Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = slope length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9727 KiB  
Article
Characterization of Spatial Variability in Rock Mass Mechanical Parameters for Slope Stability Assessment: A Comprehensive Case Study
by Xin Dong, Tianhong Yang, Yuan Gao, Feiyue Liu, Zirui Zhang, Peng Niu, Yang Liu and Yong Zhao
Appl. Sci. 2025, 15(15), 8609; https://doi.org/10.3390/app15158609 (registering DOI) - 3 Aug 2025
Viewed by 117
Abstract
The spatial variability in rock mass mechanical parameters critically affects slope stability assessments. This study investigated the southern slope of the Bayan Obo open-pit mine. A representative elementary volume (REV) with a side length of 14 m was determined through discrete fracture network [...] Read more.
The spatial variability in rock mass mechanical parameters critically affects slope stability assessments. This study investigated the southern slope of the Bayan Obo open-pit mine. A representative elementary volume (REV) with a side length of 14 m was determined through discrete fracture network (DFN) simulations. Based on the rock quality designation (RQD) data from 40 boreholes, a three-dimensional spatial distribution model of the RQD was constructed using Ordinary Kriging interpolation. The RQD values were converted into geological strength index (GSI) values through an empirical correlation, and the generalized Hoek–Brown criterion was applied to develop a spatially heterogeneous equivalent mechanical parameter field. Numerical simulations were performed using FLAC3D, with the slope stability evaluated using the point safety factor (PSF) method. For comparison, three homogeneous benchmark models based on the 5th, 25th, and 50th percentiles produced profile-scale safety factors of 0.96–1.92 and failed to replicate the observed failure geometry. By contrast, the heterogeneous model yielded safety factors of approximately 1.03–1.08 and accurately reproduced the mapped sliding surface. These findings demonstrate that incorporating spatial heterogeneity significantly improves the accuracy of slope stability assessments, providing a robust theoretical basis for targeted monitoring and reinforcement design. Full article
Show Figures

Figure 1

14 pages, 3081 KiB  
Article
Habitat Distribution Pattern of François’ Langur in a Human-Dominated Karst Landscape: Implications for Its Conservation
by Jialiang Han, Xing Fan, Ankang Wu, Bingnan Dong and Qixian Zou
Diversity 2025, 17(8), 547; https://doi.org/10.3390/d17080547 - 1 Aug 2025
Viewed by 142
Abstract
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and [...] Read more.
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and on slopes of 10–20°, which notably overlap with the core elevation range utilized by François’ langur. Spatial analysis revealed that langurs primarily occupy areas within the 500–800 m elevation band, which comprises only 33% of the reserve but hosts a high density of human infrastructure—including approximately 4468 residential buildings and the majority of cropland and road networks. Despite slopes >60° representing just 18.52% of the area, langur habitat utilization peaked in these steep regions (exceeding 85.71%), indicating a strong preference for rugged karst terrain, likely due to reduced human interference. Habitat type analysis showed a clear preference for evergreen broadleaf forests (covering 37.19% of utilized areas), followed by shrublands. Landscape pattern metrics revealed high habitat fragmentation, with 457 discrete habitat patches and broadleaf forests displaying the highest edge density and total edge length. Connectivity analyses indicated that distribution areas exhibit a more continuous and aggregated habitat configuration than control areas. These results underscore François’ langur’s reliance on steep, forested karst habitats and highlight the urgent need to mitigate human-induced fragmentation in key elevation and slope zones to ensure the species’ long-term survival. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

15 pages, 8138 KiB  
Article
Study on the Characteristics of Straw Fiber Curtains for Protecting Embankment Slopes from Rainfall Erosion
by Xiangyong Zhong, Feng Xu, Rusong Nie, Yang Li, Chunyan Zhao and Long Zhang
Eng 2025, 6(8), 179; https://doi.org/10.3390/eng6080179 - 1 Aug 2025
Viewed by 125
Abstract
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests [...] Read more.
Straw fiber curtain contains a plant fiber blanket woven from crop straw, which is mainly used to protect embankment slopes from rainwater erosion. To investigate the erosion control performance of slopes covered with straw fiber curtains of different structural configurations, physical model tests were conducted in a 95 cm × 65 cm × 50 cm (length × height × width) test box with a slope ratio of 1:1.5 under controlled artificial rainfall conditions (20 mm/h, 40 mm/h, and 60 mm/h). The study evaluated the runoff characteristics, sediment yield, and key hydrodynamic parameters of slopes under the coverage of different straw fiber curtain types. The results show that the A-type straw fiber curtain (woven with strips of straw fiber) has the best effect on water retention and sediment reduction, while the B-type straw fiber curtain (woven with thicker straw strips) with vertical straw fiber has a better effect regarding water retention and sediment reduction than the B-type transverse straw fiber curtain. The flow of rainwater on a slope covered with straw fiber curtain is mainly a laminar flow. Straw fiber curtain can promote the conversion of water flow from rapids to slow flow. The Darcy-Weisbach resistance coefficient of straw fiber curtain increases at different degrees with an increase in rainfall time. Full article
Show Figures

Figure 1

10 pages, 3612 KiB  
Communication
Comparison of Habitat Selection Models Between Habitat Utilization Intensity and Presence–Absence Data: A Case Study of the Chinese Pangolin
by Hongliang Dou, Ruiqi Gao, Fei Wu and Haiyang Gao
Biology 2025, 14(8), 976; https://doi.org/10.3390/biology14080976 (registering DOI) - 1 Aug 2025
Viewed by 126
Abstract
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the [...] Read more.
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the study area into 600 m × 600 m grids based on its average home range. The burrow number within each grid was obtained through line transect surveys, with burrow numbers/line transect lengths used as direct indicators of habitat utilization intensity. The relationships with sixteen environmental variables, which could be divided into three categories, including topographic, human disturbance and land cover composition, were quantified using the GAM method. We also converted continuous data into binary data (0, 1), constructed GAMs and compared them with habitat utilization intensity models. Our results indicate that the habitat utilization intensity model identified profile curvature and slope as primary factors, showing a nonlinear response to profile curvature (Edf = 5.610, p = 0.014) and a positive relationship with slope (Edf = 1.000, p = 0.006). The presence–absence model emphasized distance to water (Edf = 1.000, p = 0.014), slope (Edf = 1.709, p = 0.043) and aspect (Edf = 2.000, p = 0.026). The intensity model explained significantly more deviance, captured complex nonlinear relationships and supported higher model complexity without overfitting. This study demonstrates that habitat utilization intensity data provides a more ecologically informative basis for in situ conservation (e.g., identifying core habitats), and the process from habitat selection to habitat utilization should be integrated to reveal species’ habitat characteristics. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

16 pages, 7721 KiB  
Article
From Landscape to Legacy: Developing an Integrated Hiking Route with Cultural Heritage and Environmental Appeal Through Spatial Analysis
by İsmet Sarıbal, Mesut Çoşlu and Serdar Selim
Sustainability 2025, 17(15), 6897; https://doi.org/10.3390/su17156897 - 29 Jul 2025
Viewed by 324
Abstract
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies [...] Read more.
This study aimed to re-evaluate a historical war supply route within the context of cultural tourism, to revitalize its natural, historical, and cultural values, and to integrate it with existing hiking and trekking routes. Remote sensing (RS) and geographic information system (GIS) technologies were utilized, and land surveys were conducted to support the analysis and validate the existing data. Data for slope, one of the most critical factors for hiking route selection, were generated, and the optimal route between the starting and destination points was identified using least cost path analysis (LCPA). Historical, touristic, and recreational rest stops along the route were mapped with precise coordinates, and both the existing and the newly generated routes were assessed in terms of their accessibility to these points. Field validation was carried out based on the experiences of expert hikers. According to the results, the length of the existing hiking route was determined to be 15.72 km, while the newly developed trekking route measured 17.36 km. These two routes overlap for 7.75 km, with 9.78 km following separate paths in a round-trip scenario. It was concluded that the existing route is more suitable for hiking, whereas the newly developed route is better suited for trekking. Full article
Show Figures

Figure 1

18 pages, 3778 KiB  
Article
Total Internal Reflection End-Pumped Solar Laser with the Solar-to-Laser Conversion Efficiency of 6.09%
by Lin Wang, Haiyang Zhang, Dário Garcia, Weichen Xu, Changming Zhao and Anran Guo
Energies 2025, 18(15), 4033; https://doi.org/10.3390/en18154033 - 29 Jul 2025
Viewed by 179
Abstract
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a [...] Read more.
A novel total internal reflection solar end-pumped laser system has been introduced for the first time, aimed at enhancing the solar-to-laser conversion efficiency. Utilizing a conical solid or cavity reflector, this system refocuses sunlight from a 0.2818 m2 parabolic mirror into a single Ce (0.05 at.%): Nd (1 at.%): YAG crystal rod, measuring 4 mm in diameter and 10 mm in length, thereby promoting total internal reflection and extending the pumping path. Simulation results indicate that under the same solar input power conditions (249.05 W), the conversion efficiencies of the conical solid reflector and cavity reflector systems are 1.2 times and 1.33 times higher than the current highest recorded efficiency of single-rod systems, respectively. At 950 W/m2, the conical reflector reaches 5.48% efficiency, while the cavity reflector attains 6.09%. Their collection efficiencies are 52.03 W/m2 and 57.90 W/m2, with slope efficiencies of 6.65% and 7.72%. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 368
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

12 pages, 732 KiB  
Article
Umbilical Cord Tensile Strength Under Varying Strain Rates
by Maria Antonietta Castaldi, Pietro Villa, Alfredo Castaldi and Salvatore Giovanni Castaldi
Bioengineering 2025, 12(8), 789; https://doi.org/10.3390/bioengineering12080789 - 22 Jul 2025
Viewed by 251
Abstract
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic [...] Read more.
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic response. Twenty-nine UC specimens, each 40 mm in length, were subjected to uniaxial tensile testing and randomly assigned to three traction speed groups: Group A (n = 10) at 8 mm/min, Group B (n = 7) at 12 mm/min, and Group C (n = 12) at 16 mm/min. Four different parameters were analyzed: the ultimate tensile strength and its corresponding elongation, the elastic modulus defined as the slope of the linear initial portion of the stress–strain plot, and the elongation at the end of the test (at break). While elongation and elongation at break did not differ significantly between groups (one-way ANOVA), Group C showed a significantly higher ultimate tensile strength (p = 0.047). A linear relationship was observed between test speed and stiffness (elastic modulus), with the following regression equation: y = 0.3078e4.425x. These findings confirm that the UC exhibits nonlinear viscoelastic properties and strain-rate-dependent stiffening, resembling non-Newtonian behavior. This novel insight may have clinical relevance during operative deliveries, where traction speed is often overlooked but may play a role in preserving cord integrity and improving neonatal outcomes. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

25 pages, 4994 KiB  
Article
Dynamic Slope Stability Assessment Under Blast-Induced Ground Vibrations in Open-Pit Mines: A Pseudo-Static Limit Equilibrium Approach
by Sami Ullah, Gaofeng Ren, Yongxiang Ge, Muhammad Burhan Memon, Eric Munene Kinyua and Theoneste Ndayiragije
Sustainability 2025, 17(14), 6642; https://doi.org/10.3390/su17146642 - 21 Jul 2025
Viewed by 506
Abstract
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing [...] Read more.
Blasting is one of the most widely used and cost-effective techniques for rock excavation and fragmentation in open-pit mining, particularly for large-scale operations. However, repeated or poorly controlled blasting can generate excessive ground vibrations that threaten slope stability by causing structural damage, fracturing of the rock mass, and potential failure. Evaluating the effects of blast-induced vibrations is essential to ensure safe and sustainable mining operations. This study investigates the impact of blasting-induced vibrations on slope stability at the Saindak Copper-Gold Open-Pit Mine in Pakistan. A comprehensive dataset was compiled, including field-monitored ground vibration measurements—specifically peak particle velocity (PPV) and key blast design parameters such as spacing (S), burden (B), stemming length (SL), maximum charge per delay (MCPD), and distance from the blast point (D). Geomechanical properties of slope-forming rock units were validated through laboratory testing. Slope stability was analyzed using pseudo-static limit equilibrium methods (LEMs) based on the Mohr–Coulomb failure criterion, employing four approaches: Fellenius, Janbu, Bishop, and Spencer. Pearson and Spearman correlation analyses quantified the influence of blasting parameters on slope behavior, and sensitivity analysis determined the cumulative distribution of slope failure and dynamic response under increasing seismic loads. FoS values were calculated for both east and west pit slopes under static and dynamic conditions. Among all methods, Spencer consistently yielded the highest FoS values. Under static conditions, FoS was 1.502 for the east slope and 1.254 for the west. Under dynamic loading, FoS declined to 1.308 and 1.102, reductions of 12.9% and 11.3%, respectively, as calculated using the Spencer method. The east slope exhibited greater stability due to its gentler angle. Correlation analysis revealed that burden had a significant negative impact (r = −0.81) on stability. Sensitivity analysis showed that stability deteriorates notably when PPV exceeds 10.9 mm/s. Although daily blasting did not critically compromise stability, the west slope showed greater vulnerability, underscoring the need for stricter control of blasting energy to mitigate vibration-induced instability and promote long-term operational sustainability. Full article
Show Figures

Graphical abstract

20 pages, 4185 KiB  
Article
The Reactivated Residual Strength: Laboratory Tests and Practical Considerations
by Paolo Carrubba
Appl. Sci. 2025, 15(14), 7976; https://doi.org/10.3390/app15147976 - 17 Jul 2025
Viewed by 189
Abstract
As is already known, some currently stable landslides may have been activated in the past along a pre-existing sliding surface and reached the residual strength there, as a consequence of high-cumulative displacements. After a fairly long period of quiescence, these landslides can reactivate [...] Read more.
As is already known, some currently stable landslides may have been activated in the past along a pre-existing sliding surface and reached the residual strength there, as a consequence of high-cumulative displacements. After a fairly long period of quiescence, these landslides can reactivate due to a temporary increase in destabilising forces capable of mobilising the residual strength along the same sliding surface again. Some recent studies have suggested that, under certain conditions, the strength mobilised upon reactivation may slightly exceed the residual value and then decay towards the latter as the displacement progresses. Regarding this matter, many previous studies have hypothesised that some geotechnical variables could affect the recovered strength more significantly: the length of the ageing time, the vertical stress, the stress history, and the speed with which the reactivation occurs. The aim of this research is to confirm whether such recovery of strength upon reactivation is possible and which geotechnical parameters have the greatest influence on the process. To this end, laboratory tests were carried out with the Bromhead ring shear apparatus on normally consolidated saturated samples of both natural soils and clays provided by industry (bentonite and kaolin). The coupling effect of the ageing time, the vertical stress, and the reactivation speed on the mobilised strength upon reactivation were investigated, starting from a pre-existing residual state of these samples. Within the limits of this research, the results seem to confirm that all three geotechnical variables are influential, with a greater impact on the reactivation speed and, subordinately, on the ageing time for long quiescence periods. Therefore, it is concluded that a quiescent landslide could show a reactivated strength slightly higher than the residual value if the destabilising action could arise with a certain rapidity. Conversely, if the destabilising action occurs very slowly, the mobilised strength could correspond to the residual value. The experimental results of this research may find some application in the design of strengthening works for a stable quiescent landslide that could experience a fairly rapid increase in destabilising actions, such as in the case of seismic stress, morphological modification of the slope, or a rising water table. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation, 2nd Edition)
Show Figures

Figure 1

21 pages, 12821 KiB  
Article
The Identification and Diagnosis of ‘Hidden Ice’ in the Mountain Domain
by Brian Whalley
Glacies 2025, 2(3), 8; https://doi.org/10.3390/glacies2030008 - 15 Jul 2025
Viewed by 264
Abstract
Morphological problems for distinguishing between glacier ice, glacier ice with a debris cover (debris-covered glaciers), and rock glaciers are outlined with respect to recognising and mapping these features. Decimal latitude–longitude [dLL] values are used for geolocation. One model for rock glacier formation and [...] Read more.
Morphological problems for distinguishing between glacier ice, glacier ice with a debris cover (debris-covered glaciers), and rock glaciers are outlined with respect to recognising and mapping these features. Decimal latitude–longitude [dLL] values are used for geolocation. One model for rock glacier formation and flow discusses the idea that they consist of ‘mountain permafrost’. However, signs of permafrost-derived ice, such as flow features, have not been identified in these landsystems; talus slopes in the neighbourhoods of glaciers and rock glaciers. An alternative view, whereby rock glaciers are derived from glacier ice rather than permafrost, is demonstrated with examples from various locations in the mountain domain, 𝔻𝕞. A Google Earth and field examination of many rock glaciers shows glacier ice exposed below a rock debris mantle. Ice exposure sites provide ground truth for observations and interpretations stating that rock glaciers are indeed formed from glacier ice. Exposure sites include bare ice at the headwalls of cirques and above debris-covered glaciers; additionally, ice cliffs on the sides of meltwater pools are visible at various locations along the lengths of rock glaciers. Inspection using Google Earth shows that these pools can be traced downslope and their sizes can be monitored between images. Meltwater pools occur in rock glaciers that have been previously identified in inventories as being indictive of permafrost in the mountain domain. Glaciers with a thick rock debris cover exhibit ‘hidden ice’ and are shown to be geomorphological units mapped as rock glaciers. Full article
Show Figures

Figure 1

19 pages, 7940 KiB  
Article
High-Salinity Fluid Downslope Flow on Regolith Layer Examined by Laboratory Experiment: Implications for Recurring Slope Lineae on Martian Surfaces
by Yoshiki Tabuchi, Arata Kioka, Takeshi Tsuji and Yasuhiro Yamada
Fluids 2025, 10(7), 183; https://doi.org/10.3390/fluids10070183 - 12 Jul 2025
Viewed by 341
Abstract
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material [...] Read more.
Numerous dark linear recurrent features called Recurring Slope Lineae (RSL) are observed on Martian surfaces, hypothesized as footprints of high-salinity liquid flow. This paper experimentally examined this “wet hypothesis” by analyzing the aspect ratios (length/width) of the flow traces on the granular material column to investigate how they vary with the granular material column, liquid and its flow rate, and inclination. While pure water produced low aspect ratios (<1.0) on the Martian regolith simulant column, high-salinity fluid (CaCl2(aq)) traces exhibited significantly higher aspect ratios (>4.0), suggesting that pure water alone is insufficient to explain RSL formulation. Furthermore, the aspect ratios of high-salinity fluid traces on Martian regolith simulants were among the highest observed across all studied granular materials with similar particle sizes, aligning closely with actual RSL observed on Martian slopes. The results further suggest that variable ARs of actual RSL at the given slope can partly be explained by variable flow rates of high-salinity flow as well as salinity (i.e., viscosity) of flow. The results can be attributed to the unique granular properties of Martian regolith, characterized by the lowest permeability and Beavers–Joseph slip coefficient among the studied granular materials. This distinctive microstructure surface promotes surface flow over Darcy flow within the regolith column, leading to a narrow and long-distance feature with high aspect ratios observed in Martian RSL. Thus, our findings support that high-salinity flows are the primary driver behind RSL formation on Mars. Our study suggests the presence of salts on the Martian surface and paves the way for further investigation into RSL formulation processes. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

18 pages, 16917 KiB  
Article
Unraveling the Spatiotemporal Dynamics of Rubber Phenology in Hainan Island, China: A Multi-Sensor Remote Sensing and Climate Drivers Analysis
by Hongyan Lai, Bangqian Chen, Guizhen Wang, Xiong Yin, Xincheng Wang, Ting Yun, Guoyu Lan, Zhixiang Wu, Kai Jia and Weili Kou
Remote Sens. 2025, 17(14), 2403; https://doi.org/10.3390/rs17142403 - 11 Jul 2025
Cited by 1 | Viewed by 279
Abstract
Rubber Tree (Hevea brasiliensis) phenology critically influences tropical plantation productivity and carbon cycling, yet topography and climate impacts remain unclear. By integrating multi-sensor remote sensing (2001–2020) and Google Earth Engine, this study analyzed spatiotemporal dynamics in Hainan Island, China. Results reveal [...] Read more.
Rubber Tree (Hevea brasiliensis) phenology critically influences tropical plantation productivity and carbon cycling, yet topography and climate impacts remain unclear. By integrating multi-sensor remote sensing (2001–2020) and Google Earth Engine, this study analyzed spatiotemporal dynamics in Hainan Island, China. Results reveal that both the start (SOS occurred between early and late March: day of year, DOY 60–81) and end (EOS occurred late January to early February: DOY 392–406, counted from the previous year) of the growing season exhibit progressive delays from the southeast to northwest, yielding a 10–11 month growing season length (LOS). Significantly, LOS extended by 4.9 days per decade (p < 0.01), despite no significant trends in SOS advancement (−1.1 days per decade) or EOS delay (+3.7 days per decade). Topographic modulation was evident: the SOS was delayed by 0.27 days per 100 m elevation rise (p < 0.01), while the EOS was delayed by 0.07 days per 1° slope increase (p < 0.01). Climatically, a 100 mm precipitation increase advanced SOS/EOS by approximately 1.0 day (p < 0.05), preseasonally, a 1 °C February temperature rise advanced the SOS and EOS by 0.49 and 0.53 days, respectively, and a 100 mm January precipitation increase accelerated EOS by 2.7 days (p < 0.01). These findings advance our mechanistic understanding of rubber phenological responses to climate and topographic gradients, providing actionable insights for sustainable plantation management and tropical forest ecosystem adaptation under changing climatic conditions. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

20 pages, 4852 KiB  
Article
Geological Mapping and Rover Mobility Planning Integration: A Case Study for Zhurong Rover’s Landing Area
by Haoli Ding, Enhui Zou, Lihui Lian, Wenzhen Ma, Yantong Huang and Teng Hu
Remote Sens. 2025, 17(14), 2400; https://doi.org/10.3390/rs17142400 - 11 Jul 2025
Viewed by 353
Abstract
This study conducted a comprehensive geological background investigation of the Zhurong rover’s landing area in Utopia Planitia using 3.5 m/pixel DEM and 0.7 m/pixel DOM data and completed the compilation of a 1:250,000-scale geological map. A total of 17 geological structures were systematically [...] Read more.
This study conducted a comprehensive geological background investigation of the Zhurong rover’s landing area in Utopia Planitia using 3.5 m/pixel DEM and 0.7 m/pixel DOM data and completed the compilation of a 1:250,000-scale geological map. A total of 17 geological structures were systematically identified within the landing area. Additionally, focusing on scientific questions regarding the evolution of troughs, cone units, and mesas, we theoretically designed an exploration route considering slope constraints by taking the Zhurong rover route design as a case study. This route, a conceptual design, starts from the hibernation location of the Zhurong rover and has a total length of 126 km. It can provide a reference for advancing detection strategies for volatile components (e.g., water and ice) and contribute to the design of the Tianwen-3 exploration route. Ultimately, this study aims to establish a general guideline for integrating geological mapping with rover mobility planning in future extraterrestrial exploration missions. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Graphical abstract

23 pages, 3747 KiB  
Article
Design Optimization and Performance Evaluation of an Automated Pelleted Feed Trough for Sheep Feeding Management
by Xinyu Gao, Chuanzhong Xuan, Jianxin Zhao, Yanhua Ma, Tao Zhang and Suhui Liu
Agriculture 2025, 15(14), 1487; https://doi.org/10.3390/agriculture15141487 - 10 Jul 2025
Viewed by 321
Abstract
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. [...] Read more.
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. The uniformity of pellet flow is a critical factor in the study of automatic feeding troughs, and optimizing the movement characteristics of the pellets contributes to enhanced operational efficiency of the equipment. However, existing research often lacks a systematic analysis of the pellet size characteristics (such as diameter and length) and flow behavior differences in pellet feed, which limits the practical application of feed troughs. This study optimized the angle of repose and structural parameters of the feeding trough using Matlab simulations and discrete element modeling. It explored how the stock bin slope and baffle opening height influence pellet feed flow characteristics. A programmable logic controller (PLC) and human–machine interface (HMI) were used for precise timing and quantitative feeding, validating the design’s practicality. The results indicated that the Matlab method could calibrate the Johnson–Kendall–Roberts (JKR) model’s surface energy. The optimal slope was found to be 63°, with optimal baffle heights of 28 mm for fine and medium pellets and 30 mm for coarse pellets. The experimental metrics showed relative errors of 3.5%, 2.8%, and 4.2% (for average feed rate) and 8.2%, 7.3%, and 1.2% (for flow time). The automatic feeding trough showed a feeding error of 0.3% with PLC-HMI. This study’s optimization of the automatic feeding trough offers a strong foundation and guidance for efficient, accurate pellet feed distribution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop