remotesensing-logo

Journal Browser

Journal Browser

Remote Sensing and Photogrammetry Applied to Deep Space Exploration

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Satellite Missions for Earth and Planetary Exploration".

Deadline for manuscript submissions: 30 May 2025 | Viewed by 14036

Special Issue Editors

State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
Interests: planetary remote sensing; photogrammetry
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430072, China
Interests: planetary geodesy; planetary remote sensing; gravity field

E-Mail Website
Guest Editor
Institut für Geodäsie und Geoinformationstechnik, Technische Universität Berlin, Kaiserin-Augusta-Allee 104, 10553 Berlin, Germany
Interests: cartography; geodesy and surveying; remote sensing

Special Issue Information

Dear Colleagues,

Deep space exploration is at the forefront of scientific and technological development. Many countries and institutions have successfully implemented various deep space exploration missions, such as Lunar, Mars, and asteroid exploration, and will continue to carry out exploration missions in the future, including manned lunar exploration, lunar scientific research stations and manned Mars exploration. Remote sensing and photogrammetry play a crucial role in supporting these major tasks, which include global or key area mapping, mineral inversion, landing site selection, landing point positioning, and rover navigation and positioning.

This Special Issue aims to present and exchange studies focusing on the application of remote sensing and photogrammetry in deep space exploration in recent years. Topics may cover anything from lunar and planetary remote sensing mapping to morphological analysis, lunar and planetary spectral analysis and superficial physical property inversion, estimations of the lunar and planetary gravity field and internal structure, lunar and planetary space–time reference, and navigation positioning. The scope of this Special Issue includes, but is not limited to, the following topics:

  • lunar and planetary remote sensing;
  • lunar and planetary mapping;
  • lunar and planetary photogrammetry;
  • lunar and planetary geodesy;
  • lunar and planetary reference frames;
  • lunar and planetary surface navigation and positioning.

Dr. Bin Liu
Dr. Mao Ye
Dr. Philipp Gläser
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • moon
  • Mars
  • remote sensing
  • photogrammetry
  • planetary mapping
  • planetary geodesy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

40 pages, 14878 KiB  
Article
Selection of Landing Sites for the Chang’E-7 Mission Using Multi-Source Remote Sensing Data
by Fei Zhao, Pingping Lu, Tingyu Meng, Yanan Dang, Yao Gao, Zihan Xu, Robert Wang and Yirong Wu
Remote Sens. 2025, 17(7), 1121; https://doi.org/10.3390/rs17071121 - 21 Mar 2025
Viewed by 439
Abstract
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both [...] Read more.
The Chinese Chang’E-7 (CE-7) mission is planned to land in the lunar south polar region, and then deploy a mini-flying probe to fly into the cold trap to detect the water ice. The selection of a landing site is crucial for ensuring both a safe landing and the successful achievement of its scientific objectives. This study presents a method for landing site selection in the challenging environment of the lunar south pole, utilizing multi-source remote sensing data. First, the likelihood of water ice in all cold traps within 85°S is assessed and prioritized using neutron spectrometer and hyperspectral data, with the most promising cold traps selected for sampling by CE-7’s mini-flying probe. Slope and illumination data are then used to screen feasible landing sites in the south polar region. Feasible landing sites near cold traps are aggregated into larger landing regions. Finally, high-resolution illumination maps, along with optical and radar images, are employed to refine the selection and identify the optimal landing sites. Six potential landing sites around the de Gerlache crater, an unnamed cold trap at (167.10°E, 88.71°S), Faustini crater, and Shackleton crater are proposed. It would be beneficial for CE-7 to prioritize mapping these sites post-launch using its high-resolution optical camera and radar for further detailed landing site investigation and evaluation. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

24 pages, 24274 KiB  
Article
Multi-Platform Integrated Analysis of the Degradation Patterns of Impact Crater Populations on the Lunar Surface
by Meixi Chen, Xinyu Ma, Teng Hu, Zhizhong Kang and Meng Xiao
Remote Sens. 2024, 16(13), 2359; https://doi.org/10.3390/rs16132359 - 27 Jun 2024
Cited by 1 | Viewed by 1138
Abstract
Following the processing of the Chang’e-4 satellite images, Chang’e-4 landing camera images, and Yutu-2 panoramic camera images, data were obtained in a variety of resolutions, including digital elevation model (DEM) and digital orthophoto map (DOM). By determining the morphological parameters, including the depths [...] Read more.
Following the processing of the Chang’e-4 satellite images, Chang’e-4 landing camera images, and Yutu-2 panoramic camera images, data were obtained in a variety of resolutions, including digital elevation model (DEM) and digital orthophoto map (DOM). By determining the morphological parameters, including the depths and diameters of impact craters in the study area, as well as their degradation classes based on surface texture features, we conducted a comprehensive analysis of the morphological parameters and population degradation patterns of impact craters from multiple platforms. The data from three platforms were employed to identify 12,089 impact craters with diameters ranging from 0.1 m to 800.0 m, which were then classified into five degradation classes based on their morphology in the images. This study indicates that as the size of impact craters increases, the population within them experiences a greater degree of degradation. However, the severe degradation of impact craters with diameters of less than 1 m or even 2 m is influenced by the rapid rate of degradation of the crater and the low solidity of the crater lips. The results of the equilibrium state of impact craters indicate that for sub-metre-sized impact craters (with diameters below 2.0 m), it is challenging to reach equilibrium. Furthermore, the smaller the impact crater, the more difficult it is to achieve equilibrium, which is probably the result of simpler generation conditions and the faster degradation of small impact craters. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

31 pages, 34074 KiB  
Article
The Generation of High-Resolution Mapping Products for the Lunar South Pole Using Photogrammetry and Photoclinometry
by Pengying Liu, Xun Geng, Tao Li, Jiujiang Zhang, Yuying Wang, Zhen Peng, Yinhui Wang, Xin Ma and Qiudong Wang
Remote Sens. 2024, 16(12), 2097; https://doi.org/10.3390/rs16122097 - 10 Jun 2024
Cited by 3 | Viewed by 1844
Abstract
High-resolution and high-accuracy mapping products of the Lunar South Pole (LSP) will play a vital role in future lunar exploration missions. Existing lunar global mapping products cannot meet the needs of engineering tasks, such as landing site selection and rover trajectory planning, at [...] Read more.
High-resolution and high-accuracy mapping products of the Lunar South Pole (LSP) will play a vital role in future lunar exploration missions. Existing lunar global mapping products cannot meet the needs of engineering tasks, such as landing site selection and rover trajectory planning, at the LSP. The Lunar Reconnaissance Orbiter (LRO)’s narrow-angle camera (NAC) can acquire submeter images and has returned a large amount of data covering the LSP. In this study, we combine stereo-photogrammetry and photoclinometry to generate high-resolution digital orthophoto maps (DOMs) and digital elevation models (DEMs) using LRO NAC images for a candidate landing site at the LSP. The special illumination and landscape characteristics of the LSP make the derivation of high-accuracy mapping products from orbiter images extremely difficult. We proposed an easy-to-implement shadow recognition and contrast stretching method based on the histograms of the LRO NAC images, which is beneficial for photogrammetric and photoclinometry processing. In order to automatically generate tie points, we designed an image matching method considering LRO NAC images’ features of long strips and large data volumes. The terrain and smoothness constraints were introduced into the cost function of photoclinometry adjustment, excluding pixels in shadow areas. We used 61 LRO NAC images to generate mapping products covering an area of 400 km2. The spatial resolution of the generated DOMs was 1 m/pixel, and the grid spacing of the derived DEMs was 1 m (close to the spatial resolution of the original images). The generated DOMs achieved a relative accuracy of better than 1 pixel. The geometric accuracy of the DEM derived from photoclinometry was consistent with the lunar orbiter laser altimeter (LOLA) DEM with a root mean square error of 0.97 m and an average error of 0.17 m. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

19 pages, 12576 KiB  
Article
A Mars Local Terrain Matching Method Based on 3D Point Clouds
by Binliang Wang, Shuangming Zhao, Xinyi Guo and Guorong Yu
Remote Sens. 2024, 16(9), 1620; https://doi.org/10.3390/rs16091620 - 30 Apr 2024
Cited by 2 | Viewed by 1765
Abstract
To address the matching challenge between the High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Model (DEM) and the Mars Orbiter Laser Altimeter (MOLA) DEM, we propose a terrain matching framework based on the combination of point cloud coarse alignment and fine alignment [...] Read more.
To address the matching challenge between the High Resolution Imaging Science Experiment (HiRISE) Digital Elevation Model (DEM) and the Mars Orbiter Laser Altimeter (MOLA) DEM, we propose a terrain matching framework based on the combination of point cloud coarse alignment and fine alignment methods. Firstly, we achieved global coarse localization of the HiRISE DEM through nearest neighbor matching of key Intrinsic Shape Signatures (ISS) points in the Fast Point Feature Histograms (FPFH) feature space. We introduced a graph matching strategy to mitigate gross errors in feature matching, employing a numerical method of non-cooperative game theory to solve the extremal optimization problem under Karush–Kuhn–Tucker (KKT) conditions. Secondly, to handle the substantial resolution disparities between the MOLA DEM and HiRISE DEM, we devised a smoothing weighting method tailored to enhance the Voxelized Generalized Iterative Closest Point (VGICP) approach for fine terrain registration. This involves leveraging the Euclidean distance between distributions to effectively weight loss and covariance, thereby reducing the results’ sensitivity to voxel radius selection. Our experiments show that the proposed algorithm improves the accuracy of terrain registration on the proposed Curiosity landing area’s, Mawrth Vallis, data by nearly 20%, with faster convergence and better algorithm robustness. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

24 pages, 15307 KiB  
Article
Enhanced Interactive Rendering for Rovers of Lunar Polar Region and Martian Surface
by Jiehao Bi, Ang Jin, Chi Chen and Shen Ying
Remote Sens. 2024, 16(7), 1270; https://doi.org/10.3390/rs16071270 - 4 Apr 2024
Cited by 4 | Viewed by 2219
Abstract
Appropriate environmental sensing methods and visualization representations are crucial foundations for the in situ exploration of planets. In this paper, we developed specialized visualization methods to facilitate the rover’s interaction and decision-making processes, as well as to address the path-planning and obstacle-avoidance requirements [...] Read more.
Appropriate environmental sensing methods and visualization representations are crucial foundations for the in situ exploration of planets. In this paper, we developed specialized visualization methods to facilitate the rover’s interaction and decision-making processes, as well as to address the path-planning and obstacle-avoidance requirements for lunar polar region exploration and Mars exploration. To achieve this goal, we utilize simulated lunar polar regions and Martian environments. Among them, the lunar rover operating in the permanently shadowed region (PSR) of the simulated crater primarily utilizes light detection and ranging (LiDAR) for environmental sensing; then, we reconstruct a mesh using the Poisson surface reconstruction method. After that, the lunar rover’s traveling environment is represented as a red-green-blue (RGB) image, a slope coloration image, and a theoretical water content coloration image, based on different interaction needs and scientific objectives. For the rocky environment where the Mars rover is traveling, this paper enhances the display of the rocks on the Martian surface. It does so by utilizing depth information of the rock instances to highlight their significance for the rover’s path-planning and obstacle-avoidance decisions. Such an environmental sensing and enhanced visualization approach facilitates rover path-planning and remote–interactive operations, thereby enabling further exploration activities in the lunar PSR and Mars, in addition to facilitating the study and communication of specific planetary science objectives, and the production and display of basemaps and thematic maps. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

23 pages, 23254 KiB  
Article
Analysis of Illumination Conditions in the Lunar South Polar Region Using Multi-Temporal High-Resolution Orbital Images
by Yifan Zhang, Bin Liu, Kaichang Di, Shaoran Liu, Zongyu Yue, Shaojin Han, Jia Wang, Wenhui Wan and Bin Xie
Remote Sens. 2023, 15(24), 5691; https://doi.org/10.3390/rs15245691 - 11 Dec 2023
Cited by 6 | Viewed by 3029
Abstract
The illumination conditions of the lunar south pole region are complex due to the rugged terrain and very low solar elevation angles, posing significant challenges to the safety of lunar landing and rover explorations. High-spatial and temporal-resolution analyses of the illumination conditions in [...] Read more.
The illumination conditions of the lunar south pole region are complex due to the rugged terrain and very low solar elevation angles, posing significant challenges to the safety of lunar landing and rover explorations. High-spatial and temporal-resolution analyses of the illumination conditions in the south pole region are essential to support mission planning and surface operations. This paper proposes a method for illumination condition analysis in the lunar pole region using multi-temporal high-resolution orbital images with a pre-selected landing area of Chang’E-7 as the study area. Firstly, a database of historical multi-temporal high-resolution (0.69–1.97 m/pixel) orbital images, with associated image acquisition time, solar elevation angle, and azimuth angle, is established after preprocessing and registration. Secondly, images with the nearest solar elevation and azimuth at the planned time for mission operations are retrieved from the database for subsequent illumination condition analysis and exploration support. The differences in the actual solar positions at the mission moments from that of the nearest sun position image are calculated and their impact on illumination conditions is evaluated. Experimental results of the study area demonstrate that the constructed image database and the proposed illumination analysis method using multi-temporal images, with the assistance of DEM in a small number of cases, can effectively support the mission planning and operations for the Chang’E-7 mission in the near future. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

Other

Jump to: Research

16 pages, 12796 KiB  
Technical Note
Current Status of the Community Sensor Model Standard for the Generation of Planetary Digital Terrain Models
by Trent M. Hare, Randolph L. Kirk, Michael T. Bland, Donna M. Galuszka, Jason R. Laura, David P. Mayer, Bonnie L. Redding and Benjamin H. Wheeler
Remote Sens. 2024, 16(4), 648; https://doi.org/10.3390/rs16040648 - 9 Feb 2024
Viewed by 2191
Abstract
The creation of accurate elevation models (topography) from stereo images are critical for a large variety of geospatial activities, including the production of digital orthomosaics, change detection, landing site analysis, geologic mapping, rover traverse planning, and spectral analysis. The United Stated Geological Survey, [...] Read more.
The creation of accurate elevation models (topography) from stereo images are critical for a large variety of geospatial activities, including the production of digital orthomosaics, change detection, landing site analysis, geologic mapping, rover traverse planning, and spectral analysis. The United Stated Geological Survey, Astrogeology Science Center, continues to transition the supported planetary sensor models to the Community Sensor Model (CSM) standard. This paper describes the current state of use for this photogrammetric standard, supported sensor model types, and qualitatively compares derived topography between SOCET SET and SOCET GXP (®BAE Systems) using HiRISE stereo images of Mars. Our transition to the CSM standard will ensure an uninterrupted capability to make these valuable products for Mars and many other extraterrestrial planets and moons. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
Show Figures

Figure 1

Back to TopTop