Seasonal Patterns in Yield and Gas Emissions of Greenhouse Tomatoes Under Different Fertilization Levels with Irrigation–Aeration Coupling
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Experiment Design
2.3. Gas Sampling and Analysis
2.4. Soil Sampling
2.5. Determination of the Tomato Yield
2.6. Net GHG, NGWP, and GHGI
2.7. Statistical Analysis
3. Results
3.1. Environmental Variables
3.2. Soil Variables
3.3. Soil CO2 Fluxes
3.4. Soil N2O Fluxes
3.5. Soil CH4 Fluxes
3.6. Yield, Net GHG, NGWP, and GHGI
4. Discussion
4.1. Soil CO2 Emissions
4.2. Soil N2O Emissions
4.3. Soil CH4 Emissions
4.4. Impact of the Coupling of Irrigation, Fertilization, and Aeration on Yield, Net GHG, NGWP, and GHGI
5. Conclusions
- (1)
- Seasonal interactions among aeration, fertilization, and irrigation significantly influenced soil GHG emissions. Specifically, higher levels of aeration, fertilization, and irrigation increased CO2 and N2O emissions, while enhanced aeration and fertilization reduced CH4 emissions. Compared to the Autumn–Winter seasons, Spring–Summer CO2, N2O, and CH4 emissions rose by 24.69%, 12.22%, and 23.11%, respectively (p < 0.05 *).
- (2)
- All three management practices notably improved tomato yields but also intensified GHG-related environmental impacts. In Spring–Summer seasons, tomato yield, net GHG emissions, net global warming potential (NGWP), and greenhouse gas intensity (GHGI) were 12.05%, 24.3%, 14.46%, and 2.37% higher than in Autumn–Winter seasons, respectively (p < 0.05 *).
- (3)
- Considering both economic and environmental benefits, our analysis, which integrated the MIC and TOPSIS models, identified the A1F1I1 treatment (Aeration level, single aeration (A1); fertilization level, 180 kg/ha (F1); irrigation level, 0.8 Epan (I1)) as the optimal combination for the Spring–Summer seasons and the A2F1I1 treatment (Aeration level, double aeration (A2); fertilization level, 180 kg/ha (F1); irrigation level, 0.8 Epan (I1)) as the ideal combination for the Autumn–Winter seasons.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. AR5 Climate Change 2013: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 28 September 2024).
- IPCC. Climate Change 2021: The Physical Science Basis. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SummaryVolume.pdf (accessed on 28 September 2024).
- WMO Greenhouse Gas Bulletin (GHG Bulletin): The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2017. India Environment Portal|News, Reports, Documents, Blogs, Data, Analysis on Environment & Development|India, South Asia. Available online: https://wmo.int/publication-series/wmo-greenhouse-gas-bulletin-no14-state-of-greenhouse-gases-atmosphere-based-global-observations (accessed on 29 September 2024).
- Chi, Y.; Yang, P.; Ren, S.; Yang, J. Finding the Optimal Fertilizer Type and Rate to Balance Yield and Soil GHG Emissions under Reclaimed Water Irrigation. Sci. Total Environ. 2020, 729, 138954. [Google Scholar] [CrossRef]
- Shakoor, A.; Dar, A.A.; Arif, M.S.; Farooq, T.H.; Yasmeen, T.; Shahzad, S.M.; Tufail, M.A.; Ahmed, W.; Albasher, G.; Ashraf, M. Do Soil Conservation Practices Exceed Their Relevance as a Countermeasure to Greenhouse Gases Emissions and Increase Crop Productivity in Agriculture? Sci. Total Environ. 2022, 805, 150337. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C.; et al. Greenhouse Gas Mitigation in Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 789–813. [Google Scholar] [CrossRef]
- Chang, T.; Zhang, Y.; Zhang, Z.; Shao, X.; Wang, W.; Zhang, J.; Yang, X.; Xu, H. Effects of Irrigation Regimes on Soil NO3−-N, Electrical Conductivity and Crop Yield in Plastic Greenhouse. Int. J. Agric. Biol. Eng. 2019, 12, 109–115. [Google Scholar] [CrossRef]
- Hao, S.; Cao, H.; Wang, H.; Pan, X. Effects of Water Stress at Different Growth Stages on Comprehensive Fruit Quality and Yield in Different Bunches of Tomatoes in Greenhouses. Int. J. Agric. Biol. Eng. 2019, 12, 67–76. [Google Scholar] [CrossRef]
- He, J.; Tian, J. Model of coupling water with fertilizer and optimum combination scheme of rice cultivated in aerobic soil with drip irrigation under plastic film. Trans. CSAE 2015, 31, 77–82. (In Chinese) [Google Scholar]
- He, F.; Chen, Q.; Jiang, R. Yield and Nitrogen Balance of Greenhouse Tomato (Lycopevsicum esculentum Mill.) with Conventional and Site-Specific Nitrogen Management in Northern China. Nutr. Cycl. Agroecosystems 2007, 77, 1–14. [Google Scholar] [CrossRef]
- Zhao, C.; Hu, C.; Huang, W.; Sun, X.; Tan, Q.; Di, H. A Lysimeter Study of Nitrate Leaching and Optimum Nitrogen Application Rates for Intensively Irrigated Vegetable Production Systems in Central China. J. Soils Sediments 2010, 10, 9–17. [Google Scholar] [CrossRef]
- Liu, L.; Hu, C.; Yang, P.; Ju, Z.; Olesen, J.E.; Tang, J. Effects of Experimental Warming and Nitrogen Addition on Soil Respiration and CH4 Fluxes from Crop Rotations of Winter Wheat–Soybean/Fallow. Agric. For. Meteorol. 2015, 207, 38–47. [Google Scholar] [CrossRef]
- Lu, M.; Zhou, X.; Luo, Y.; Yang, Y.; Fang, C.; Chen, J.; Li, B. Minor Stimulation of Soil Carbon Storage by Nitrogen Addition: A Meta-Analysis. Agric. Ecosyst. Environ. 2011, 140, 234–244. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, Soil Organic Carbon and N2O Emissions. A Review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.; Wang, Z.; Ali, M.U.; Chen, S.; Zhang, S.; Wu, Q.; Ullah, M.S. Coupling Fertigation and Buried Straw Layer Improves Fertilizer Use Efficiency, Fruit Yield, and Quality of Greenhouse Tomato. Agric. Water Manag. 2020, 239, 106239. [Google Scholar] [CrossRef]
- Below, F.E. Nitrogen Metabolism and Crop Productivity. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, FL, USA, 2002; pp. 385–406. [Google Scholar]
- Zhu, X.; Ros, G.H.; Xu, M.; Cai, Z.; Sun, N.; Duan, Y.; de Vries, W. Long-Term Impacts of Mineral and Organic Fertilizer Inputs on Nitrogen Use Efficiency for Different Cropping Systems and Site Conditions in Southern China. Eur. J. Agron. 2023, 146, 126797. [Google Scholar] [CrossRef]
- Luo, Y.; Field, C.B.; Jackson, R.B. Does Nitrogen Constrain Carbon Cycling, or Does Carbon Input Stimulate Nitrogen Cycling? Ecology 2006, 87, 3–4. [Google Scholar] [CrossRef]
- Zhou, Z.; Liao, K.; Zhu, Q.; Lai, X.; Yang, J.; Huang, J. Determining the Hot Spots and Hot Moments of Soil N2O Emissions and Mineral N Leaching in a Mixed Landscape under Subtropical Monsoon Climatic Conditions. Geoderma 2022, 420, 115896. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from Fertilized Fields: Summary of Available Measurement Data. Glob. Biogeochem. Cycle 2002, 16, 1058. [Google Scholar] [CrossRef]
- Eagle, A.J.; Olander, L.P.; Locklier, K.L.; Heffernan, J.B.; Bernhardt, E.S. Fertilizer Management and Environmental Factors Drive N2O and NO3 Losses in Corn: A Meta-Analysis. Soil Sci. Soc. Am. J. 2017, 81, 1191–1202. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Del Grosso, S.J.; Reule, C.A. Nitrogen, Tillage, and Crop Rotation Effects on Nitrous Oxide Emissions from Irrigated Cropping Systems. J. Environ. Qual. 2008, 37, 1337–1344. [Google Scholar] [CrossRef]
- Sun, W.; Huang, Y. Synthetic Fertilizer Management for China’s Cereal Crops Has Reduced N2O Emissions since the Early 2000s. Environ. Pollut. 2012, 160, 24–27. [Google Scholar] [CrossRef]
- Campbell, C.A.; Zentner, R.P.; Liang, B.C.; Roloff, G.; Gregorich, E.C.; Blomert, B. Organic C Accumulation in Soil over 30 Years in Semiarid Southwestern Saskatchewan—Effect of Crop Rotations and Fertilizers. Can. J. Soil Sci. 2000, 80, 179–192. [Google Scholar] [CrossRef]
- Recous, S.; Robin, D.; Darwis, D.; Mary, B. Soil Inorganic N Availability: Effect on Maize Residue Decomposition. Soil Biol. Biochem. 1995, 27, 1529–1538. [Google Scholar] [CrossRef]
- Zamanian, K.; Zarebanadkouki, M.; Kuzyakov, Y. Nitrogen Fertilization Raises CO2 Efflux from Inorganic Carbon: A Global Assessment. Glob. Change Biol. 2018, 24, 2810–2817. [Google Scholar] [CrossRef]
- Abuarab, M.; Mostafa, E.; Ibrahim, M. Effect of Air Injection under Subsurface Drip Irrigation on Yield and Water Use Efficiency of Corn in a Sandy Clay Loam Soil. J. Adv. Res. 2013, 4, 493–499. [Google Scholar] [CrossRef]
- Hou, H.; Chen, H.; Cai, H.; Yang, F.; Li, D.; Wang, F. CO2 and N2O Emissions from Lou Soils of Greenhouse Tomato Fields Under Aerated Irrigation. Atmos. Environ. 2016, 132, 69–76. [Google Scholar] [CrossRef]
- Ityel, E.; Ben-Gal, A.; Silberbush, M.; Lazarovitch, N. Increased Root Zone Oxygen by a Capillary Barrier Is Beneficial to Bell Pepper Irrigated with Brackish Water in an Arid Region. Agric. Water Manag. 2014, 131, 108–114. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Xu, J.; Wang, J.; Zhang, M.; Lv, W. Root Morphology of Greenhouse Produced Muskmelon under Sub-Surface Drip Irrigation with Supplemental Soil Aeration. Sci. Hortic. 2016, 201, 287–294. [Google Scholar] [CrossRef]
- Shahien, M.M.; Abuarab, M.E.; Magdy, E. Root Aeration Improves Yield and Water Use Efficiency of Irrigated Potato in Sandy Clay Loam Soil. Egypts Pres. Spec. Counc. Educ. Sci. Res. 2014, 2, 310–320. [Google Scholar] [CrossRef]
- Sun, Y.; Duan, L.; Zhong, H.; Cai, H.; Xu, J.; Li, Z. Effects of Irrigation-Fertilization-Aeration Coupling on Yield and Quality of Greenhouse Tomatoes. Agric. Water Manag. 2024, 299, 108893. [Google Scholar] [CrossRef]
- Du, Y.-D.; Gu, X.-B.; Wang, J.-W.; Niu, W.-Q. Yield and Gas Exchange of Greenhouse Tomato at Different Nitrogen Levels Under Aerated Irrigation. Sci. Total Environ. 2019, 668, 1156–1164. [Google Scholar] [CrossRef]
- Cui, B.-J.; Niu, W.-Q.; Du, Y.-D.; Zhang, Q. Response of Yield and Nitrogen Use Efficiency to Aerated Irrigation and N Application Rate in Greenhouse Cucumber. Sci. Hortic. 2020, 265, 109220. [Google Scholar] [CrossRef]
- Du, Y.-D.; Zhang, Q.; Cui, B.-J.; Sun, J.; Wang, Z.; Ma, L.-H.; Niu, W.-Q. Aerated Irrigation Improves Tomato Yield and Nitrogen Use Efficiency While Reducing Nitrogen Application Rate. Agric. Water Manag. 2020, 235, 106152. [Google Scholar] [CrossRef]
- Du, Y.-D.; Niu, W.-Q.; Gu, X.-B.; Zhang, Q.; Cui, B.-J.; Zhao, Y. Crop Yield and Water Use Efficiency under Aerated Irrigation: A Meta-Analysis. Agric. Water Manag. 2018, 210, 158–164. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.; Yan, X.; Shen, H. Effects of Different Concentrations of Dissolved Oxygen on the Growth, Photosynthesis, Yield and Quality of Greenhouse Tomatoes and Changes in Soil Microorganisms. Agric. Water Manag. 2021, 245, 106579. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Z.; Wang, E.; Zhang, W. Reducing Greenhouse Gas Emissions While Maintaining Yield in the Croplands of Huang-Huai-Hai Plain, China. Agric. For. Meteorol. 2018, 260–261, 80–94. [Google Scholar] [CrossRef]
- Zou, J.; Tobin, B.; Luo, Y.; Osborne, B. Differential Responses of Soil CO2 and N2O Fluxes to Experimental Warming. Agric. For. Meteorol. 2018, 259, 11–22. [Google Scholar] [CrossRef]
- Graham, S.L.; Hunt, J.E.; Millard, P.; McSeveny, T.; Tylianakis, J.M.; Whitehead, D. Effects of Soil Warming and Nitrogen Addition on Soil Respiration in a New Zealand Tussock Grassland. PLoS ONE 2014, 9, e91204. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.; Hu, H.; Shang, Z.; Zhu, Y.; Cai, H.; Qaisar, S. Aeration of Different Irrigation Levels Affects Net Global Warming Potential and Carbon Footprint for Greenhouse Tomato Systems. Sci. Hortic. 2018, 242, 10–19. [Google Scholar] [CrossRef]
- Chen, X.; Wang, G.; Zhang, T.; Mao, T.; Wei, D.; Song, C.; Hu, Z.; Huang, K. Effects of Warming and Nitrogen Fertilization on GHG Flux in an Alpine Swamp Meadow of a Permafrost Region. Sci. Total Environ. 2017, 601–602, 1389–1399. [Google Scholar] [CrossRef]
- Li, J.; Dong, W.; Oenema, O.; Chen, T.; Hu, C.; Yuan, H.; Zhao, L. Irrigation Reduces the Negative Effect of Global Warming on Winter Wheat Yield and Greenhouse Gas Intensity. Sci. Total Environ. 2019, 646, 290–299. [Google Scholar] [CrossRef]
- Chen, H.; Hou, H.; Wang, X.; Zhu, Y.; Saddique, Q.; Wang, Y.; Cai, H. The Effects of Aeration and Irrigation Regimes on Soil CO2 and N2O Emissions in a Greenhouse Tomato Production System. J. Integr. Agric. 2018, 17, 449–460. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, H.; Song, L.; Hou, H.; Chen, H. Effects of climatic factors and soil parameters on soil respiration under oxygation conditions. Trans. Chin. Soc. Agric. Mach. 2016, 47, 223–232, (In Chinese with English Summary). [Google Scholar]
- Wang, X.; Wang, R.; Zhao, Z.; Cai, H. Enhanced Nitrogen Fertilizer Combined with Straw Incorporation Can Reduce Global Warming Potential with Higher Carbon Sequestration in a Summer Maize-Winter Wheat Rotation System. Agric. Ecosyst. Environ. 2024, 365, 108913. [Google Scholar] [CrossRef]
- Zhang, A.; Cheng, G.; Hussain, Q.; Zhang, M.; Feng, H.; Dyck, M.; Sun, B.; Zhao, Y.; Chen, H.; Chen, J.; et al. Contrasting Effects of Straw and Straw–Derived Biochar Application on Net Global Warming Potential in the Loess Plateau of China. Field Crops Res. 2017, 205, 45–54. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, S.; Wang, Y.; Wang, Q.; Zhang, X. Temporal Convolution-Network-Based Models for Modeling Maize Evapotranspiration under Mulched Drip Irrigation. Comput. Electron. Agric. 2020, 169, 105206. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Bi, L.; Wang, Y.; Fan, J.; Zhang, F.; Hou, X.; Cheng, M.; Hu, W.; Wu, L.; et al. Multi-Objective Optimization of Water and Fertilizer Management for Potato Production in Sandy Areas of Northern China Based on TOPSIS. Field Crops Res. 2019, 240, 55–68. [Google Scholar] [CrossRef]
- Zhu, Y.; Dyck, M.; Cai, H.; Song, L.; Chen, H. The Effects of Aerated Irrigation on Soil Respiration, Oxygen, and Porosity. J. Integr. Agric. 2019, 18, 2854–2868. [Google Scholar] [CrossRef]
- Kara, B.; Mujdeci, M. Influence of Late-Season Nitrogen Application on Chlorophyll Content and Leaf Area Index in Wheat. Sci. Res. Essays 2010, 5, 2299–2303. [Google Scholar]
- Gu, X.-B.; Li, Y.-N.; Du, Y.-D. Optimized Nitrogen Fertilizer Application Improves Yield, Water and Nitrogen Use Efficiencies of Winter Rapeseed Cultivated under Continuous Ridges with Film Mulching. Ind. Crops Prod. 2017, 109, 233–240. [Google Scholar] [CrossRef]
- Silva, C.C.; Guido, M.L.; Ceballos, J.M.; Marsch, R.; Dendooven, L. Production of Carbon Dioxide and Nitrous Oxide in Alkaline Saline Soil of Texcoco at Different Water Contents Amended with Urea: A Laboratory Study. Soil Biol. Biochem. 2008, 40, 1813–1822. [Google Scholar] [CrossRef]
- Han, B.; Ye, X.; Li, W.; Zhang, X.; Zhang, Y.; Lin, X.; Zou, H. The Effects of Different Irrigation Regimes on Nitrous Oxide Emissions and Influencing Factors in Greenhouse Tomato Fields. J. Soils Sediments 2017, 17, 2457–2468. [Google Scholar] [CrossRef]
- Weier, K.L.; Doran, J.W.; Power, J.F. Walters Denitrification and the Dinitrogen/Nitrous Oxide Ratio as Affected by Soil Water, Available Carbon, and Nitrate. Soil Sci. Soc. Am. J. 1993, 57, 66–72. [Google Scholar] [CrossRef]
- Kool, D.M.; Dolfing, J.; Wrage, N.; Van Groenigen, J.W. Nitrifier Denitrification as a Distinct and Significant Source of Nitrous Oxide from Soil. Soil Biol. Biochem. 2011, 43, 174–178. [Google Scholar] [CrossRef]
- Trnka, M.; Kersebaum, K.C.; Eitzinger, J.; Hayes, M.; Hlavinka, P.; Svoboda, M.; Dubrovský, M.; Semerádová, D.; Wardlow, B.; Pokorný, E.; et al. Consequences of Climate Change for the Soil Climate in Central Europe and the Central Plains of the United States. Clim. Change 2013, 120, 405–418. [Google Scholar] [CrossRef]
- Xu, X.; Ran, Y.; Li, Y.; Zhang, Q.; Liu, Y.; Pan, H.; Guan, X.; Li, J.; Shi, J.; Dong, L.; et al. Warmer and Drier Conditions Alter the Nitrifier and Denitrifier Communities and Reduce N2O Emissions in Fertilized Vegetable Soils. Agric. Ecosyst. Environ. 2016, 231, 133–142. [Google Scholar] [CrossRef]
- Dalal, R.C.; Allen, D.E.; Livesley, S.J.; Richards, G. Magnitude and Biophysical Regulators of Methane Emission and Consumption in the Australian Agricultural, Forest, and Submerged Landscapes: A Review. Plant Soil 2008, 309, 43–76. [Google Scholar] [CrossRef]
- Linquist, B.A.; Adviento-Borbe, M.A.; Pittelkow, C.M.; van Kessel, C.; van Groenigen, K.J. Fertilizer Management Practices and Greenhouse Gas Emissions from Rice Systems: A Quantitative Review and Analysis. Field Crops Res. 2012, 135, 10–21. [Google Scholar] [CrossRef]
- Du, Y.; Niu, W.; Zhang, Q.; Cui, B.; Gu, X.; Guo, L.; Liang, B. Effects of Nitrogen on Soil Microbial Abundance, Enzyme Activity, and Nitrogen Use Efficiency in Greenhouse Celery Under Aerated Irrigation. Soil Sci. Soc. Am. J. 2018, 82, 606–613. [Google Scholar] [CrossRef]
- Gong, X.; Li, X.; Qiu, R.; Bo, G.; Ping, Y.; Xin, Q.; Ge, J. Ventilation and Irrigation Management Strategy for Tomato Cultivated in Greenhouses. Agric. Water Manag. 2022, 273, 107908. [Google Scholar] [CrossRef]
Fertilization Level | Base Fertilization | 27 d | 54 d | 68 d | 87 d |
---|---|---|---|---|---|
F2 (240 kg ha−1) | 30% | 10% | 20% | 20% | 20% |
F1 (180 kg ha−1) | 30% | 10% | 20% | 20% | 20% |
Season | Treatments | Soil Temperature (°C) | Soil WFPS (%) | Soil NO3−-N Content (mg/kg) | Soil O2 Content (mL/L) | Cumulative CO2 Emissions (kg·hm−2) | Cumulative N2O Emissions (kg·hm−2) | Cumulative CH4 Emissions (kg·hm−2) | |
---|---|---|---|---|---|---|---|---|---|
Spring – Summer | I | I1 | 24.47 a | 42.27 c | 320.04 b | 6.78 b | 1.22 × 104 b | 1.41 ab | −0.74 c |
I2 | 24.73 a | 44.54 b | 283.47 c | 6.34 c | 1.47 × 104 a | 1.49 a | −0.45 a | ||
F | F1 | 24.58 a | 44.31 b | 258.89 d | 6.59 c | 1.31 × 104 b | 1.26 c | −0.47 a | |
F2 | 24.67 a | 42.95 c | 337.30 b | 6.45 c | 1.42 × 104 a | 1.67 a | −0.66 b | ||
A | A1 | 24.4 b | 43.81 c | 291.26 c | 6.51 c | 1.23 × 104 c | 1.22 c | −0.57 c | |
A2 | 24.53 ab | 42.6 d | 322.79 b | 6.83 b | 1.51 × 104 a | 1.84 a | −0.72 d | ||
CK | 25.27 a | 45.35 b | 262.38 d | 5.89 d | 1.35 × 104 b | 1.17 c | −0.26 a | ||
Mean | / | 24.66 | 43.69 | 296.59 | 6.48 | 1.36 × 104 | 1.44 | −0.55 | |
Autumn – Winter | I | I1 | 18.85 b | 44.25 b | 353.84 a | 7.22 a | 1.04 × 104 d | 1.24 c | −0.84 d |
I2 | 18.96 b | 46.21 a | 314.84 b | 6.84 b | 1.13 × 104 c | 1.34 b | −0.68 b | ||
F | F1 | 18.68 b | 45.55 a | 292.59 c | 7.13 a | 1.06 × 104 d | 1.11 d | −0.70 b | |
F2 | 19.15 b | 45.30 a | 368.28 a | 6.85 b | 1.14 × 104 c | 1.49 b | −0.79 c | ||
A | A1 | 18.70 d | 45.76 b | 323.03 b | 6.86 b | 1.08 × 104 f | 1.18 c | −0.74 d | |
A2 | 18.77 d | 44.01 c | 357.31 a | 7.42 a | 1.12 × 104 d | 1.58 b | −0.86 e | ||
CK | 19.63 c | 47.60 a | 291.51 c | 6.38 c | 1.09 × 104 e | 1.00 d | −0.51 b | ||
Mean | / | 18.96 | 45.53 | 328.77 | 6.96 | 1.09 × 104 | 1.28 | −0.73 |
Treatments | Spring–Summer | Autumn–Winter | ||||||
---|---|---|---|---|---|---|---|---|
Yield (t/ha) | GHGI (kg/ha) | net GHG (kg/ha) | NGWP (kg/ha) | Yield (t/ha) | GHGI (kg/ha) | net GHG (kg/ha) | NGWP (kg/ha) | |
CKF1I2 | 40.37 g | 6.68 f | 13,224.98 h | 269.59 h | 35.97 g | 6.44 fg | 10,708.04 h | 231.78 f |
CKF2I2 | 44.96 e | 7.94 d | 14,396.33 e | 356.90 e | 38.68 f | 7.38 de | 11,569.04 d | 285.48 de |
A1F1I1 | 40.08 g | 6.32 g | 10,393.18 j | 253.41 h | 38.49 f | 6.18 g | 10,124.19 j | 237.97 f |
A1F2I1 | 44.85 e | 7.32 e | 11,144.41 i | 328.32 f | 40.08 e | 7.88 cd | 10,834.35 g | 315.75 d |
A1F1I2 | 46.59 d | 6.29 g | 14,068.02 f | 293.13 g | 40.14 e | 6.81 f | 11,253.21 f | 273.40 e |
A1 F2I2 | 53.30 b | 7.44 e | 15,065.69 c | 396.79 d | 41.37 d | 9.13 b | 12,232.35 b | 377.84 c |
A2F1I1 | 41.86 f | 8.85 c | 13,674.98 g | 370.64 e | 40.77 de | 7.33 e | 10,547.37 i | 298.68 de |
A2F2I1 | 46.52 d | 10.90 a | 15,027.46 d | 507.23 b | 44.03 c | 9.29 b | 11,475.06 e | 409.05 b |
A2F1I2 | 50.03 c | 9.26 b | 15,962.88 b | 463.31 c | 46.49 b | 8.16 c | 11,712.52 c | 379.65 bc |
A2F2I2 | 55.52 a | 10.65 a | 17,719.18 a | 591.57 a | 48.13 a | 11.16 a | 12,722.46 a | 537.39 a |
Significance | ||||||||
I | ** | * | ** | ** | ** | ** | ** | ** |
F | ** | ** | ** | ** | ** | ** | ** | ** |
A | ** | ** | ** | ** | ** | ** | ** | ** |
I × F | * | ns | ** | ns | * | ** | ** | * |
I × A | ** | ns | ** | ** | ** | ns | ** | ** |
F × A | * | ** | ** | ** | * | ** | ** | ** |
I × F × A | ns | * | ** | ns | ns | ns | ** | ns |
Treatments | Spring–Summer | Autumn–Winter | ||||||
---|---|---|---|---|---|---|---|---|
D+ | D− | Ci | Rank | D+ | D− | Ci | Rank | |
CKF1I2 | 0.24 | 0.70 | 0.74 | 3 | 0.15 | 0.73 | 0.83 | 2 |
CKF2I2 | 0.38 | 0.50 | 0.57 | 5 | 0.32 | 0.55 | 0.63 | 6 |
A1F1I1 | 0.11 | 0.85 | 0.89 | 1 | 0.17 | 0.65 | 0.79 | 3 |
A1F2I1 | 0.17 | 0.71 | 0.81 | 2 | 0.25 | 0.57 | 0.70 | 5 |
A1F1I2 | 0.29 | 0.67 | 0.70 | 4 | 0.25 | 0.62 | 0.72 | 4 |
A1F2I2 | 0.42 | 0.49 | 0.54 | 7 | 0.54 | 0.31 | 0.37 | 9 |
A2FII1 | 0.40 | 0.48 | 0.54 | 6 | 0.07 | 0.81 | 0.92 | 1 |
A2F2I1 | 0.68 | 0.24 | 0.26 | 9 | 0.47 | 0.36 | 0.43 | 8 |
A2F1I2 | 0.59 | 0.28 | 0.32 | 8 | 0.42 | 0.41 | 0.50 | 7 |
A2F2I2 | 0.84 | 0.11 | 0.11 | 10 | 0.81 | 0.09 | 0.10 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhong, H.; Cai, H.; Xu, J.; Li, Z. Seasonal Patterns in Yield and Gas Emissions of Greenhouse Tomatoes Under Different Fertilization Levels with Irrigation–Aeration Coupling. Agronomy 2025, 15, 2026. https://doi.org/10.3390/agronomy15092026
Sun Y, Zhong H, Cai H, Xu J, Li Z. Seasonal Patterns in Yield and Gas Emissions of Greenhouse Tomatoes Under Different Fertilization Levels with Irrigation–Aeration Coupling. Agronomy. 2025; 15(9):2026. https://doi.org/10.3390/agronomy15092026
Chicago/Turabian StyleSun, Yanan, Huayu Zhong, Huanjie Cai, Jiatun Xu, and Zhijun Li. 2025. "Seasonal Patterns in Yield and Gas Emissions of Greenhouse Tomatoes Under Different Fertilization Levels with Irrigation–Aeration Coupling" Agronomy 15, no. 9: 2026. https://doi.org/10.3390/agronomy15092026
APA StyleSun, Y., Zhong, H., Cai, H., Xu, J., & Li, Z. (2025). Seasonal Patterns in Yield and Gas Emissions of Greenhouse Tomatoes Under Different Fertilization Levels with Irrigation–Aeration Coupling. Agronomy, 15(9), 2026. https://doi.org/10.3390/agronomy15092026