano structures and excellent properties. Adjusting their wettability enables the directional transportation of lubricants. A conventional method for adjusting porosity and wettability involves inducing membrane shrinkage using absolute ethanol and heat treatment. However, the shrinkage [...] Read more.
Thermoplastic polyurethane (TPU) electrospun fiber membranes possess unique micro-nano structures and excellent properties. Adjusting their wettability enables the directional transportation of lubricants. A conventional method for adjusting porosity and wettability involves inducing membrane shrinkage using absolute ethanol and heat treatment. However, the shrinkage response and the corresponding changes in the tensile properties of TPU fiber membranes after induction remain unclear, limiting their applications. Thus, in this study, after being peeled off, the samples were first left to stand at room temperature (RT) for 24 h to release residual stress and stabilize their dimensions, and then treated with dehydrated ethanol at RT and high temperature, respectively, with their shrinkage behaviors observed and recorded. The results showed that TPU nanofiber membranes shrank significantly in absolute ethanol, and the degree of shrinkage was temperature-dependent. The shrinkage rates were 2% and 4% in dehydrated ethanol at room temperature and high temperature, respectively, and heating increased the shrinkage effect by 200%. These findings prove that absolute ethanol causes TPU fibers to shrink, and high temperatures further promote shrinkage. However, although the strong synergistic effect of heat and solvent accelerates shrinkage, it may induce internal structural defects, resulting in the deterioration of mechanical properties. The contraction response induced by anhydrous ethanol stimulation can be used to directionally adjust the local density and modulus of TPU nanofiber membranes, thereby changing the wettability. This approach provides new opportunities for applications in areas such as medium transportation and interface friction reduction in lubrication systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

20 pages, 3586 KiB  
Article
Enhanced NiFe2O4 Catalyst Performance and Stability in Anion Exchange Membrane Water Electrolysis: Influence of Iron Content and Membrane Selection
by Khaja Wahab Ahmed, Aidan Dobson, Saeed Habibpour and Michael Fowler
Molecules 2025, 30(15), 3228; https://doi.org/10.3390/molecules30153228 (registering DOI) - 1 Aug 2025
Abstract
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were [...] Read more.
Anion exchange membrane (AEM) water electrolysis is a potentially inexpensive and efficient source of hydrogen production as it uses effective low-cost catalysts. The catalytic activity and performance of nickel iron oxide (NiFeOx) catalysts for hydrogen production in AEM water electrolyzers were investigated. The NiFeOx catalysts were synthesized with various iron content weight percentages, and at the stoichiometric ratio for nickel ferrite (NiFe2O4). The catalytic activity of NiFeOx catalyst was evaluated by linear sweep voltammetry (LSV) and chronoamperometry for the oxygen evolution reaction (OER). NiFe2O4 showed the highest activity for the OER in a three-electrode system, with 320 mA cm−2 at 2 V in 1 M KOH solution. NiFe2O4 displayed strong stability over a 600 h period at 50 mA cm−2 in a three-electrode setup, with a degradation rate of 15 μV/h. In single-cell electrolysis using a X-37 T membrane, at 2.2 V in 1 M KOH, the NiFe2O4 catalyst had the highest activity of 1100 mA cm−2 at 45 °C, which increased with the temperature to 1503 mA cm−2 at 55 °C. The performance of various membranes was examined, and the highest performance of the tested membranes was determined to be that of the Fumatech FAA-3-50 and FAS-50 membranes, implying that membrane performance is strongly correlated with membrane conductivity. The obtained Nyquist plots and equivalent circuit analysis were used to determine cell resistances. It was found that ohmic resistance decreases with an increase in temperature from 45 °C to 55 °C, implying the positive effect of temperature on AEM electrolysis. The FAA-3-50 and FAS-50 membranes were determined to have lower activation and ohmic resistances, indicative of higher conductivity and faster membrane charge transfer. NiFe2O4 in an AEM water electrolyzer displayed strong stability, with a voltage degradation rate of 0.833 mV/h over the 12 h durability test. Full article
(This article belongs to the Special Issue Water Electrolysis)
Show Figures

Figure 1

16 pages, 3282 KiB  
Article
First-Principles Study on Periodic Pt2Fe Alloy Surface Models for Highly Efficient CO Poisoning Resistance
by Junmei Wang, Qingkun Tian, Harry E. Ruda, Li Chen, Maoyou Yang and Yujun Song
Nanomaterials 2025, 15(15), 1185; https://doi.org/10.3390/nano15151185 (registering DOI) - 1 Aug 2025
Abstract
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in [...] Read more.
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in Pt-Fe alloys across varying Pt/Fe ratios. Our simulations reveal a strong tendency for Pt atoms to segregate to the surface layer while Fe atoms enrich the sub-surface region. Crucially, the calculations predict the stability of a periodic Pt2Fe alloy surface model, characterized by specific defect structures, at low platinum content and low annealing temperatures. Electronic structure analysis indicates that forming this Pt2Fe surface alloy lowers the d-band center of Pt atoms, weakening CO adsorption and thereby enhancing resistance to CO poisoning. Although defect-induced strains can modulate the d-band center, crystal orbital Hamilton population (COHP) analysis confirms that such strains generally strengthen Pt-CO interactions. Therefore, the theoretical design of Pt2Fe alloy surfaces and controlling defect density are predicted to be effective strategies for enhancing catalyst resistance to CO poisoning. This work highlights the advantages of periodic Pt2Fe surface models for anti-CO poisoning and provides computational guidance for designing efficient Pt-based electrocatalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

25 pages, 7784 KiB  
Article
Diversity in the Common Fold: Structural Insights into Class D β-Lactamases from Gram-Negative Pathogens
by Clyde A. Smith and Anastasiya Stasyuk
Pathogens 2025, 14(8), 761; https://doi.org/10.3390/pathogens14080761 (registering DOI) - 1 Aug 2025
Abstract
Class D β-lactamases (DBLs) represent a major threat to antibiotic efficacy by hydrolyzing β-lactam drugs, including last-resort carbapenems, thereby driving antimicrobial resistance in Gram-negative bacteria. The enzymes share a structurally conserved two-domain α/β architecture with seven active-site motifs and three flexible extended loops [...] Read more.
Class D β-lactamases (DBLs) represent a major threat to antibiotic efficacy by hydrolyzing β-lactam drugs, including last-resort carbapenems, thereby driving antimicrobial resistance in Gram-negative bacteria. The enzymes share a structurally conserved two-domain α/β architecture with seven active-site motifs and three flexible extended loops (the P-loop, Ω-loop, and newly designated B-loop) that surround the active site. While each of these loops is known to influence enzyme function, their coordinated roles have not been fully elucidated. To investigate the significance of their interplay, we compared the sequences and crystal structures of 40 DBLs from clinically relevant Gram-negative pathogens and performed molecular dynamics simulations on selected representatives. Combined structural and dynamical analyses revealed a strong correlation between B-loop architecture and carbapenemase activity in the pathogens Klebsiella and Acinetobacter, particularly regarding loop length and spatial organization. These findings emphasize the B-loop’s critical contribution, in concert with the P- and Ω-loops, in tuning active site versatility, substrate recognition, catalytic activity, and structural stability. A deeper understanding of how these motifs and loops govern DBL function may inform the development of novel antibiotics and inhibitors targeting this class of enzymes. Full article
Show Figures

Figure 1

22 pages, 1814 KiB  
Systematic Review
The Role of Financial Stability in Mitigating Climate Risk: A Bibliometric and Literature Analysis
by Ranila Suciati
J. Risk Financial Manag. 2025, 18(8), 428; https://doi.org/10.3390/jrfm18080428 (registering DOI) - 1 Aug 2025
Abstract
This study provides a comprehensive synthesis of climate risk and financial stability literature through a systematic review and bibliometric analysis of 174 Scopus-indexed publications from 1988 to 2024. Publications increased by 500% from 1988 to 2019, indicating growing research interest following the 2015 [...] Read more.
This study provides a comprehensive synthesis of climate risk and financial stability literature through a systematic review and bibliometric analysis of 174 Scopus-indexed publications from 1988 to 2024. Publications increased by 500% from 1988 to 2019, indicating growing research interest following the 2015 Paris Agreement. It explores how physical and transition climate risks affect financial markets, asset pricing, financial regulation, and long-term sustainability. Common themes include macroprudential policy, climate disclosures, and environmental risk integration in financial management. Influential authors and key journals are identified, with keyword analysis showing strong links between “climate change”, “financial stability”, and “climate risk”. Various methodologies are used, including econometric modeling, panel data analysis, and policy review. The main finding indicates a shift toward integrated, risk-based financial frameworks and rising concern over systemic climate threats. Policy implications include the need for harmonized disclosures, ESG integration, and strengthened adaptation finance mechanisms. Full article
(This article belongs to the Special Issue Featured Papers in Climate Finance)
Show Figures

Figure 1

25 pages, 2451 KiB  
Article
Complexation and Thermal Stabilization of Protein–Polyelectrolyte Systems via Experiments and Molecular Simulations: The Poly(Acrylic Acid)/Lysozyme Case
by Sokratis N. Tegopoulos, Sisem Ektirici, Vagelis Harmandaris, Apostolos Kyritsis, Anastassia N. Rissanou and Aristeidis Papagiannopoulos
Polymers 2025, 17(15), 2125; https://doi.org/10.3390/polym17152125 - 1 Aug 2025
Abstract
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores [...] Read more.
Protein–polyelectrolyte nanostructures assembled via electrostatic interactions offer versatile applications in biomedicine, tissue engineering, and food science. However, several open questions remain regarding their intermolecular interactions and the influence of external conditions—such as temperature and pH—on their assembly, stability, and responsiveness. This study explores the formation and stability of networks between poly(acrylic acid) (PAA) and lysozyme (LYZ) at the nanoscale upon thermal treatment, using a combination of experimental and simulation measures. Experimental techniques of static and dynamic light scattering (SLS and DLS), Fourier transform infrared spectroscopy (FTIR), and circular dichroism (CD) are combined with all-atom molecular dynamics simulations. Model systems consisting of multiple PAA and LYZ molecules explore collective assembly and complexation in aqueous solution. Experimental results indicate that electrostatic complexation occurs between PAA and LYZ at pH values below LYZ’s isoelectric point. This leads to the formation of nanoparticles (NPs) with radii ranging from 100 to 200 nm, most pronounced at a PAA/LYZ mass ratio of 0.1. These complexes disassemble at pH 12, where both LYZ and PAA are negatively charged. However, when complexes are thermally treated (TT), they remain stable, which is consistent with earlier findings. Atomistic simulations demonstrate that thermal treatment induces partially reversible structural changes, revealing key microscopic features involved in the stabilization of the formed network. Although electrostatic interactions dominate under all pH and temperature conditions, thermally induced conformational changes reorganize the binding pattern, resulting in an increased number of contacts between LYZ and PAA upon thermal treatment. The altered hydration associated with conformational rearrangements emerges as a key contributor to the stability of the thermally treated complexes, particularly under conditions of strong electrostatic repulsion at pH 12. Moreover, enhanced polymer chain associations within the network are observed, which play a crucial role in complex stabilization. These insights contribute to the rational design of protein–polyelectrolyte materials, revealing the origins of association under thermally induced structural rearrangements. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

28 pages, 8732 KiB  
Article
Acceleration Command Tracking via Hierarchical Neural Predictive Control for the Effectiveness of Unknown Control
by Zhengpeng Yang, Chao Ming, Huaiyan Wang and Tongxing Peng
Aerospace 2025, 12(8), 689; https://doi.org/10.3390/aerospace12080689 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and [...] Read more.
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and real-time performance requirements. Initially, a dynamic model is developed through a comprehensive analysis of the vehicle’s dynamic characteristics, incorporating strong cross-coupling effects and disturbance influences. Subsequently, a predictive mechanism is employed to forecast future states and generate virtual control commands, effectively resolving the issue of sluggish responses under rapidly changing commands. Furthermore, the approximation capability of neural networks is leveraged to optimize the control strategy in real time, ensuring that rudder deflection commands adapt to disturbance variations, thus overcoming the robustness limitations inherent in fixed-parameter control approaches. Within the proposed framework, the ultimate uniform bounded stability of the control system is rigorously established using the Lyapunov method. Simulation results demonstrate that the method exhibits exceptional performance under conditions of system state uncertainty and unknown external disturbances, confirming its effectiveness and reliability. Full article
(This article belongs to the Section Aeronautics)
Back to TopTop