Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (192)

Search Parameters:
Keywords = soil aeration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2283 KiB  
Article
Functional and Genomic Evidence of L-Arginine-Dependent Bacterial Nitric Oxide Synthase Activity in Paenibacillus nitricinens sp. nov.
by Diego Saavedra-Tralma, Alexis Gaete, Carolina Merino-Guzmán, Maribel Parada-Ibáñez, Francisco Nájera-de Ferrari and Ignacio Jofré-Fernández
Biology 2025, 14(6), 733; https://doi.org/10.3390/biology14060733 - 19 Jun 2025
Viewed by 573
Abstract
Although nitric oxide (NO) production in bacteria has traditionally been associated with denitrification or stress responses in model or symbiotic organisms, functionally validated L-arginine-dependent nitric oxide synthase (bNOS) activity has not been documented in free-living, non-denitrifying soil bacteria. This paper reports Paenibacillus nitricinens [...] Read more.
Although nitric oxide (NO) production in bacteria has traditionally been associated with denitrification or stress responses in model or symbiotic organisms, functionally validated L-arginine-dependent nitric oxide synthase (bNOS) activity has not been documented in free-living, non-denitrifying soil bacteria. This paper reports Paenibacillus nitricinens sp. nov., a bacterium isolated from rainforest soil capable of synthesizing NO via a bNOS under aerobic conditions. A bnos-specific PCR confirmed gene presence, while whole-genome sequencing (6.7 Mb, 43.79% GC) revealed two nitrogen metabolism pathways, including a bnos-like gene. dDDH (<70%) and ANI (<95%) values with related Paenibacillus strains support the delineation of this isolate as a distinct species. Extracellular and intracellular NO measurements under aerobic conditions showed a dose-dependent response, with detectable production at 0.1 µM L-arginine and saturation at 100 µM. The addition of L-NAME reduced NO formation, confirming enzymatic mediation. The genomic identification of a bnos-like gene strongly supports the presence of a functional pathway. The absence of canonical nitric oxide reductase (Nor) genes or other typical denitrification-related enzymes reinforces that NO production arises from an alternative, intracellular enzymatic mechanism rather than classical denitrification. Consequently, P. nitricinens expands the known repertoire of microbial NO synthesis and suggests a previously overlooked source of NO flux in well-aerated soils. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

14 pages, 1917 KiB  
Article
Effect of Cultivated Species and Planting Pattern on Plant Growth, Soil Properties, and Soil Metabolites in a Rain-Fed Orchard in Gansu, China
by Yali Zou, Qi Li and Yuying Shen
Agronomy 2025, 15(6), 1385; https://doi.org/10.3390/agronomy15061385 - 5 Jun 2025
Viewed by 428
Abstract
Orchard cover crops enhance the local microclimate and soil fertility, serving as an eco-friendly, efficient management practice. However, the effects of different cultivated species and planting patterns on plant growth and soil properties remain unclear. In this study, we hypothesized that different cultivated [...] Read more.
Orchard cover crops enhance the local microclimate and soil fertility, serving as an eco-friendly, efficient management practice. However, the effects of different cultivated species and planting patterns on plant growth and soil properties remain unclear. In this study, we hypothesized that different cultivated species and planting patterns would differently affect root growth and soil biochemistry. Therefore, the root growth, soil nutrients, and soil metabolites in an orchard planted with Vulpia myuros, Vicia villosa, Orychophragmus violaceus, and Brassica campestris in either a tree-disk or inter-row patterns were conducted. The results indicated that the tree-disk pattern promoted root development. This increase in below-ground biomass contributed to changes in soil nutrient dynamics, with a significant biomass accumulation observed for Orychophragmus violaceus. While the inter-row pattern improved soil aeration and was conducive to aboveground plant growth. The tree-disk pattern with Vicia villosa and Brassica campestris increased the total phosphorus (TP) and total potassium (TK) in the 0–10 cm layer. The soil NH4+-N and NO3-N contents were higher under the tree-disk pattern than under the inter-row pattern with Brassica campestris, whereas the opposite effect was seen with Vulpia myuros. Overall, we recommend planting Orychophragmus violaceus in a tree-disk pattern and Vulpia myuros in an inter-row pattern to promote plant biomass accumulation and soil nutrient increases in orchards. Our study provides a basis for the selection of orchard-cultivated species and planting patterns to promote the sustainable development of the fruit industry. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

22 pages, 6428 KiB  
Article
Integrated Effects of Warming Irrigation, Aeration, and Humic Acid on Yield, Quality, and GHG Emissions in Processing Tomatoes in Xinjiang
by Chubo Wang, Yuhang Lu, Libing Song, Jingcheng Wang, Yan Zhu, Jiaying Ma and Jiliang Zheng
Agronomy 2025, 15(6), 1353; https://doi.org/10.3390/agronomy15061353 - 31 May 2025
Viewed by 493
Abstract
Agricultural greenhouse gas emissions continue to rise year after year, contributing significantly to global warming—an escalating crisis that demands urgent attention. In order to address this issue, it is crucial to investigate the relationship between greenhouse gas emissions from farmland and crop yield [...] Read more.
Agricultural greenhouse gas emissions continue to rise year after year, contributing significantly to global warming—an escalating crisis that demands urgent attention. In order to address this issue, it is crucial to investigate the relationship between greenhouse gas emissions from farmland and crop yield and quality through comprehensive regulation of the soil micro-environment by inputting water, fertilizer, gas, and heat. Therefore, we conducted field experiments in 2024 to examine the effects of different water, fertilizer, gas, and heat conditions on the yield, quality, greenhouse gas emissions, net global warming potential (NGWP), and greenhouse gas emission intensity (GHGI) of processing tomatoes in Xinjiang, China. This study established two irrigation water temperatures (T0: the local irrigation water temperature, approximately 10–15 °C; and T1: warming irrigation, 20–25 °C), two humic acid application rates (H0: 0% and H1: 0.5%, % as a percentage of total fertilizer application), and three aeration methods (A0: no aeration, A1: Venturi aerated, and A2: micro–nano aerated) during the growth period. The results showed that the number of fruits per hectare (NP), vitamin C (VC) content, titratable acidity and lycopene content were all significantly increased with increasing temperature, application of 0.5% humic acid, and aeration. Warming has little effect on GHGI, while humic acid application and aeration have significant and extremely significant effects on GHGI. The GHGI of humic acid treatment was 7.70% lower than that of H0, and the GHGI of micro–nano aeration and Venturi aeration treatment was 18.95% and 6.85% lower than that of A0, respectively. We employed a comprehensive evaluation model that focused on overall differences to assess yield, quality, economic benefits, and environmental impact (GHGI, global warming potential). The optimal strategy identified comprised 20–25 °C irrigation, micro–nano aeration, and 0.5% humic acid, which collectively achieved the highest scores in yield, quality, and emission reduction. This study establishes a theoretical and technical foundation for the sustainable and efficient production of tomatoes in the arid regions of Northern Xinjiang. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

20 pages, 4624 KiB  
Article
Wetland-to-Meadow Transition Alters Soil Microbial Networks and Stability in the Sanjiangyuan Region
by Guiling Wu, Jay Gao, Zhaoqi Wang and Yangong Du
Microorganisms 2025, 13(6), 1263; https://doi.org/10.3390/microorganisms13061263 - 29 May 2025
Viewed by 351
Abstract
Wetlands and meadows are two terrestrial ecosystems that are strikingly distinct in terms of hydrological conditions and biogeochemical characteristics. Wetlands generally feature saturated soils, high accumulation of organic matter, and hypoxic environments. They support unique microbial communities and play crucial roles as carbon [...] Read more.
Wetlands and meadows are two terrestrial ecosystems that are strikingly distinct in terms of hydrological conditions and biogeochemical characteristics. Wetlands generally feature saturated soils, high accumulation of organic matter, and hypoxic environments. They support unique microbial communities and play crucial roles as carbon sinks and nutrient retainers. In contrast, meadows are characterized by lower water supply, enhanced aeration, and accelerated turnover of organic matter. The transition from wetlands to meadows under global climate change and human activities has triggered severe ecological consequences in the Sanjiangyuan region, yet the mechanisms driving microbial network stability remain unclear. This study integrates microbial sequencing, soil physicochemical analyses, and structural equation modeling (SEM) to reveal systematic changes in microbial communities during wetland degradation. Key findings indicate: (1) critical soil parameter shifts (moisture: 48.5%→19.3%; SOM: −43.6%; salinity: +170%); (2) functional microbial restructuring with drought-tolerant Actinobacteria (+62.8%) and Ascomycota (+48.3%) replacing wetland specialists (Nitrospirota: −43.2%, Basidiomycota: −28.6%); (3) fundamental network reorganization from sparse wetland connections to hypercomplex meadow networks (bacterial nodes +344%, fungal edges +139.2%); (4) SEM identifies moisture (λ = 0.82), organic matter (λ = 0.68), and salinity (λ = −0.53) as primary drivers. Particularly, the collapse of methane-oxidizing archaea (−100%) and emergence of pathogenic fungi (+28.6%) highlight functional thresholds in degradation processes. These findings provide microbial regulation targets for wetland restoration, emphasizing hydrologic management and organic carbon conservation as priority interventions. Future research should assess whether similar microbial and network transitions occur in degraded wetlands across other alpine and temperate regions, to validate the broader applicability of these ecological thresholds. Restoration efforts should prioritize re-saturating soils, reducing salinity, and enhancing organic matter retention to stabilize microbial networks and restore essential ecosystem functions. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 3539 KiB  
Article
Soil Physical–Hydraulic Properties in Different Rotational Silvopastoral Systems: A Short-Term Study
by Osvaldo Viu Serrano Junior, Zigomar Menezes de Souza, Diego Alexander Aguilera Esteban, Leila Pires Bezerra, Euriana Maria Guimarães, Renato Paiva de Lima, Cácio Luiz Boechat and Reginaldo Barboza da Silva
Water 2025, 17(10), 1486; https://doi.org/10.3390/w17101486 - 15 May 2025
Viewed by 546
Abstract
Livestock production systems can negatively affect soil structure, resulting in negative changes in physical–hydraulic properties, compromising soil functioning and productivity. This research aimed to evaluate the effects of rotational silvopastoral systems on soil physical–hydraulic functioning in their second year of implementation. The study [...] Read more.
Livestock production systems can negatively affect soil structure, resulting in negative changes in physical–hydraulic properties, compromising soil functioning and productivity. This research aimed to evaluate the effects of rotational silvopastoral systems on soil physical–hydraulic functioning in their second year of implementation. The study was performed under Oxisol soil with a loamy sand texture in Southeast Brazil. We considered four grazing systems: an intensive silvopastoral system with Panicum maximum in consortium with Leucaena leucocephala (ISPS + L), an intensive silvopastoral system with Panicum maximum in consortium with Tithonia diversifolia (ISPS + T), an silvopastoral system with Panicum maximum (SPS) with tree row (TRs), and open pasture under a rotational grazing system with Panicum maximum (OP). The treatments ISPS + L, ISPS + T, and SPS had tree rows (TRs) every 20 m composed of Khaya ivorenses, Leucaena leucocephala, Eucalyptus urograndis, Acacia mangium, and Gliricidia sepium. Nine physical–hydraulic indicators were evaluated in the first 0.40 m of depth: bulk density (Bd), total porosity (TP), macroporosity (MaP), microporosity (MiP), field capacity (FC), permanent wilting point (PWP), available water content (AWC), total soil aeration capacity (ACt), and S-index. The soil physical–hydraulic properties were sensitive to the effects of the livestock systems. The use of silvopastoral systems in consortium with grass (ISPS + L and ISPS + T) allowed for better soil water retention, resulting in higher FC and AWC than the OP, SPS, and TR. The indicators Bd, ACt, MaP, FC, MiP, and S-index presented the greatest variance; however, FC, ACt, MaP, and MiP enabled the greatest differentiation among systems. Therefore, these properties are important in studies on soil physical quality since they provide information about the soil porous status and its ability to retain water and exchange soil air and gases. Therefore, enhancing the physical–hydraulic attributes of the soil in silvopastoral systems with shrub species is crucial for ensuring long-term productive sustainability and strengthening environmental resilience against future climate challenges. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 2126 KiB  
Article
Aerated Compost Tea Did Not Promote Cu Downward Transfer but Increased Cu Phytoavailability in a Vineyard Soil
by Pierre Eon, Frédéric Candaudap, Thierry Robert, Laurence Denaix and Jean-Yves Cornu
Sustainability 2025, 17(10), 4414; https://doi.org/10.3390/su17104414 - 13 May 2025
Viewed by 348
Abstract
Vineyard soils are frequently contaminated with copper due to the use of Cu fungicides to prevent downy mildew. This study investigated the effects of an aerated compost tea (ACT) made from grape pomace and animal manure on the downward transfer of Cu and [...] Read more.
Vineyard soils are frequently contaminated with copper due to the use of Cu fungicides to prevent downy mildew. This study investigated the effects of an aerated compost tea (ACT) made from grape pomace and animal manure on the downward transfer of Cu and on the accumulation of Cu in plants in a sandy loam vineyard soil. Crimson clover and pot marigold were grown in a 40 cm soil column with Cu supplied to the surface at loadings representative of those applied in European vineyards, plus additions of ACT. A source of Cu enriched in the stable isotope 65Cu was used to distinguish freshly added Cu (fresh Cu) from Cu already present in the soil (aged Cu). ACT increased the concentration of soluble humic substances (SHS) in pore water in the top 7.5 cm of the column, and increased the concentration of Cu, Al, and Fe in pore water in proportion to the concentration of SHS. The transfer of fresh Cu to deeper soil was limited to the top 5 cm, even after the addition of ACT, although fresh Cu reacted slightly more to ACT than aged Cu. ACT had no effect on Cu phytoextraction but increased the concentration of Cu in roots by almost twofold. Relatively more fresh Cu was transferred to plants than aged Cu, primarily due to its preferential accumulation on the surface. The risk associated with the use of ACT on vineyard soils is not that of promoting the downward transfer of Cu, but rather of increasing Cu availability to plants and likely to other living organisms in the topsoil. Full article
Show Figures

Figure 1

15 pages, 2783 KiB  
Article
Sustainable Management of the Organic Fraction of Municipal Solid Waste: Microbiological Quality Control During Composting and Its Application in Agriculture on a Pilot Scale
by Natividad Miguel, Andrea López, Sindy Dayana Jojoa-Sierra, Jairo Gómez and María P. Ormad
Sustainability 2025, 17(9), 4169; https://doi.org/10.3390/su17094169 - 5 May 2025
Viewed by 578
Abstract
Within the Life-NADAPTA project (LIFE16 IPC/ES/000001), and in the framework of sustainable waste management, a study was carried out on the microbiological evolution during the composting process of the organic fraction of municipal solid waste (FORSU) using aerated static piles and their agricultural [...] Read more.
Within the Life-NADAPTA project (LIFE16 IPC/ES/000001), and in the framework of sustainable waste management, a study was carried out on the microbiological evolution during the composting process of the organic fraction of municipal solid waste (FORSU) using aerated static piles and their agricultural application on a pilot scale. This is necessary to ensure effective sanitization of the compost and that its application does not pose any risk. The microbiological parameters considered were as follows: Salmonella sp., Escherichia coli, total coliforms, and Enterococcus sp. The physicochemical parameters moisture, total solids, organic matter, nitrogen, phosphorus, and heavy metals were also evaluated. Salmonella sp. was not detected throughout the process, and the concentration of the three microbiological indicators decreased to the sanitary conditions recommended by legislation. As a result, the compost obtained complied with the requirements set out in the regulations on fertilizer products and was highly stabilized and mature for application on agricultural land. Tests were carried out on the soil before, during and after the vegetative cycle of the crop and on the irrigation water. The soil results showed that the addition of the organic amendment did not alter the populations of the tested micro-organisms at the end of the crop growing cycle. Thus, an adequate treatment of the residues allows them to be used in a sustainable way, but an adequate monitoring of the operational parameters is necessary to ensure this. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Graphical abstract

16 pages, 1489 KiB  
Article
Sward Diversity Modulates Soil Carbon Dynamics After Ploughing Temporary Grassland
by Hendrik P. J. Smit, Hanna Anders, Christof Kluß, Friedhelm Taube, Ralf Loges and Arne Poyda
Agriculture 2025, 15(8), 888; https://doi.org/10.3390/agriculture15080888 - 19 Apr 2025
Viewed by 478
Abstract
Grasslands are crucial for sequestering carbon underground, but disturbances like ploughing can lead to significant soil organic carbon (SOC) loss as CO2, a potent greenhouse gas. Thus, managed grasslands should be maintained to minimize GHG emissions. A field study was carried [...] Read more.
Grasslands are crucial for sequestering carbon underground, but disturbances like ploughing can lead to significant soil organic carbon (SOC) loss as CO2, a potent greenhouse gas. Thus, managed grasslands should be maintained to minimize GHG emissions. A field study was carried out to investigate how varying sward diversity influences soil respiration following the ploughing of temporary grassland. This study investigated the extent of CO2 emissions from different species mixtures immediately after ploughing, as well as C losses when straw was added to plots, over a 142-day period. The species mixture treatments consisted of a binary mixture (BM), a tertiary mixture (TM), and a complex mixture (CM), which were compared to two bare plot treatments, one of which was also ploughed. The highest CO2 flux occurred immediately after ploughing and was observed in the BM treatment (1.99 kg CO2-C ha−1 min−1). Accumulated CO2 emissions ranged from 0.4 to 14.8 t CO2 ha−1. The ploughing effect on CO2 emissions was evident for bare soils, as ploughing increased soil aeration, which enhanced microbial activity and accelerated the decomposition rate of soil organic matter. However, different mixtures did not affect the C turnover rate. Adding straw to treatments resulted in 43% higher CO2 emissions compared to bare plots. The BM treatment likely induced a higher priming effect, suggesting that the incorporated straw, under different sward residues, influenced CO2 emissions more than the mechanical disturbance caused by ploughing. Findings suggest that using complex species mixtures can be recommended as a strategy to reduce CO2 emissions from incorporated biomass and minimize the priming effect of native soil carbon. Full article
(This article belongs to the Special Issue Research on Soil Carbon Dynamics at Different Scales on Agriculture)
Show Figures

Figure 1

8 pages, 1033 KiB  
Case Report
Gastrointestinal Complications Following Ingestion of Potting Soil in a Dog
by Sohee Jo, Yeon Chae, Sungjae Lee, Yoonhoi Koo, Hakhyun Kim, Byeong-Teck Kang and Taesik Yun
Vet. Sci. 2025, 12(4), 355; https://doi.org/10.3390/vetsci12040355 - 10 Apr 2025
Viewed by 890
Abstract
Potting soil is a growing medium formulated to improve soil structure, moisture retention, drainage, aeration, and nutrient availability through a balanced mix of organic and inorganic components [...] Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

14 pages, 5963 KiB  
Article
A Comparison of Static Aeration and Conventional Turning Windrow Techniques: Physicochemical and Microbial Dynamics in Wine Residue Composting
by Rodrigo Morales-Vera, Alex Echeverría-Vega, Hernán Ríos-Rozas, Francisca Barrera-Valenzuela, Denisse Mellado-Quintanilla, Matthias Piesche, Rosa Roa-Roco and Sebastian Tramon
Fermentation 2025, 11(4), 197; https://doi.org/10.3390/fermentation11040197 - 7 Apr 2025
Viewed by 575
Abstract
Chile, one of the top global wine producers, produces a significant quantity of grape pomace waste, composed primarily of peels and seeds, of which their management includes many environmental challenges. Composting offers a sustainable waste management solution, converting organic waste into a rich [...] Read more.
Chile, one of the top global wine producers, produces a significant quantity of grape pomace waste, composed primarily of peels and seeds, of which their management includes many environmental challenges. Composting offers a sustainable waste management solution, converting organic waste into a rich nutrient and beneficial microorganisms for soil amendment. This study compared traditional turning and static forced aeration composting systems using a mix of grape pomace (70 m3), wheat straw (15 m3), and manure (15 m3). The results show no significant differences in the final compost chemical quality between the two systems. Nevertheless, forced aeration (T1) influenced the bacterial community, particularly during the thermophilic stage, leading to a major differentiation compared to traditional composting (T0). Similar Shannon index values for bacterial diversity across stages suggest that both composting methods support comparable levels of bacterial diversity. However, the fungal communities exhibited more variability, likely due to the differences in temperature and aeration conditions between the windrows, which are known to affect fungal growth and activity. While both composting methods met the Chilean regulatory standards and achieved high-quality compost, the forced aeration system demonstrated advantages in temperature control, microbial diversity, and pathogen suppression, suggesting its potential for more efficient composting in similar agricultural contexts. Full article
Show Figures

Figure 1

23 pages, 3906 KiB  
Article
Evaluating the Effects of Compost, Vermicompost, and Biochar on Physical Quality of Sandy-Loam Soils
by Mirko Castellini, Cristina Bondì, Rita Leogrande, Luisa Giglio, Carolina Vitti, Marcello Mastrangelo and Vincenzo Bagarello
Appl. Sci. 2025, 15(6), 3392; https://doi.org/10.3390/app15063392 - 20 Mar 2025
Cited by 1 | Viewed by 735
Abstract
Improving the physical quality of coarse-textured soils by organic amendments requires choosing the amendment and the dose. The effects of different doses of compost, vermicompost, and biochar on soil bulk density (BD) and water retention parameters (macroporosity, PMAC; aeration [...] Read more.
Improving the physical quality of coarse-textured soils by organic amendments requires choosing the amendment and the dose. The effects of different doses of compost, vermicompost, and biochar on soil bulk density (BD) and water retention parameters (macroporosity, PMAC; aeration capacity, AC; plant available water capacity, PAWC; relative field capacity, RFC) were tested for two sandy-loam soils. Without any treatment, these soils had too high BD and AC values and too low PMAC, PAWC, and RFC values. No amendment satisfactorily improved the PMAC. Only the biochar yielded statistically significant relationships between the BD, AC, PAWC, and RFC, and the amendment rate, ar. With this amendment, aeration and water storage improved because soil water content at field capacity increased with an ar more than those at saturation and the permanent wilting point. A dose of biochar (50 t/ha in a 5-cm-thick layer) made the soil physical quality good with reference to all considered parameters was identified. A single application of a rather high amount of biochar can be expected to improve the physical quality of coarse-textured soils for a long time. The general validity of the optimal ranges of values for the considered parameters and the time dependence of amendment effects in the field require further check. Full article
Show Figures

Figure 1

18 pages, 39830 KiB  
Article
Satellite-Based Detection of Farmland Manuring Using Machine Learning Approaches
by David Marzi and Fabio Dell’Acqua
Remote Sens. 2025, 17(6), 1028; https://doi.org/10.3390/rs17061028 - 15 Mar 2025
Viewed by 755
Abstract
In agriculture, manuring offers several benefits, which include improving soil fertility, structure, water retention, and aeration; all these factors favor plant health and productivity. However, improper handling and application of manure can pose risks, such as spread of pathogens and water pollution. Mitigation [...] Read more.
In agriculture, manuring offers several benefits, which include improving soil fertility, structure, water retention, and aeration; all these factors favor plant health and productivity. However, improper handling and application of manure can pose risks, such as spread of pathogens and water pollution. Mitigation of such risks requires not only proper storage and composting practices, but also compliance with correct application periods and techniques. Spaceborne Earth observation can contribute to mapping manure applications and identifying possible critical situations, yet manure detection from satellite data is still a largely open question. The aim of this research is an automated, machine learning (ML)-based approach to detecting manure application on crop fields in time sequences of spaceborne, multi-source optical Earth Observation data. In the first stage of this research, multispectral data alone was considered; a pool of different spectral indexes were analyzed to identify the ones most impacted by manure application. Increments of the selected indexes from one satellite acquisition to the next were used as features to train and test various machine learning models. Two agricultural areas—one in Spain and one in Italy—were considered. Fair levels of accuracy were achieved when training and testing were carried out in the same geographical context, whereas ML models trained on one context and tested on the other reported significantly lower—albeit still acceptable—accuracy levels. In the stage that followed, thermal data was integrated and used alongside multispectral indexes. This addition led to significant improvements in accuracy levels, despite possible thermal-to-multispectral sampling mismatch in time series. Our results appear to indicate that ML-based approaches to manuring detection from space require training on the targeted geographical context, although transfer learning can probably be leveraged and only fine-tuning training will be needed. Spaceborne thermal data, where available, should be included in the input data pool to improve the quality of the final result. The proposed method is meant as a first step towards a suite of techniques that should enable large-scale, consistent monitoring of agricultural activities to check compliance with environmental regulations and provide enhanced traceability information for food products. Full article
(This article belongs to the Special Issue Remote Sensing for Precision Farming and Crop Phenology)
Show Figures

Figure 1

19 pages, 4574 KiB  
Article
Design and Development of Supersonic Shockwave Soil-Loosening Device That Can Improve the Aeration of Crop Root Zone
by Ming-Sen Hu, Uzu-Kuei Hsu, Shang-Han Tsai and Chia-Hsing Lee
Appl. Sci. 2025, 15(5), 2714; https://doi.org/10.3390/app15052714 - 3 Mar 2025
Viewed by 779
Abstract
When the soil at the plant roots is poorly ventilated due to few pores, the root system will grow short and shallow, leading to poor growth. In this paper, we developed a shockwave soil-loosening device. It can first drill a hollow drill bit [...] Read more.
When the soil at the plant roots is poorly ventilated due to few pores, the root system will grow short and shallow, leading to poor growth. In this paper, we developed a shockwave soil-loosening device. It can first drill a hollow drill bit containing multi-directional holes into the soil near the roots of the crops and then generate high-pressure gas to impact the soil outside the drill bit to increase the soil pores. Therefore, this can quickly improve soil aeration. We conducted numerical simulations of shockwave loosening to explore how 3.4 atm shockwaves are emitted from the drill bit’s porous nozzles and analyze the behavior and efficiency of shockwave loosening. We also performed visual observation experiments of shockwave multi-directional impact in a transparent acrylic water tank. Furthermore, we used eight pressure sensors to automatically measure the range of shockwave impact and found that when the storage tank volume was 5000 cm3, we could achieve a soil loosening range of 30 cm. Finally, this shockwave-loosening mechanism ensures that the soil surface will not be damaged during the loosening process, thus avoiding large-scale tillage disturbance of the soil. This will reduce carbon emissions stored in soil and released into the atmosphere. Full article
Show Figures

Figure 1

16 pages, 2417 KiB  
Article
Physiological Changes and PP2A-C Expression Modulated by Waterlogging Conditions Are Organ-Specific in Tomato Seedlings
by Anna Kołton, Monika A. Czaja, Maria T. Creighton, Cathrine Lillo, Alina Wiszniewska, Małgorzata Czernicka and Kamil Szymonik
Agronomy 2025, 15(3), 507; https://doi.org/10.3390/agronomy15030507 - 20 Feb 2025
Viewed by 680
Abstract
Waterlogging stress leads to a reduction in the oxygen level around the root system (hypoxia). It can be caused by poor air exchange in flooded or compacted soil or in a non-aerated medium. Such stress causes numerous morphological, physiological and biochemical changes. The [...] Read more.
Waterlogging stress leads to a reduction in the oxygen level around the root system (hypoxia). It can be caused by poor air exchange in flooded or compacted soil or in a non-aerated medium. Such stress causes numerous morphological, physiological and biochemical changes. The present study aimed to specify hypoxia-influenced modifications of catalytic subunits of PP2A (PP2A-C) parallel to physiological processes in tomato cultivated in hydroponics. The analysis included ROS detection, photosynthetic apparatus efficiency, expression of the PP2A-C subunit protein level, PP2A-like activity, nitrogen metabolism and soluble sugars. Analyses were carried out separately for leaves and roots. In leaves, there was a decrease (52%) in total PP2A-C in response to hypoxia in the root system, but no significant changes in PP2A-related activity were found. In roots, there was a more than six-fold increase in total PP2A-C in response to hypoxia and this was accompanied by a doubling of PP2A-related activity. The applied stress increased nitrate reductase activity and the levels of free amino acids. The decrease in photosynthesis intensity was noticed in the case of stressed plants. These results show that the level of PP2A-C and physiological processes are differentially modulated by waterlogging conditions in an organ-dependent way. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Graphical abstract

27 pages, 5690 KiB  
Review
Superabsorbent Polymers: Innovations in Ecology, Environmental, and Diverse Applications
by Qingya Niu, Jiayin Xie, Jiayan Li, Zaixu An, Huijie Xiao, Xiaoyuan Zhang, Zhiqiang Su and Zhichao Wang
Materials 2025, 18(4), 823; https://doi.org/10.3390/ma18040823 - 13 Feb 2025
Cited by 1 | Viewed by 2241
Abstract
Significant progress has been achieved in the development of superabsorbent polymers (SAPs), focusing on enhancing their performance and expanding their applications. Efforts are particularly directed at increasing water absorbency while promoting environmental sustainability. Biodegradable materials such as starch and potassium humate have been [...] Read more.
Significant progress has been achieved in the development of superabsorbent polymers (SAPs), focusing on enhancing their performance and expanding their applications. Efforts are particularly directed at increasing water absorbency while promoting environmental sustainability. Biodegradable materials such as starch and potassium humate have been successfully integrated with SAPs for desert greening, improving water retention, salt resistance, and seedling survival. The inclusion of nutrient-rich organic-inorganic composites further enhances the durability, efficiency, and recyclability of SAPs. In drought mitigation, polymeric absorbent resins such as polyacrylamide and starch-grafted acrylates have shown efficacy in ameliorating soil conditions and fostering plant growth. In arid environments, agents enriched with humic acid and bentonite contribute to improved soil aeration and water retention, creating optimal conditions for plant establishment. Additionally, the adoption of innovative waste management solutions has led to the production of amphiphilic SAPs from residual sludge, effectively addressing soil nutrient deficiencies and environmental pollution. In the food industry, SAPs containing protease, tea polyphenols, and chitosan exhibit potential for enhancing the stability and quality of seafood products. These advancements highlight the growing relevance of structural optimization approaches in SAP development across diverse applications and underline the importance of continued innovation in these fields. As novel materials emerge and environmental challenges intensify, the potential applications of SAPs are anticipated to expand significantly. Full article
(This article belongs to the Special Issue Construction and Applications in Functional Polymers)
Show Figures

Figure 1

Back to TopTop