Improving Grain Safety Using Radiation Dose Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Organization
- Control group: Non-irradiated samples that were transported and stored under the same environmental conditions as the treated samples (2 samples per cereal type);
- Irradiated group: Samples exposed to electron beam treatment with the ILU-10 accelerator, with absorbed doses of 1, 2, 3, 4, and 5 kGy (2 samples of each cereal variety were prepared for one dose of radiation).
2.2. Irradiation Procedure
2.3. Microbiological Methods
2.4. Assessment of Cereal Grain Quality Parameters
2.5. Statistical Analysis
- D—the radiation dose (kGy);
- a—initial level of contamination (scale factor);
- b—rate of decrease in microbiological contamination;
- c—residual CFU value.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
QMAFAnM | Quantity of Mesophilic Aerobic and Facultative Anaerobic Microorganisms |
FAO | Food and Agriculture Organization |
IAEA | International Atomic Energy Agency |
WHO | World Health Organization |
PSS | Peptone salt solution |
CFUs | Colony-forming units |
ANOVA | Analysis of variance |
PCA | Principal component analysis |
References
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; Available online: https://www.fao.org/3/ca6030en/ca6030en.pdf (accessed on 1 June 2025).
- Kumar, D.; Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 2017, 6, 8. [Google Scholar] [CrossRef]
- Affognon, H.; Mutungi, C.; Sanginga, P.; Borgemeister, C. Unpacking Postharvest Losses in Sub-Saharan Africa: A Meta-Analysis. World Dev. 2015, 66, 49–68. [Google Scholar] [CrossRef]
- World Bank. Missing Food: The Case of Postharvest Grain Losses in Sub-Saharan Africa; Report No. 60371-AFR; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- Srivastava, S.; Mishra, H.N. Ecofriendly Nonchemical/Nonthermal Methods for Disinfestation and Control of Pest/Fungal Infestation during Storage of Major Important Cereal Grains: A Review. Food Front. 2021, 2, 93–105. [Google Scholar] [CrossRef]
- Farkas, J. Irradiation for Better Foods. Trends Food Sci. Technol. 2006, 17, 148–152. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. General Standard for Irradiated Foods (CXS 106-1983, Rev.1-2003); FAO/WHO: Rome, Italy, 2003; Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B192-1995%252FCXS_192e.pdf (accessed on 2 June 2025).
- WHO. High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses Above 10 kGy; WHO Technical Report; Series 890; WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Nasab, S.S.; Zare, L.; Tahmouzi, S.; Nematollahi, A.; Mollakhalili-Meybodi, N.; Abedi, A.S.; Delshadian, Z. Effect of Irradiation Treatment on Microbial, Nutritional and Technological Characteristics of Cereals: A Comprehensive Review. Radiat. Phys. Chem. 2023, 212, 111124. [Google Scholar] [CrossRef]
- Bouzarjomehri, F.; Dad, V.; Hajimohammadi, B.; Shirmardi, S.P.; Salimi, A.Y. The Effect of Electron-Beam Irradiation on Microbiological Properties and Sensory Characteristics of Sausages. Radiat. Phys. Chem. 2020, 168, 108524. [Google Scholar] [CrossRef]
- Kulazhanov, T.; Uazhanova, R.; Baybolova, L.; Yerzhigitov, Y.; Kemerbekova, A.; Tyutebayeva, K.; Izembayeva, A.; Zhengiskyzy, S. Ensuring quality and safety in the production and storage of grain crops. Casp. J. Environ. Sci. 2024, 22, 1279–1284. [Google Scholar]
- Tungyshbayeva, U.; Uazhanova, R.; Tyutebayeva, K.; Balev, D. Devising preventive actions in the production of broiler chickens using ultraviolet radiation for long-term storage based on risk analysis. East.-Eur. J. Enterp. Technol. 2022, 3, 53–59. [Google Scholar] [CrossRef]
- Omrani, M.; Mohammadi, M.; Ghasemi, M. Postharvest Plasma Treatment of Barhi Dates: Reducing Pesticide Residue While Preserving Nutritional Value. J. Stored Prod. Res. 2025, 111, 102568. [Google Scholar] [CrossRef]
- Keszthelyi, S.; Lukács, H.; Pál-Fám, F. Effects of Different Infra-Red Irradiations on the Survival of Granary Weevil Sitophilus granarius: Bioefficacy and Sustainability. Insects 2021, 12, 102. [Google Scholar] [CrossRef]
- Aziz, N.H.; Souzan, R.M.; Shahin, A.A. Effect of γ-Irradiation on the Occurrence of Pathogenic Microorganisms and Nutritive Value of Four Principal Cereal Grains. Appl. Radiat. Isot. 2006, 64, 1555–1562. [Google Scholar] [CrossRef]
- Köksel, H.; Celik, S.; Tuncer, T. Effects of Gamma Irradiation on Durum Wheats and Spaghetti Quality. Cereal Chem. 1996, 73, 506–509. [Google Scholar]
- Mitra, R.; Das, P.; Acharya, K.; Chakraborty, A.; De Corato, U.; Minkina, T.; Kirichkov, M.V.; Kalinitchenko, V.P.; Sarkar, A.; Keswani, C.; et al. Unravelling Recent Advances in Ionizing Irradiation-Based Management of Post-Harvest Crop Losses: A Pan-Global Survey. J. Crop Health 2024, 76, 1317–1333. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Kumar Gaur, V.; Singh, S.; Sindhu, R.; Rajasekharan, R.; Madhavan, A.; Binod, P.; Kumar, S.; Pandey, A. Technologies for Disinfection of Food Grains: Advances and Way Forward. Food Res. Int. 2021, 145, 110396. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Halford, N.G. Cereal seed storage proteins: Structures, properties and role in grain utilization. J. Exp. Bot. 2002, 53, 947–958. [Google Scholar] [CrossRef]
- Mohamed, A.B.; Chavez, R.A.; Wagacha, M.J.; Mutegi, C.K.; Muthomi, J.W.; Pillai, S.D.; Stasiewicz, M.J. Efficacy of electron beam irradiation in reduction of mycotoxin-producing fungi, aflatoxin, and fumonisin, in naturally contaminated maize slurry. Toxicon X 2022, 15, 100141. [Google Scholar] [CrossRef] [PubMed]
- Los, A.; Ziuzina, D.; Bourke, P. Current and Future Technologies for Microbiological Decontamination of Cereal Grains. J. Food Sci. 2018, 83, 1486–1493. [Google Scholar] [CrossRef]
- Rigas, N.; Maharjan, P.; Partington, D.; McDonald, L.; Walker, C.; Bekes, F.; Florides, C.; Panozzo, J. Adverse effects of high-dose gamma irradiation on wheat quality and processing traits. Compr. Rev. Food Sci. Food Saf. 2023, 22, 5204–5229. [Google Scholar] [CrossRef]
- Doiron, T. 20 °C—A Short History of the Standard Reference Temperature for Industrial Dimensional Measurements. J. Res. Natl. Inst. Stand. Technol. 2007, 112, 1–23. [Google Scholar] [CrossRef]
- ISO 554:1976; Standard Atmospheres for Conditioning and/or Testing—Specifications. ISO: Geneva, Switzerland, 1976.
- ISO/ASTM 51900:2023; Standard Guide for Dosimetry for Radiation Processing. ISO/ASTM International: West Conshohocken, PA, USA, 2023.
- Khaneghah, A.M.; Moosavi, M.H.; Oliveira, C.A.; Vanin, F.; Sant’Ana, A.S. Electron Beam Irradiation to Reduce the Mycotoxin and Microbial Contaminations of Cereal-Based Products: An Overview. Food Chem. Toxicol. 2020, 143, 111557. [Google Scholar] [CrossRef]
- Kiani, D.; Borzouei, A.; Ramezanpour, S.; Ghasemi, M.; Vaezi, B.; Mohammadi, M.H. Application of Gamma Irradiation on Morphological, Biochemical, and Molecular Aspects of Wheat (Triticum aestivum L.) under Different Seed Moisture Contents. Sci. Rep. 2022, 12, 11082. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J. Microbiological safety of irradiated foods. Int. J. Food Microbiol. 1989, 9, 1–15. [Google Scholar] [CrossRef]
- Alizadeh Sani, M.; Velayati, N.; Borhani Yazdi, N.; Khezerlou, A.; Jafari, S.M. Electron Beam Irradiation: A Non-Thermal Technology for Food Safety and Quality Control. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70205. [Google Scholar] [CrossRef]
- Dutbayev, Y.; Kharipzhanova, A.; Yessimbekova, M.; Toishimanov, M.; Lozowicka, B.; Iwaniuk, P.; Bastaubaeva, S.; Kokhmetova, A. Ochratoxin A and Deoxynivalenol Mycotoxin Profile in Triticale Seedlings with Different Susceptibility to the Root Rot. OnLine J. Biol. Sci. 2023, 23, 87–93. [Google Scholar] [CrossRef]
- Islam, A.; Sadakuzzaman, M.; Hossain, M.A.; Hossain, M.M.; Hashem, M.A. Effect of Gamma Irradiation on Shelf Life and Quality of Indigenous Chicken Meat. J. Bangladesh Agric. Univ. 2019, 17, 560–566. [Google Scholar] [CrossRef]
- Asmarani, R.R.; Ujilestari, T.; Sholikin, M.M.; Wulandari, W.; Damayanti, E.; Anwar, M.; Aditya, S.; Karimy, M.F.; Wahono, S.K.; Triyannanto, E.; et al. Meta-analysis of the effects of gamma irradiation on chicken meat and meat product quality. Vet. World 2024, 17, 1084–1097. [Google Scholar] [CrossRef]
- Tefera, T.; Kanampiu, F.; De Groote, H.; Hellin, J.; Mugo, S.; Kimenju, S.; Beyene, Y.; Boddupalli, P.M.; Shiferaw, B.; Banziger, M. The Metal Silo: An Effective Grain Storage Technology for Reducing Post-Harvest Insect and Pathogen Losses in Maize While Improving Smallholder Farmers’ Food Security in Developing Countries. Crop Prot. 2011, 30, 240–245. [Google Scholar] [CrossRef]
- Fink, R.; Okanovič, D.; Dražič, G.; Abram, A.; Oder, M.; Jevšnik, M.; Bohinc, K. Bacterial Adhesion Capacity on Food Service Contact Surfaces. Int. J. Environ. Health Res. 2017, 27, 406–417. [Google Scholar] [CrossRef]
- Shahhosseini, G.; Karimi, A.; Amanpour, S.; Mansouri, M.A. Effect of Gamma Irradiation on Microbial Decontamination, Crude Nutrient Content, and Mineral Nutrient Composition of Laboratory Animal Diets. Arch. Razi Inst. 2019, 74, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Ben Amara, A.; Mehrez, A.; Ragoubi, C.; Romero-González, R.; Garrido Frenich, A.; Landoulsi, A.; Maatouk, I. Fungal Mycotoxins Reduction by Gamma Irradiation in Naturally Contaminated Sorghum. J. Food Process. Preserv. 2022, 46, e16345. [Google Scholar] [CrossRef]
- Li, C.; Zhang, R.; Sogore, T.; Feng, J.; Liao, X.; Wang, X.; Zhang, Z.; Ding, T. Electron Beam Irradiation in Food Processing: Current Applications and Strategies for Commercial Scale Implementation. Food Funct. 2023, 14, 10694–10714. [Google Scholar] [CrossRef]
- Orynbekov, D.; Amirkhanov, K.; Kalibekkyzy, Z.; Muslimova, N.; Nurymkhan, G.; Nurgazezova, A.; Kassymov, S.; Kassenov, A.; Maizhanova, A.; Kulushtayeva, B.; et al. Effect of Electron-Beam Irradiation on Microbiological Safety, Nutritional Quality, and Structural Characteristics of Meat. Foods 2025, 14, 1460. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, J.B.; Tallentire, A. Substantiation of 25 kGy as a Sterilization Dose: A Rational Approach to Establishing Verification Dose. Radiat. Phys. Chem. 1999, 54, 55–63. [Google Scholar] [CrossRef]
- Naibaho, J.; Harasym, J. Effect of Irradiation on the Nutritional Profile of Cereal Grains. In Cereal Grains: Processing Methods for Preserving Nutritional Value; Harasym, J., Ed.; Springer: Cham, Switzerland, 2025; pp. 275–296. [Google Scholar]
- Xue, P.; Zhao, Y.; Wen, C.; Cheng, S.; Lin, S. Effects of Electron Beam Irradiation on Physicochemical Properties of Corn Flour and Improvement of the Gelatinization Inhibition. Food Chem. 2017, 233, 467–475. [Google Scholar] [CrossRef]
- Yan, M.; Sun, C.; Yu, J.; Bai, J.; Shen, H.; Zhang, X.; Lu, Y.; Sun, Z.; Ge, X.; Liang, W.; et al. The Promoting Effect of Electron Beam Irradiation on Enzymatic Saccharification and Alcohol Fermentation of Sorghum Meal: Related Mechanisms. J. Cereal Sci. 2024, 116, 103878. [Google Scholar] [CrossRef]
- Pan, L.; Xing, J.; Luo, X.; Li, Y.; Sun, D.; Zhai, Y.; Yang, K.; Chen, Z. Influence of Electron Beam Irradiation on the Moisture and Properties of Freshly Harvested and Sun-Dried Rice. Foods 2020, 9, 1139. [Google Scholar] [CrossRef]
- Sethukali, A.K.; Lee, H.J.; Park, D.; Kim, H.J.; Lee, H.J.; Jo, C. Effect of Electron Beam Irradiation on Microbial Inactivation, Nutritional and Quality Properties of Semi-Moist Pet Foods. Radiat. Phys. Chem. 2025, 212, 112689. [Google Scholar] [CrossRef]
- Azzeh, F.S.; Amr, A.S. Effect of Gamma Irradiation on Physical Characteristics of Jordanian Durum Wheat and Quality of Semolina and Lasagna Products. Radiat. Phys. Chem. 2009, 78, 1105–1110. [Google Scholar] [CrossRef]
- Shabani, M.; Alemzadeh, A.; Nakhoda, B.; Razi, H.; Houshmandpanah, Z.; Hildebrand, D. Optimized Gamma Radiation Produces Physiological and Morphological Changes That Improve Seed Yield in Wheat. Physiol. Mol. Biol. Plants 2022, 28, 1571–1586. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Abdalla, I.G.; Salih, A.M.; Hassan, A.B. Effect of Gamma Radiation on Storability and Functional Properties of Sorghum Grains (Sorghum bicolor L.). Food Sci. Nutr. 2018, 6, 1933–1939. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, L.; Sun, D.; Li, Y.; Chen, Z. Effect of Enzymolysis-Assisted Electron Beam Irradiation on Structural Characteristics and Antioxidant Activity of Rice Protein. J. Cereal Sci. 2019, 89, 102789. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Chen, Z.; Li, Y.; Luo, X.; Li, Y. Effect of High Energy Electron Beam on Proteolysis and Antioxidant Activity of Rice Proteins. Food Funct. 2019, 10, 2418–2426. [Google Scholar] [CrossRef] [PubMed]
Item # | Sample Name | Number of Samples, pcs. | Average Weight of Samples, g | Dimensions of Samples (L × W × H), mm |
---|---|---|---|---|
1 | Wheat (Winter, Sapaly) | 12 | 55 | 110 × 75 × 10 |
2 | Wheat (Farabi 1) | 12 | 60 | 110 × 75 × 10 |
3 | Wheat (Winter, soft, Mereke 70) | 12 | 60 | 110 × 75 × 13 |
4 | Triticale (Elite Kozha, Harvest 2024) | 12 | 60 | 110 × 75 × 13 |
5 | Wheat (3rd grade) | 12 | 65 | 110 × 75 × 15 |
6 | Wheat (Glassy 24) | 12 | 50 | 110 × 75 × 12 |
7 | Wheat (Egemen 20, 1 reproduction, autumn) | 12 | 40 | 110 × 75 × 10 |
8 | Wheat (Kazakhstan 10, 1 reproduction autumn/summer) | 12 | 35 | 110 × 75 × 10 |
9 | Wheat (Glassy 24, elite, autumn) | 12 | 25 | 110 × 75 × 9 |
10 | Wheat (Winter, Kazakhstan) | 12 | 60 | 110 × 75 × 15 |
11 | Wheat (Forage) | 12 | 60 | 110 × 75 × 15 |
12 | Barley | 12 | 65 | 110 × 75 × 15 |
13 | Oats | 12 | 35 | 110 × 75 × 10 |
Mode # | E, MeV | Iimp, mA | f, Hz | Iav, mA | Conveyor Speed, cm/s | Irradiation | D, kGy |
---|---|---|---|---|---|---|---|
1 | 5 | 122 | 4 | 0.24 | 4 | On the one side | 1 |
2 | 5 | 122 | 8 | 0.49 | 4 | On the one side | 2 |
3 | 5 | 122 | 12 | 0.73 | 4 | On the one side | 3 |
4 | 5 | 122 | 16 | 0.98 | 4 | On the one side | 4 |
5 | 5 | 122 | 20 | 1.22 | 4 | On the one side | 5 |
Item # | Name of Samples | Control (0 kGy) | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy |
---|---|---|---|---|---|---|---|
1 | Wheat (Winter, Sapaly) | Solid growth | 11 | 9.2 | 3 | ND | ND |
2 | Wheat (Farabi 1) | 12 | ND | ND | ND | ND | ND |
3 | Wheat (Winter, soft, Mereke 70) | ND | ND | ND | ND | ND | ND |
4 | Triticale (Elite Kozha, Harvest 2024) | ND | ND | ND | ND | ND | ND |
5 | Wheat (3rd grade) | 4 | ND | ND | ND | ND | ND |
6 | Wheat (Glassy 24) | 14 | 3.8 | 1 | ND | ND | ND |
7 | Wheat (Egemen 20, 1 reproduction, autumn) | 48 | 17 | 8 | 5 | 4.8 | ND |
8 | Wheat (Kazakhstan 10, 1 reproduction autumn/summer) | 37 | 13 | 7 | 5 | 3.5 | ND |
9 | Wheat (Glassy 24, elite, autumn) | Solid growth | 6 | 4 | 2 | 2 | ND |
10 | Wheat (Winter, Kazakhstan) | 7 | 3 | 3 | 1 | ND | ND |
11 | Wheat (Forage) | 78 | 6.8 | 6.1 | 5.3 | 1 | ND |
12 | Barley | 81 | 73 | 8.1 | 3.1 | 2.7 | ND |
13 | Oats | 49 | 6.9 | 8 | 2.0 | 1 | ND |
Name of Samples | Control (0 kGy) | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy |
---|---|---|---|---|---|---|
Average QMAFAnM (103 CFU/g) | 40.77 | 10.81 | 4.18 | 2.03 | 1.15 | ND |
Average Microbial Reduction (%) | 0 | 75.41 | 87.91 | 94.73 | 97.44 | 100 |
Item # | Name of Samples | 0 kGy | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy |
---|---|---|---|---|---|---|---|
1 | Wheat (Winter, Sapaly) | 4 | 7 | ND | ND | ND | ND |
2 | Wheat (Farabi 1) | 16 | 15 | ND | ND | ND | ND |
3 | Wheat (Winter, soft, Mereke 70) | 4 | 5 | ND | ND | ND | ND |
4 | Triticale (Elite Kozha, Harvest 2024) | 100 | 8 | 15 | 1 | ND | ND |
5 | Wheat (3rd grade) | 12 | 15 | 1 | ND | ND | ND |
6 | Wheat (Glassy 24) | 14 | 14 | ND | ND | ND | ND |
7 | Wheat (Egemen 20, 1 reproduction, autumn) | 5 | 18 | 18 | 2 | ND | ND |
8 | Wheat (Kazakhstan 10, 1 reproduction autumn/summer) | 18 | 12 | 11 | 5 | ND | ND |
9 | Wheat (Glassy 24, elite, autumn) | 5 | 24 | 4 | ND | ND | ND |
10 | Wheat (Winter, Kazakhstan) | ND | ND | 7 | ND | ND | ND |
11 | Wheat (Forage) | 100 | 6 | 4 | ND | ND | ND |
12 | Barley | 100 | 100 | 100 | 15 | 8 | ND |
13 | Oats | 7 | 15 | ND | ND | ND | ND |
Name of Samples | Control (0 kGy) | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy |
---|---|---|---|---|---|---|
Average Mold Contamination Values (CFU/g) | 29.62 | 18.38 | 12.31 | 1.77 | 0.62 | ND |
Average Microbial Reduction (%) | 0 | +54.48 | −47.63 | −93.02 | −99.33 | −100.00 |
Item # | Name of Samples | 0 kGy | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy |
---|---|---|---|---|---|---|---|
1 | Wheat (Winter, Sapaly) | 4 | 7 | ND | ND | ND | ND |
2 | Wheat (Farabi 1) | 16 | 15 | ND | ND | ND | ND |
3 | Wheat (Winter, soft, Mereke 70) | 4 | 5 | ND | ND | ND | ND |
4 | Triticale (Elite Kozha, Harvest 2024) | 100 | 8 | 15 | 1 | ND | ND |
5 | Wheat (3rd grade) | 12 | 15 | 1 | ND | ND | ND |
6 | Wheat (Glassy 24) | 14 | 14 | ND | ND | ND | ND |
7 | Wheat (Egemen 20, 1 reproduction, autumn) | 5 | 18 | 18 | 2 | ND | ND |
8 | Wheat (Kazakhstan 10, 1 reproduction autumn/summer) | 18 | 12 | 11 | 5 | ND | ND |
9 | Wheat (Glassy 24, elite, autumn) | 5 | 24 | 4 | ND | ND | ND |
10 | Wheat (Winter, Kazakhstan) | 0 | 0 | 7 | ND | ND | ND |
11 | Wheat (Forage) | 100 | 6 | 4 | ND | ND | ND |
12 | Barley | 100 | 100 | 100 | 15 | 8 | ND |
13 | Oats | 7 | 15 | ND | ND | ND | ND |
Name of Samples | Control (0 kGy) | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy |
---|---|---|---|---|---|---|
Average Yeast Contamination (CFU/g) | 46.92 | 35.92 | 17.46 | 4.77 | 2.69 | 0.15 |
Average Reduction in Yeast Contamination (%) | 0 | 17.29 | 69.14 | 92.20 | 94.99 | 99.57 |
Item # | Name of Samples | Protein, % | Moisture, % | Gluten, % | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy | Control | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy | Control | 1 kGy | 2 kGy | 3 kGy | 4 kGy | 5 kGy | ||
1 | Wheat (Winter, Sapaly) | 16.73 | 16.62 | 16.48 | 16.75 | 16.6 | 16.82 | 9.1 | 9.13 | 9.28 | 9.2 | 9.12 | 9.12 | 34.44 | 33.88 | 34.21 | 35.18 | 33.71 * | 34.2 * |
2 | Wheat (Farabi 1) | 16.4 | 16.36 | 16.22 | 16.26 | 16.21 | 16.03 | 8.72 | 8.87 | 8.85 | 8.79 | 8.85 | 8.68 | 32.83 | 32.09 | 32.28 | 32.1 | 31.64 * | 31.31 * |
3 | Wheat (Winter, soft, Mereke 70) | 15.88 | 15.64 | 15.57 | 15.64 | 15.38 | 15.64 | 9.46 | 9.2 | 9.16 | 9.1 | 9.15 | 9.07 | 32.29 | 30.93 | 31.02 | 31.64 | 30.64 * | 30.97 * |
4 | Triticale (Elite Kozha, Harvest 2024) | 11.29 | 11.41 | 11.5 | 11.4 | 11.55 | 11.51 | 9.24 | 9.23 | 9.14 | 9.16 | 9.15 | 8.97 | 21.57 | 21.56 | 21.89 | 22.44 | 22.17 * | 21.81 * |
5 | Wheat (3rd grade) | 14.67 | 14.55 | 14.5 | 14.36 | 10.85 | 10.5 | 9.84 | 9.74 | 9.03 | 8.94 | 9 | 8.92 | 29.49 | 29.19 | 28.9 | 28.29 | 18.89 * | 17.66 * |
6 | Wheat (Glassy 24) | 16.01 | 16.05 | 16.5 | 16.04 | 16.31 | 16.25 | 9.41 | 9.47 | 9.16 | 9.21 | 9.22 | 9.17 | 32.5 | 32.84 | 34.83 | 33 | 33.24 * | 33.64 * |
7 | Wheat (Egemen 20, 1 reproduction, autumn) | 16.61 | 15.24 | 15.21 | 14.89 | 14.97 | 14.71 | 10.24 | 10.12 | 9.77 | 9.31 | 10.08 | 9.82 | 29.75 | 29.13 | 31.37 | 35.62 | 29.46 * | 30.42 * |
8 | Wheat (Kazakhstan 10, 1 reproduction autumn/summer) | 15.15 | 12.4 | 12.24 | 12.2 | 12.07 | 11.93 | 10.56 | 10.28 | 10.25 | 10.14 | 10.05 | 9.89 | 30.64 | 22.35 | 21.82 | 21.68 | 20.51 * | 20.84 * |
9 | Wheat (Glassy 24, elite, autumn) | 14.22 | 14.1 | 14.49 | 14.33 | 14.2 | 13.57 | 9.7 | 9.51 | 9.27 | 9.4 | 9.37 | 9.39 | 27.87 | 27.81 | 29.57 | 28.66 | 27.45 * | 26.03 * |
10 | Wheat (Winter, Kazakhstan) | 17.5 | 17.41 | 17.42 | 17.28 | 17.49 | 17.29 | 9.28 | 9.19 | 9.11 | 9.19 | 9.14 | 8.92 | 36.65 | 36.96 | 37.37 | 36.51 | 37.1 * | 36.75 * |
11 | Wheat (Forage) | 10.5 | 10.85 | 10.28 | 10.64 | 10.65 | 10.47 | 9.84 | 9.74 | 9.53 | 9.66 | 9.65 | 9.56 | 18.89 | 18.31 | 18.01 | 17.66 | 16.95 * | 16.74 * |
12 | Barley | 14.02 | 13.2 | 14.18 | 13.63 | 14.1 | 14.15 | 10.98 | 10.75 | 10.66 | 10.62 | 10.61 | 10.39 | 4.32 | 4.05 | 4.31 | 4.2 | 3.77 * | 4.1 * |
13 | Oats | 11.43 | 11.19 | 11.48 | 11 | 11.44 | 10.96 | 10.6 | 10.37 | 9.84 | 9.82 | 9.67 | 9.37 | 0.37 | 0.39 | 0.37 | 0.37 | 0.3 * | 0.38 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uazhanova, R.; Ametova, M.; Nabiyeva, Z.; Danko, I.; Kurtibayeva, G.; Tyutebayeva, K.; Khamit, A.; Myrzamet, D.; Sogut, E.; Toishimanov, M. Improving Grain Safety Using Radiation Dose Technologies. Agriculture 2025, 15, 1669. https://doi.org/10.3390/agriculture15151669
Uazhanova R, Ametova M, Nabiyeva Z, Danko I, Kurtibayeva G, Tyutebayeva K, Khamit A, Myrzamet D, Sogut E, Toishimanov M. Improving Grain Safety Using Radiation Dose Technologies. Agriculture. 2025; 15(15):1669. https://doi.org/10.3390/agriculture15151669
Chicago/Turabian StyleUazhanova, Raushangul, Meruyert Ametova, Zhanar Nabiyeva, Igor Danko, Gulzhan Kurtibayeva, Kamilya Tyutebayeva, Aruzhan Khamit, Dana Myrzamet, Ece Sogut, and Maxat Toishimanov. 2025. "Improving Grain Safety Using Radiation Dose Technologies" Agriculture 15, no. 15: 1669. https://doi.org/10.3390/agriculture15151669
APA StyleUazhanova, R., Ametova, M., Nabiyeva, Z., Danko, I., Kurtibayeva, G., Tyutebayeva, K., Khamit, A., Myrzamet, D., Sogut, E., & Toishimanov, M. (2025). Improving Grain Safety Using Radiation Dose Technologies. Agriculture, 15(15), 1669. https://doi.org/10.3390/agriculture15151669