Soil Degradation and Restoration: Challenges and Prospects for Agroecological Development

A special issue of Agronomy (ISSN 2073-4395). This special issue belongs to the section "Agroecology Innovation: Achieving System Resilience".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 3851

Special Issue Editors


E-Mail Website
Guest Editor
Department of Soil Sciences, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Filiberto Villalobos Avenue, 119, 37007 Salamanca, Spain
Interests: soil sciences; soil restoration; soil degradation; agriculture

E-Mail Website
Guest Editor
Department of Soil Sciences, Faculty of Agricultural and Environmental Sciences, University of Salamanca, Filiberto Villalobos Avenue, 119, 37007 Salamanca, Spain
Interests: soil sciences; soil restoration; soil degradation; soil conservation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The conservation of soils in the face of various threats that degrade them, as well as the recovery and restoration of soils in altered or low-quality environments, is essential to ensure sufficient and high-quality agricultural and food production. This is especially critical in the context of a growing global population (and the resulting pressure on soils) and climate change.

In response to these challenges, new approaches to industrial development and more sustainable agricultural practices are emerging. These include efforts to combat soil degradation, promote sustainable food production (e.g., agroecology), develop more efficient and less disruptive tillage techniques, and restore disturbed soils.

This Special Issue will feature research papers and reviews that address the following topics:

  • Studies and experiences of agroecological production models;
  • Implementation of agricultural techniques and their impact on soil conservation and quality;
  • Restoration of disturbed or low-quality soils, both environmentally and agriculturally;
  • Soil degradation and strategies to mitigate it.

We invite contributions that explore these critical issues in soil conservation and restoration.

Prof. Dr. Pilar Alonso Rojo
Dr. Marco Criado
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Agronomy is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • organic agriculture
  • agroecology
  • sustainable management systems
  • soil restoration
  • soil degradation
  • soil conservation
  • soil quality

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1159 KB  
Article
Assessing the Impact of Pontederia crassipes Extracts on the Saprophytic Soil Fungus Trametes versicolor: Implications for Agricultural Use
by Cátia Venâncio, Ana Ramisote, Pedro Pato and Carla Patinha
Agronomy 2025, 15(12), 2921; https://doi.org/10.3390/agronomy15122921 - 18 Dec 2025
Viewed by 210
Abstract
Invasive species are a recurring global problem, and the water hyacinth (Pontederia crassipes) is a well-known example. Various strategies have been explored to manage its spread, including its use as an agricultural amendment. However, when P. crassipes biomass is incorporated into [...] Read more.
Invasive species are a recurring global problem, and the water hyacinth (Pontederia crassipes) is a well-known example. Various strategies have been explored to manage its spread, including its use as an agricultural amendment. However, when P. crassipes biomass is incorporated into soil and undergoes degradation, it may increase soil conductivity and promote metal leaching, potentially affecting soil biota, particularly microbiota. Saprophytic fungi play a key role in the decomposition and renewal of organic matter, and their resilience to stressors is crucial for maintaining soil function. Thus, the aim of this study was to evaluate the effects of P. crassipes biomass extracts on the saprophytic fungus Trametes versicolor by evaluating fungal growth and metabolic changes [including sugar content, phosphatase enzymatic activity, and reactive oxygen species (ROS) production]. The fungus was exposed for 8 days to a dilution series of extracts (100%—undiluted, to 3.13%) prepared from P. crassipes biomass collected at five locations in Portuguese wetlands. Two sites were in the south, within a Mediterranean climate (Sorraia and Estação Experimental António Teixeira), and three were in the north, within an Atlantic climate (São João de Loure, Pateira de Fermentelos, and Vila Valente), representing both agricultural-runoff–impacted areas and recreational zones. Extracts were used to simulate a worst-case scenario. All extracts have shown high conductivity (≥15.4 mS/cm), and several elements have shown a high soluble fraction (e.g., K, P, As, or Ba), indicating substantial leaching from the biomass to the extracts. Despite this, T. versicolor growth rates were generally not inhibited, except for exposure to the São João de Loure extract, where an EC50 of 45.3% (extract dilution) was determined and a significant sugar content decrease was observed at extract concentrations ≥25%. Possibly due to the high phosphorous leachability, both acid and alkaline phosphatase activities increased significantly at the highest percentages tested (50% and 100%). Furthermore, ROS levels increased with increasing extract concentrations, yet marginal changes were observed in growth rates, suggesting that T. versicolor may efficiently regulate its intracellular redox balance under stress conditions. Overall, these findings indicate that the degradation of P. crassipes biomass in soils, while altering chemical properties and releasing soluble elements, may not impair and could even boost microbiota, namely saprophytic fungi. This resilience highlights the potential ecological benefit of saprophytic fungi in accelerating the decomposition of invasive plant residues and contribution to soil nutrient cycling and ecosystem recovery. Full article
Show Figures

Figure 1

22 pages, 6650 KB  
Article
Biochar Particle Size Modulates the Microbial Degradation of Petroleum Hydrocarbons in Contaminated Soil
by Yanjie Wang, Qiong Wang, Meijuan Wang, Haiqing Lei and Jiabo Chen
Agronomy 2025, 15(12), 2874; https://doi.org/10.3390/agronomy15122874 - 14 Dec 2025
Viewed by 271
Abstract
Petroleum hydrocarbons are pervasive soil pollutants that detrimentally affect the soil structure, nutrients, and microbial ecosystems. However, the effect of biochar particle size on the remediation effectiveness remains a critical, unresolved parameter. Here, a soil remediation experiment was conducted to evaluate the synergy [...] Read more.
Petroleum hydrocarbons are pervasive soil pollutants that detrimentally affect the soil structure, nutrients, and microbial ecosystems. However, the effect of biochar particle size on the remediation effectiveness remains a critical, unresolved parameter. Here, a soil remediation experiment was conducted to evaluate the synergy between biochars of different particle sizes and nutrient addition. Total petroleum hydrocarbons (TPHs) were quantified gravimetrically, and specific hydrocarbon fractions were analysed via gas chromatography mass spectroscopy (GC-MS) while the microbial community composition was analysed via high-throughput sequencing. The results revealed that granular bulrush straw biochar (0.85 mm) with nutrients achieved the greatest TPH degradation (73.35%), significantly outperforming both powder biochar and soybean straw biochar. This enhanced remediation was associated with a significant shift in the microbial community (p < 0.05), characterized by substantial increases in hydrocarbon-degrading bacteria, particularly Actinobacteria and the genus Mycobacterium. This study revealed that the synergistic application of granular biochar and nutrients is a highly effective, nature-based strategy for petroleum-contaminated soil, which functions by resolving a critical biochar parameter to enhance key microbial degraders. Full article
Show Figures

Graphical abstract

20 pages, 2156 KB  
Article
Erosion Control Effects of a Polymer-Based Soil Conditioner on Red Soil in Okinawa, Japan
by Yang Xin, Kazutoshi Osawa, Hiroyuki Matsui, Susumu Chiba, Junpei Takahashi and Kazuma Honda
Agronomy 2025, 15(10), 2362; https://doi.org/10.3390/agronomy15102362 - 9 Oct 2025
Viewed by 655
Abstract
Preventing soil degradation caused by water erosion is essential for sustainable agriculture and long-term agroecological development. The objective of this study was to evaluate the effectiveness of an ethylene-vinyl acetate (EVA) polymer-based soil conditioner in mitigating soil erosion, a key driver of soil [...] Read more.
Preventing soil degradation caused by water erosion is essential for sustainable agriculture and long-term agroecological development. The objective of this study was to evaluate the effectiveness of an ethylene-vinyl acetate (EVA) polymer-based soil conditioner in mitigating soil erosion, a key driver of soil degradation. Laboratory experiments and simulations employing the Water Erosion Prediction Project (WEPP) model were conducted to assess soil erodibility parameters and sediment yield of two soil types from Okinawa, Japan. A key contribution of this work is the integration of these experimentally determined erodibility parameters into the WEPP model for robust validation. Interrill and rill erosion processes were analyzed under different soil conditioner application rates. Laboratory results showed that applying the soil conditioner reduced interrill erodibility by 59 to 99% and rill erodibility by 65 to 100%, while increasing critical shear stress and water infiltration rate. The effectiveness varied between the two soil types due to differences in particle-size distribution and inherent erodibility. The soil conditioner exhibited a more pronounced impact on rill erosion. WEPP simulations confirmed sediment yield reductions of 73% to 99%, primarily influenced by changes in rill erodibility and critical shear stress. While its practical application will be subject to various field conditions, our findings confirm the significant potential of this soil conditioner as a strategy for preserving topsoil resources. Full article
Show Figures

Figure 1

25 pages, 4197 KB  
Article
Polyacrylamide-Induced Trade-Offs in Soil Stability and Ecological Function: A Multifunctional Assessment in Granite-Derived Sandy Material
by Junkang Xu, Xin Chen, Guanghui Zhang, Weidong Yu, Chongfa Cai and Yujie Wei
Agronomy 2025, 15(9), 2087; https://doi.org/10.3390/agronomy15092087 - 29 Aug 2025
Viewed by 901
Abstract
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil [...] Read more.
Soil erosion in granite-derived weathering mantles poses serious threats to slope stability and ecological sustainability in subtropical regions. While polyacrylamide (PAM) is widely used to improve soil structure, its concentration-dependent effects on multiple soil functions remain unclear. This study developed a multifunctional Soil Function Index (SFI) framework integrating erosion resistance (SFI1), water regulation (SFI2), and ecological function (SFI3) to evaluate the effects of PAM application (0‰, 1‰, 3‰, 5‰, 7‰) on gully-prone sandy material. Herein, SFI1 was quantified through shear strength (τ) and soil erodibility (Kr); SFI2 was assessed using soil hydraulic parameters (saturated hydraulic conductivity and water retention curves) and SFI3 was derived from the grass root system analysis. The results showed that SFI1 and SFI2 increased nonlinearly with PAM concentration, reaching maximum values of 0.983 and 0.980 at 7‰, with Kr reduced by 77.3% and non-capillary porosity (NAP) increased by 8.1%. In contrast, SFI3 peaked at 0.858 under 3‰ and declined sharply to 0.000 at 7‰, due to micropore over-compaction, reduced aeration, and limited plant-available water. The total SFI exhibited a unimodal trend, with a maximum of 0.755 at 3‰, beyond which ecological suppression offset physical improvements. These findings demonstrate that PAM modifies soil multifunctionality through pore-scale restructuring, inducing function-specific thresholds and trade-offs. A PAM concentration of 3‰ is identified as optimal, achieving a balance between erosion control, hydrological performance, and ecological viability in the management of subtropical granite-derived sandy slopes. Full article
Show Figures

Figure 1

24 pages, 5806 KB  
Article
Soil Carbon Sequestration in Nothofagus obliqua Forests with Different Canopy Cover Levels Under Silvopastoral Management
by Camila Ramos, Erick Zagal, Salme Timmusk, Francis Dube, Leandro Paulino, Juan Ortiz, Jean Intriago-Ávila and Juan Pablo Fuentes
Agronomy 2025, 15(4), 855; https://doi.org/10.3390/agronomy15040855 - 29 Mar 2025
Viewed by 1342
Abstract
Agroforestry contributes to slowing deforestation, favoring ecosystem regeneration and improving land use sustainability. This study evaluated the impact of silvopastoral systems on soil recovery and their capacity to sequester and stabilize carbon (C) and nitrogen (N) in degraded soils of a native Nothofagus [...] Read more.
Agroforestry contributes to slowing deforestation, favoring ecosystem regeneration and improving land use sustainability. This study evaluated the impact of silvopastoral systems on soil recovery and their capacity to sequester and stabilize carbon (C) and nitrogen (N) in degraded soils of a native Nothofagus obliqua forest in Ranchillo Alto (37°04′52″ S, 71°39′14″ W), Ñuble Region, Chile. Three open (Op), semi-open (SOp), and semi-closed (SC) silvopastoral systems were analyzed and compared with a control (Ctr) without silvopastoral management across four soil depths (0–10, 10–20, 20–30, 30–60 cm). Physical, chemical, and biological analyses were performed, along with soil physical organic matter (SOM) fractionation. The highest C levels were found in the 0–10 cm depth (13.9, 11.8, 11.5, and 8.5% for Op > SC > SOp and Ctr, respectively). Despite its higher degradation, Op presented the highest levels of C, N, and non-oxidizable C (Cnox), possibly due to pyrogenic carbon from old potato burns. Furthermore, the same trend was observed for mineral associated organic matter (MAOM) fraction and C stocks in all silvopastoral systems compared to the control. These results underline the potential of silvopastoral practices to improve soil quality and increase long-term carbon sequestration, contributing to sustainable soil restoration strategies. Full article
Show Figures

Figure 1

Back to TopTop