Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = squealer tip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7030 KiB  
Article
Winglet Geometries Applied to Rotor Blades of a Hydraulic Axial Turbine Used as a Turbopump: A Parametric Analysis
by Daniel da Silva Tonon, Jesuino Takachi Tomita, Ezio Castejon Garcia, Cleverson Bringhenti, Luiz Eduardo Nunes de Almeida, Jayanta Kapat and Ladislav Vesely
Energies 2025, 18(8), 2099; https://doi.org/10.3390/en18082099 - 18 Apr 2025
Viewed by 525
Abstract
Turbines are rotating machines that generate power by the expansion of a fluid; due to their characteristics, these turbomachines are widely applied in aerospace propulsion systems. Due to the clearance between the rotor blade tip and casing, there is a leakage flow from [...] Read more.
Turbines are rotating machines that generate power by the expansion of a fluid; due to their characteristics, these turbomachines are widely applied in aerospace propulsion systems. Due to the clearance between the rotor blade tip and casing, there is a leakage flow from the blade pressure to the suction sides, which generates energy loss. There are different strategies that can be applied to avoid part of this loss; one of them is the application of so-called desensitization techniques. The application of these techniques on gas turbines has been widely evaluated; however, there is a lack of analyses of hydraulic turbines. This study is a continuation of earlier analyses conducted during the first stage of the hydraulic axial turbine used in the low-pressure oxidizer turbopump (LPOTP) of the space shuttle main engine (SSME). The previous work analyzed the application of squealer geometries at the rotor tip. In the present paper, winglet geometry techniques are investigated based on three-dimensional flowfield calculations. The commercial CFX v.19.2 and ICEM v.19.2 software were used, respectively, on the numerical simulations and computational mesh generation. Experimental results published by the National Aeronautics and Space Administration (NASA) and data from previous works were used on the computational model validation. The parametric analysis was conducted by varying the thickness and width of the winglet. The results obtained show that by increasing the winglet thickness, the stage efficiency is also increased. However, the geometric dimension of its width has minimal impact on this result. An average efficiency increase of 2.0% was observed across the entire turbine operational range. In the case of the squealer, for the design point, the maximum efficiency improvement was 1.62%, compared to the current improvement of 2.23% using the winglet desensitization technique. It was found that the proposed geometries application also changes the cavitation occurrence along the stage, which is a relevant result, since it can impact the turbine life cycle. Full article
(This article belongs to the Special Issue Engineering for Turbomachinery)
Show Figures

Figure 1

12 pages, 4819 KiB  
Article
Influence of Gas-to-Wall Temperature Ratio on the Leakage Flow and Cooling Performance of a Turbine Squealer Tip
by Dongjie Yan, Hongmei Jiang, Jieling Li, Wenbo Xie, Zhaoguang Wang, Shaopeng Lu and Qiang Zhang
Aerospace 2022, 9(10), 627; https://doi.org/10.3390/aerospace9100627 - 20 Oct 2022
Cited by 6 | Viewed by 2006
Abstract
In high-pressure turbines, there is a large difference in temperature between the mainstream and the turbine blade surface. Most of the turbine blade tip heat transfer studies were conducted under the assumption that the Over-Tip-Leakage (OTL) flow field is independent of the wall [...] Read more.
In high-pressure turbines, there is a large difference in temperature between the mainstream and the turbine blade surface. Most of the turbine blade tip heat transfer studies were conducted under the assumption that the Over-Tip-Leakage (OTL) flow field is independent of the wall thermal condition. Recent numerical and experimental studies have revealed that the two-way coupling effect between aerodynamics and heat transfer should not be neglected. The heat transfer coefficient obtained by the conventional method is not able to match the realistic engine condition accurately. This study investigates the impact of the wall thermal boundary condition on the tip cooling performance of squealer turbine blades. The RANS CFD result was validated against experimental tip heat transfer data obtained from a high-speed test rig with the effect of high-speed relative casing motion. The aerothermal performance for both uncooled and cooled squealer tips was studied at two different gas-to-wall temperature ratios, 1.7 and 1.1; the reference temperature is 204 K. It was found that the location and strength of cavity vortices varied with different wall thermal boundary conditions, leading to different signatures in tip heat transfer and cooling performance. It is recommended that the experimental heat transfer data and film cooling effectiveness obtained at the near-adiabatic wall boundary condition should be corrected before their application to the tip cooling design process. It would be more reliable to match the wall-to-gas temperature ratio during the tip experimental study. Full article
(This article belongs to the Special Issue Cooling/Heat transfer (Volume II))
Show Figures

Figure 1

18 pages, 10964 KiB  
Article
Numerical Study on Vortex Structures and Loss Characteristics in a Transonic Turbine with Various Squealer Tips
by Yufan Wang, Weihao Zhang, Dongming Huang, Shoumin Jiang and Yun Chen
Energies 2022, 15(3), 1018; https://doi.org/10.3390/en15031018 - 29 Jan 2022
Cited by 6 | Viewed by 2798
Abstract
Cavity width and height are two key geometric parameters of squealer tips, which could affect the control effect of squealer tips on tip leakage flow (TLF) of gas turbines. To explore the optimal values and the control mechanisms of cavity width and height, [...] Read more.
Cavity width and height are two key geometric parameters of squealer tips, which could affect the control effect of squealer tips on tip leakage flow (TLF) of gas turbines. To explore the optimal values and the control mechanisms of cavity width and height, various cases with different cavity widths and heights are investigated by solving the steady Reynolds Averaged Navier–Stokes (RANS) equations. In this study, the range of cavity width is 9.2–15.1 τ, and that of cavity height is 1.0–3.5 τ. The results show that the optimal value of cavity height is 2.5–3.0 τ, and that of cavity width is about 10.0–10.5 τ. The small cavity width could restrain the breakdown of tip leakage vortex (TLV) and reduce the extra mixing loss. Both small cavity width and large cavity height could enhance the blocking effect on the TLF, reducing the corresponding mixing loss. However, both of them will inhibit the length of the scraping vortex (SV), which is bad for the control of loss. In addition, large cavity height could reduce the loss inside the clearance, while small cavity width could not. This work could provide a reference for the design of squealer tip. Full article
(This article belongs to the Special Issue Advanced Technologies in Gas Turbines)
Show Figures

Figure 1

13 pages, 5476 KiB  
Article
Effect of Mainstream Velocity on the Heat Transfer Coefficient of Gas Turbine Blade Tips
by Jin Young Jeong, Woojun Kim, Jae Su Kwak, Byung Ju Lee and Jin Taek Chung
Energies 2021, 14(23), 7968; https://doi.org/10.3390/en14237968 - 29 Nov 2021
Cited by 1 | Viewed by 2190
Abstract
This study experimentally investigated the effects of cascade inlet velocity on the distribution and the level of the heat transfer coefficient on a gas turbine blade tip. The tests were conducted in a transient turbine test facility at Korea Aerospace University, and three [...] Read more.
This study experimentally investigated the effects of cascade inlet velocity on the distribution and the level of the heat transfer coefficient on a gas turbine blade tip. The tests were conducted in a transient turbine test facility at Korea Aerospace University, and three cascade inlet velocities—30, 60, and 90 m/s—were considered. The heat transfer coefficient was measured using the transient IR camera technique with a linear regression method, and both the squealer and plane tips were investigated. The results showed that the overall averaged heat transfer coefficient was generally proportional to the inlet velocity. As the inlet velocity is increased from 30 m/s to 60 m/s and 90 m/s, the heat transfer coefficient increased by 11.4% and 25.0% for plane tip, and 26.6% and 64.1% for squealer tip, respectively. However, the heat transfer coefficient near the leading edge of the squealer tip and the reattachment region of the plane tip was greatly affected by the cascade inlet velocity. Therefore, heat transfer experiments for a gas turbine blade tip should be performed under engine simulating conditions. Full article
(This article belongs to the Special Issue Advances in Gas Turbine Performance, Heat Transfer and Aerodynamics)
Show Figures

Figure 1

19 pages, 24399 KiB  
Article
Experimental Investigation of Rotor Tip Film Cooling at an Axial Turbine with Swirling Inflow Using Pressure Sensitive Paint
by Manuel Wilhelm and Heinz-Peter Schiffer
Int. J. Turbomach. Propuls. Power 2019, 4(3), 23; https://doi.org/10.3390/ijtpp4030023 - 1 Aug 2019
Cited by 10 | Viewed by 5280
Abstract
Rotor tip film cooling is investigated at the Large Scale Turbine Rig, which is a 1.5-stage axial turbine rig operating at low speeds. Using pressure sensitive paint, the film cooling effectiveness η at a squealer-type blade tip with cylindrical pressure-side film cooling holes [...] Read more.
Rotor tip film cooling is investigated at the Large Scale Turbine Rig, which is a 1.5-stage axial turbine rig operating at low speeds. Using pressure sensitive paint, the film cooling effectiveness η at a squealer-type blade tip with cylindrical pressure-side film cooling holes is obtained. The effect of turbine inlet swirl on η is examined in comparison to an axial inflow baseline case. Coolant-to-mainstream injection ratios are varied between 0.45% and 1.74% for an engine-realistic coolant-to-mainstream density ratio of 1.5. It is shown that inlet swirl causes a reduction in η for low injection ratios by up to 26%, with the trailing edge being especially susceptible to swirl. For injection ratios greater than 0.93%, however, η is increased by up to 11% for swirling inflow, while for axial inflow a further increase in coolant injection does not transfer into a gain in η . Full article
Show Figures

Graphical abstract

16 pages, 12496 KiB  
Article
Characterization of the Unsteady Aerodynamics of Optimized Turbine Blade Tips through Modal Decomposition Analysis
by Bogdan C. Cernat and Sergio Lavagnoli
Int. J. Turbomach. Propuls. Power 2019, 4(2), 12; https://doi.org/10.3390/ijtpp4020012 - 27 May 2019
Cited by 2 | Viewed by 7540
Abstract
The present research focused on the analysis of the leakage flows developing from advanced blade tip geometries. The aerodynamic field of a contoured blade tip and of a high-performance rimmed blade were investigated against a baseline squealer rotor. Time-resolved numerical predictions were combined [...] Read more.
The present research focused on the analysis of the leakage flows developing from advanced blade tip geometries. The aerodynamic field of a contoured blade tip and of a high-performance rimmed blade were investigated against a baseline squealer rotor. Time-resolved numerical predictions were combined with high-frequency pressure measurements to characterize the tip leakage flow of each tip design. High spatial and temporal resolution measurements provided a detailed representation of the unsteady flow in the near-tip region and at the stage outlet. Numerical computations, based on the nonlinear harmonic method, were employed to assess the unsteady blade row interactions and identify the loss generation mechanisms depending on the tip design. The space- and time-resolved flow field was analysed by modal decomposition to identify the main periodicities of the near-tip and outlet flow and classify the most relevant sources of aerodynamic unsteadiness and entropy generation across the stage. Full article
Show Figures

Figure 1

20 pages, 1868 KiB  
Article
Multi-Disciplinary Design Optimisation of the Cooled Squealer Tip for High Pressure Turbines
by Stefano Caloni, Shahrokh Shahpar and Vassili V. Toropov
Aerospace 2018, 5(4), 116; https://doi.org/10.3390/aerospace5040116 - 6 Nov 2018
Cited by 10 | Viewed by 5555
Abstract
The turbine tip geometry can significantly alter the performance of the turbine stage; its design represents a challenge for a variety of reasons. Multiple disciplines are involved in its design and their requirements limit the creativity of the designer. Multi-Disciplinary Design Optimisation (MDO) [...] Read more.
The turbine tip geometry can significantly alter the performance of the turbine stage; its design represents a challenge for a variety of reasons. Multiple disciplines are involved in its design and their requirements limit the creativity of the designer. Multi-Disciplinary Design Optimisation (MDO) offers the capability to improve the performance whilst satisfying all the design constraints. This paper presents a novel design of a turbine tip achieved via MDO techniques. A fully parametrised Computer-Aided Design (CAD) model of the turbine rotor is used to create the squealer geometry and to control the location of the cooling and dust holes. A Conjugate Heat Transfer Computational Fluid Dynamics (CFD) analysis is performed for evaluating the aerothermal performance of the component and the temperature the turbine operates at. A Finite Element (FE) analysis is then performed to find the stress level that the turbine has to withstand. A bi-objective optimisation reduces simultaneously the aerodynamic loss and the stress level. The Multipoint Approximation Method (MAM) recently enhanced for multi-objective problems is chosen to solve this optimisation problem. The paper presents its logic in detail. The novel geometry offers a significant improvement in the aerodynamic performance whilst reducing the maximum stress. The flow associated with the new geometry is analysed in detail to understand the source of the improvement. Full article
(This article belongs to the Special Issue Multidisciplinary Design Optimization in Aerospace Engineering)
Show Figures

Graphical abstract

32 pages, 6395 KiB  
Review
Turbine Blade Tip External Cooling Technologies
by Song Xue and Wing F. Ng
Aerospace 2018, 5(3), 90; https://doi.org/10.3390/aerospace5030090 - 26 Aug 2018
Cited by 22 | Viewed by 15191
Abstract
This article provides an overview of gas turbine blade tip external cooling technologies. It is not the intention to comprehensively review all the publications from past to present. Instead, selected reports, which represent the most recent progress in tip cooling technology in open [...] Read more.
This article provides an overview of gas turbine blade tip external cooling technologies. It is not the intention to comprehensively review all the publications from past to present. Instead, selected reports, which represent the most recent progress in tip cooling technology in open publications, are reviewed. The cooling performance on flat tip and squealer tip blades from reports are compared and discussed. As a generation conclusion, tip clearance dimension and coolant flow rate are found as the most important factors that significant influence the blade tip thermal performance was well as the over tip leakage (OTL) flow aerodynamics. However, some controversial trends are reported by different researchers, which could be attributed to various reasons. One of the causes of this disagreement between different reports is the lacking of unified parametric definition. Therefore, a more appropriate formula of blowing ratio definition has been proposed for comparison across different studies. The last part of the article is an outlook of the new techniques that are promising for future tip cooling research. As a new trend, the implementation of artificial intelligence techniques, such as genetic algorithm and neural network, have become more popular in tip cooling optimization, and they will bring significantly changes to the future turbine tip cooling development. Full article
(This article belongs to the Special Issue Cooling/Heat Transfer)
Show Figures

Graphical abstract

38 pages, 631 KiB  
Review
Flow Control Methods and Their Applicability in Low-Reynolds-Number Centrifugal Compressors—A Review
by Jonna Tiainen, Aki Grönman, Ahti Jaatinen-Värri and Jari Backman
Int. J. Turbomach. Propuls. Power 2018, 3(1), 2; https://doi.org/10.3390/ijtpp3010002 - 29 Dec 2017
Cited by 32 | Viewed by 10653
Abstract
The decrease in the performance of centrifugal compressors operating at low Reynolds numbers (e.g., unmanned aerial vehicles at high altitudes or small turbomachines) can reach 10% due to increased friction. The purposes of this review are to represent the state-of-the-art of the active [...] Read more.
The decrease in the performance of centrifugal compressors operating at low Reynolds numbers (e.g., unmanned aerial vehicles at high altitudes or small turbomachines) can reach 10% due to increased friction. The purposes of this review are to represent the state-of-the-art of the active and passive flow control methods used to improve performance and/or widen the operating range in numerous engineering applications, and to investigate their applicability in low-Reynolds-number centrifugal compressors. The applicable method should increase performance by reducing drag, increasing blade loading, or reducing tip leakage. Based on the aerodynamic and structural demands, passive methods like riblets, squealers, winglets and grooves could be beneficial; however, the drawbacks of these approaches are that their performance depends on the operating conditions and the effect might be negative at higher Reynolds numbers. The flow control method, which would reduce the boundary layer thickness and reduce wake, could have a beneficial impact on the performance of a low-Reynolds-number compressor in the entire operating range, but none of the methods represented in this review fully fulfil this objective. Full article
Show Figures

Figure 1

12 pages, 5865 KiB  
Article
Effect of Relative Movement between the Shroud and Blade on Tip Leakage Flow Characteristics
by Xiaochun Wang, Jianhua Wang, Fei He and Hong Zhang
Energies 2017, 10(10), 1600; https://doi.org/10.3390/en10101600 - 13 Oct 2017
Cited by 2 | Viewed by 3421
Abstract
An experimental and numerical investigation into the tip leakage flow of a turbine rotor is carried out using a particle image velocimetry (PIV) system and the commercial software ANSYS CFX 14.0. The specimen used in this work is a typical GE-E3 model [...] Read more.
An experimental and numerical investigation into the tip leakage flow of a turbine rotor is carried out using a particle image velocimetry (PIV) system and the commercial software ANSYS CFX 14.0. The specimen used in this work is a typical GE-E3 model with a new squealer tip design. The experimental data are used to create a turbulence model and numerical strategy. Through the validated turbulence model and numerical strategy, simulations are carried out to compare the characteristics of the tip leakage flow in three cases: (1) the blade is rotating, but the shroud is stationary, which is the real status of turbine rotor operation; (2) the blade is stationary, but the shroud moves, to simulate their relative movement; (3) the blade is stationary, and the shroud is also stationary, this is a simplified case, but has been widely used in the experiments on rotor tip leakage flow. Detailed analysis of the flow phenomena shows that the second case is a reasonable alternative approach to simulate the real state. However, the flow patterns in the third case exhibit some evident differences from the real status. These differences are caused by the inaccurate viscous force arising from the stationary blade and shroud. In this work, a modification method for the experiments conducted in the third case is firstly proposed, which is realized through adding an imaginary roughness at the shroud wall to be close to the real viscous effect, and to thereby reduce the deviation of the experiment from the real case. According to the results calculated by ANSYS CFX, the flow structure in the modification case is very close to the real status. Besides, this modification case is an easy and cheap way to simulate the real tip leakage flow. Full article
Show Figures

Figure 1

Back to TopTop