Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = shoreline protection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13635 KiB  
Article
Microplastics in Nearshore and Subtidal Sediments in the Salish Sea: Implications for Marine Habitats and Exposure
by Frances K. Eshom-Arzadon, Kaitlyn Conway, Julie Masura and Matthew R. Baker
J. Mar. Sci. Eng. 2025, 13(8), 1441; https://doi.org/10.3390/jmse13081441 - 28 Jul 2025
Viewed by 367
Abstract
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems [...] Read more.
Plastic debris is a pervasive and persistent threat to marine ecosystems. Microplastics (plastics < 5 mm) are increasing in a variety of marine habitats, including open water systems, shorelines, and benthic sediments. It remains unclear how microplastics distribute and accumulate in marine systems and the extent to which this pollutant is accessible to marine taxa. We examined subtidal benthic sediments and beach sediments in critical nearshore habitats for forage fish species—Pacific sand lance (Ammodytes personatus), Pacific herring (Clupea pallasi), and surf smelt (Hypomesus pretiosus)—to quantify microplastic concentrations in the spawning and deep-water habitats of these fish and better understand how microplastics accumulate and distribute in nearshore systems. In the San Juan Islands, we examined an offshore subtidal bedform in a high-flow channel and beach sites of protected and exposed shorelines. We also examined 12 beach sites proximate to urban areas in Puget Sound. Microplastics were found in all samples and at all sample sites. Microfibers were the most abundant, and flakes were present proximate to major shipyards and marinas. Microplastics were significantly elevated in Puget Sound compared to the San Juan Archipelago. Protected beaches had elevated concentrations relative to exposed beaches and subtidal sediments. Microplastics were in higher concentrations in sand and fine-grain sediments, poorly sorted sediments, and artificial sediments. Microplastics were also elevated at sites confirmed as spawning habitats for forage fish. The model results indicate that both current speed and proximate urban populations influence nearshore microplastic concentrations. Our research provides new insights into how microplastics are distributed, deposited, and retained in marine sediments and shorelines, as well as insight into potential exposure in benthic, demersal, and shoreline habitats. Further analyses are required to examine the relative influence of urban populations and shipping lanes and the effects of physical processes such as wave exposure, tidal currents, and shoreline geometry. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Figure 1

20 pages, 7090 KiB  
Article
The Influence of Hard Protection Structures on Shoreline Evolution in Riohacha, Colombia
by Marta Fernández-Hernández, Luis Iglesias, Jairo Escobar, José Joaquín Ortega, Jhonny Isaac Pérez-Montiel, Carlos Paredes and Ricardo Castedo
Appl. Sci. 2025, 15(14), 8119; https://doi.org/10.3390/app15148119 - 21 Jul 2025
Viewed by 584
Abstract
Over the past 50 years, coastal erosion has become an increasingly critical issue worldwide, and Colombia’s Caribbean coast is no exception. In urban areas, this challenge is further complicated by hard protection structures, which, while often implemented as immediate solutions, can disrupt sediment [...] Read more.
Over the past 50 years, coastal erosion has become an increasingly critical issue worldwide, and Colombia’s Caribbean coast is no exception. In urban areas, this challenge is further complicated by hard protection structures, which, while often implemented as immediate solutions, can disrupt sediment transport and trigger unintended long-term consequences. This study examines shoreline changes in Riohacha, the capital of La Guajira Department, over a 35-year period (1987–2022), focusing on the impacts of coastal protection structures—specifically, the construction of seven groins and a seawall between 2006 and 2009—on coastal dynamics. Using twelve images (photographs and satellite) and the Digital Shoreline Analysis System (DSAS), the evolution of both beaches and cliffs has been analyzed. The results reveal a dramatic shift in shoreline behavior: erosion rates of approximately 0.5 m/year prior to the interventions transitioned to accretion rates of up to 11 m/year within the groin field, where rapid infill occurred. However, this sediment retention has exacerbated erosion in downstream cliff areas, with retreat rates reaching 1.8 ± 0.2 m/year. To anticipate future coastal evolution, predictive models were applied through 2045, providing insights into potential risks for infrastructure and urban development. These findings highlight the need for a strategic, long-term approach to coastal management that considers both the benefits and unintended consequences of engineering interventions. Full article
Show Figures

Figure 1

19 pages, 3235 KiB  
Article
Characteristics and Evaluation of Living Shorelines: A Case Study from Fujian, China
by Xingfan Li, Shihui Lin, Libing Qian, Zhe Wang, Chao Cao, Qi Gao and Jiwen Cai
J. Mar. Sci. Eng. 2025, 13(7), 1307; https://doi.org/10.3390/jmse13071307 - 5 Jul 2025
Viewed by 322
Abstract
Under the context of global climate change, sea-level rise and frequent storm surge events pose significant challenges to coastal areas. Protecting coastlines from erosion, mitigating socio-economic losses, and maintaining ecosystem balance are critical for the sustainable development of coastal zones. The concept of [...] Read more.
Under the context of global climate change, sea-level rise and frequent storm surge events pose significant challenges to coastal areas. Protecting coastlines from erosion, mitigating socio-economic losses, and maintaining ecosystem balance are critical for the sustainable development of coastal zones. The concept of “living shorelines” based on Nature-based Solutions (NbS) employs near-natural ecological restoration and protection measures. In low-energy coastal segments, natural materials are prioritized, while high-energy segments are supplemented with artificial structures. This approach not only enhances disaster resilience but also preserves coastal ecosystem stability and ecological functionality. This study constructs a coastal vitality evaluation system for Fujian Province, China, using the entropy weight method, integrating three dimensions: protective safety, ecological resilience, and economic vitality. Data from 2010 and 2020 were analyzed to assess the spatiotemporal evolution of coastal vitality. Results indicate that coastal vitality initially exhibited a spatial pattern of “low in the north, high in the center, and low in the south,” with vitality values ranging from 0.20 to 0.67 (higher values indicate stronger vitality). Over the past decade, ecological restoration projects have significantly improved coastal vitality, particularly in central and southern regions, where high-vitality segments increased markedly. Key factors influencing coastal vitality include water quality, cyclone intensity, biological shoreline length, and wetland area. NbS-aligned coastal management strategies and soft revetment practices have generated substantial ecological and economic benefits. To further enhance coastal vitality, region-specific approaches are recommended, emphasizing rational resource utilization, optimization of ecological and economic values, and the establishment of a sustainable evaluation framework. This study provides scientific insights for improving coastal protection capacity, ecological resilience, and economic potential. Full article
(This article belongs to the Special Issue Coastal Geochemistry: The Processes of Water–Sediment Interaction)
Show Figures

Figure 1

38 pages, 11886 KiB  
Article
The Estimation of Suspended Solids Concentration from an Acoustic Doppler Current Profiler in a Tidally Dominated Continental Shelf Sea Setting and Its Use as a Numerical Modelling Validation Technique
by Shauna Creane, Michael O’Shea, Mark Coughlan and Jimmy Murphy
Water 2025, 17(12), 1788; https://doi.org/10.3390/w17121788 - 14 Jun 2025
Viewed by 405
Abstract
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment [...] Read more.
Reliable coastal and offshore sediment transport data is a requirement for many engineering and environmental projects including port and harbour design, dredging and beach nourishment, sea shoreline protection, inland navigation, marine pollution monitoring, benthic habitat mapping, and offshore renewable energy (ORE). Novel sediment transport numerical modelling approaches allow engineers and scientists to investigate the physical interactions involved in these projects both in the near and far field. However, a lack of confidence in simulated sediment transport results is evident in many coastal and offshore studies, mainly due to limited access to validation datasets. This study addresses the need for cost-effective sediment validation datasets by investigating the applicability of four new suspended load validation techniques to a 2D model of the south-western Irish Sea. This involves integrating an estimated spatial time series of suspended solids concentration (SSCsolids) derived from acoustic Doppler current profiler (ADCP) acoustic backscatter with several in situ water sample-based SSCsolids datasets. Ultimately, a robust spatial time series of ADCP-based SSCsolids was successfully calculated in this offshore, tidally dominated setting, where the correlation coefficient between estimated SSCsolids and directly measured SSCsolids is 0.87. Three out of the four assessed validation techniques are deemed advantageous in developing an accurate 2D suspended sediment transport model given the assumptions of the depth-integrated approach. These recommended techniques include (i) the validation of 2D modelled suspended sediment concentration (SSCsediment) using water sample-based SSCsolids, (ii) the validation of the flood–ebb characteristics of 2D modelled suspended load transport and SSCsediment using ADCP-based datasets, and (iii) the validation of the 2D modelled peak SSCsediment over a spring–neap cycle using the ADCP-based SSCsolids. Overall, the multi-disciplinary method of collecting in situ metocean and sediment dynamic data via acoustic instruments (ADCPs) is a cost-effective in situ data collection method for future ORE developments and other engineering and scientific projects. Full article
Show Figures

Figure 1

23 pages, 1042 KiB  
Article
Spatial Dynamics and Ecological Risk Assessment of Microplastics in Littoral Sediments of the Sea of Marmara, Türkiye
by Esra Billur Balcıoğlu İlhan
J. Mar. Sci. Eng. 2025, 13(6), 1159; https://doi.org/10.3390/jmse13061159 - 12 Jun 2025
Viewed by 629
Abstract
Plastic and especially microplastic (MP) pollution has posed a serious threat to the marine environment for decades. Studies on MPs have started to gain momentum especially in the Sea of Marmara (SoM), which is an international waterway, under the pressure of intense maritime [...] Read more.
Plastic and especially microplastic (MP) pollution has posed a serious threat to the marine environment for decades. Studies on MPs have started to gain momentum especially in the Sea of Marmara (SoM), which is an international waterway, under the pressure of intense maritime traffic and exposure to domestic and industrial discharges. The aim of this study was to evaluate the MPs found in surface sediments collected from the coastal area of the SoM according to the locations and to reveal the extent of the existing pollution. This is the first study to examine MPs in both the surface sediments of the entire shorelines of the SoM, which have not been previously reported, and in the surface sediments of Çanakkale Strait. Accordingly, the highest MP abundance was detected at Yenice station (St 15) with 1286 items/kg, and the lowest MP abundance was detected at Turan Village station (St 14) with 199 items/kg. The most dominant shapes across all sampling stations and months were fiber (37%) and fragment (26%), while the most dominant color was blue (35%). According to the polymer characterization results, PE (polyethylene) was found to be the most dominant polymer type. Additionally, most stations were found to have “Moderate” and “High” pollution levels in terms of the contamination factor (CF), and regions were classified as “Moderate” and ‘High’ in terms of the pollution load index (PLI), with the St 15 station specifically exhibiting “Very High” pollution levels. Furthermore, hazard index (HI) and pollution risk index (PRI) values were also calculated regionally, revealing that regions have pollution levels classified as “High”, “Very High”, and even “Dangerous”. This study concluded that there are no areas with low pollution levels in SoM, and that the threat posed by MP pollution in this sea is increasing. Furthermore, this study found that stations with high MP pollution levels are located near river discharges and that rivers significantly contribute to MP pollution in the seas. The findings are of great importance in terms of the need to implement sustainable plans and measures to prevent pollution in the SoM and to take concrete steps to protect and ensure the sustainability of coastal ecosystems, particularly those under serious pollution threats. Full article
(This article belongs to the Special Issue Marine Pollution, Bioremediation and Ecosystem Restoration)
Show Figures

Figure 1

22 pages, 3288 KiB  
Review
Recent Developments on Biomineralization for Erosion Control
by Shan Liu, Changrui Dong, Yongqiang Zhu, Zichun Wang, Yujie Li and Guohui Feng
Appl. Sci. 2025, 15(12), 6591; https://doi.org/10.3390/app15126591 - 11 Jun 2025
Viewed by 571
Abstract
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing [...] Read more.
Erosion poses significant threats to infrastructures and ecosystems, exacerbated by climate change-driven sea-level rise and intensified wave actions. Microbially induced calcium carbonate precipitation (MICP) has emerged as a promising, sustainable, and eco-friendly solution for erosion mitigation. This review synthesizes recent advancements in optimizing biomineralization efficiency, multi-scale erosion control, and field-scale MICP implementations in marine dynamic conditions. Key findings include the following: (1) Kinetic analysis of Ca2+ conversion confirmed complete ion utilization within 24 h under optimized PA concentration (3%), resulting in a compressive strength of 2.76 MPa after five treatment cycles in ISO-standard sand. (2) Field validations in Ahoskie and Sanya demonstrated the efficacy of MICP in coastal erosion control through tailored delivery systems and environmental adaptations. Sanya’s studies highlighted seawater-compatible MICP solutions, achieving maximum 1743 kPa penetration resistance in the atmospheric zone and layered “M-shaped” CaCO3 precipitation in tidal regions. (3) Experimental studies revealed that MICP treatments (2–4 cycles) reduced maximum scour depth by 84–100% under unidirectional currents (0.3 m/s) with the maximum surface CaCO3 content reaching 3.8%. (4) Numerical simulations revealed MICP enhanced seabed stability by increasing vertical effective stress and reducing pore pressure. Comparative analysis demonstrates that while the destabilization depth of untreated seabed exhibits a linear correlation with wave height increments, MICP-treated seabed formations maintain exceptional stability through cohesion-enhancing properties, even when subjected to progressively intensified wave forces. This review supports the use of biomineralization as a sustainable alternative for shoreline protection, seabed stabilization, and offshore foundation integrity. Full article
(This article belongs to the Special Issue Sustainable Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

20 pages, 3124 KiB  
Article
A Convergent Approach to Investigate the Environmental Behavior and Importance of a Man-Made Saltwater Wetland
by Luigi Alessandrino, Nicolò Colombani, Alessio Usai and Micòl Mastrocicco
Remote Sens. 2025, 17(12), 2019; https://doi.org/10.3390/rs17122019 - 11 Jun 2025
Viewed by 926
Abstract
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management [...] Read more.
Mediterranean saline wetlands are significant ecological habitats defined by seasonal water availability and various biological communities, forming a unique ecotone that combines traits of both freshwater and marine environments. Moreover, they are regarded as notable natural and economic resources. Since the sustainable management of protected wetlands necessitates a multidisciplinary approach, the purpose of this study is to provide a comprehensive picture of the hydrological, hydrochemical, and ecological dynamics of a man-made groundwater dependent ecosystem (GDE) by combining remote sensing, hydrochemical data, geostatistical tools, and ecological indicators. The study area, called “Le Soglitelle”, is located in the Campania plain (Italy), which is close to the Domitian shoreline, covering a surface of 100 ha. The Normalized Difference Water Index (NDWI), a remote sensing-derived index sensitive to surface water presence, from Sentinel-2 was used to detect changes in the percentage of the wetland inundated area over time. Water samples were collected in four campaigns, and hydrochemical indexes were used to investigate the major hydrochemical seasonal processes occurring in the area. Geostatistical tools, such as principal component analysis (PCA) and independent component analysis (ICA), were used to identify the main hydrochemical processes. Moreover, faunal monitoring using waders was employed as an ecological indicator. Seasonal variation in the inundation area ranged from nearly 0% in summer to over 50% in winter, consistent with the severe climatic oscillations indicated by SPEI values. PCA and ICA explained over 78% of the total hydrochemical variability, confirming that the area’s geochemistry is mainly characterized by the saltwater sourced from the artesian wells that feed the wetland. The concentration of the major ions is regulated by two contrasting processes: evapoconcentration in summer and dilution and water mixing (between canals and ponds water) in winter. Cl/Br molar ratio results corroborated this double seasonal trend. The base exchange index highlighted a salinization pathway for the wetland. Bird monitoring exhibited consistency with hydrochemical monitoring, as the seasonal distribution clearly reflects the dual behaviour of this area, which in turn augmented the biodiversity in this GDE. The integration of remote sensing data, multivariate geostatistical analysis, geochemical tools, and faunal indicators represents a novel interdisciplinary framework for assessing GDE seasonal dynamics, offering practical insights for wetland monitoring and management. Full article
Show Figures

Figure 1

35 pages, 9246 KiB  
Article
Risk Assessment and Management Strategy of Coastal Erosion in the Red River Delta, Vietnam
by Thi Hong Hanh Nguyen, Guanxun Wang, Wenyue Chen, Jing Yu, Ruonan Liu, Xu Huang, Xun Jiang, Van Vuong Bui, Dinh Nam Le and Van Phach Phung
Land 2025, 14(6), 1247; https://doi.org/10.3390/land14061247 - 11 Jun 2025
Viewed by 818
Abstract
Climate change poses substantial threats to natural ecosystems and human livelihoods, particularly in coastal regions, by intensifying coastal erosion. This process leads to land loss, infrastructure damage, and habitat destruction while amplifying challenges such as sea-level rise, flooding, desertification, and salinization. In Vietnam’s [...] Read more.
Climate change poses substantial threats to natural ecosystems and human livelihoods, particularly in coastal regions, by intensifying coastal erosion. This process leads to land loss, infrastructure damage, and habitat destruction while amplifying challenges such as sea-level rise, flooding, desertification, and salinization. In Vietnam’s Red River Delta (RRD), the dynamic interplay between erosion and accretion presents a highly complex challenge, necessitating effective risk assessment and management to safeguard communities and resources. Using the principles of natural disaster risk assessment and comprehensive analysis, this study develops a coastal erosion risk assessment framework incorporating hazard, exposure, and vulnerability dimensions. The framework integrates 17 indicators, including human activities, socioeconomic factors, shoreline type, and vegetation cover, with indicator weights determined through expert evaluation and the analytic hierarchy process. The application of this framework reveals that coastal erosion risk in the RRD is relatively high, with greater risk concentrated in the central and northern segments of the coastline compared to the flanking areas. This framework offers valuable insights for coastal erosion prevention, mitigation strategies, and the optimization of coastal spatial planning. The application of coastal erosion risk assessment methods provides a relatively complete foundation for developing comprehensive prevention and adaptation solutions in the future. Through the system of parameters and corresponding weights, it provides an overview of potential responses to future impacts while identifying current high-risk zones specifically and accurately, thereby assessing the importance of each parameter on that impact. Based on specific analysis of assessment results, a reasonable resource use and management policy can be developed to minimize related natural disasters. Therefore, two main groups of solutions proposed under the “Protection—Adaptation” strategy are proposed to prevent natural disasters, minimize risks and sustainably develop the coastal area of the RRD. Full article
Show Figures

Figure 1

20 pages, 3135 KiB  
Article
Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland
by Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2025, 12(6), 141; https://doi.org/10.3390/hydrology12060141 - 6 Jun 2025
Viewed by 1037
Abstract
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved [...] Read more.
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved urban resilience, sustainability, and community well-being. However, the implementation of NbS can be hindered by gaps in performance assessment. This paper introduces a physically based dynamic modeling approach to assess the performance of a nature-based storage facility designed to capture excess runoff from an urbanizing catchment (Armstrong Creek catchment) in Geelong, Australia. The study adopts a numerical modelling approach, supported by extensive field monitoring of water levels over a 2.5-year period. The model provides a decision support tool for Geelong local government in managing stormwater runoff to protect Lake Connewarre, a Ramsar-listed wetland under the Port Phillip Bay (Western Shoreline) and Bellarine Peninsula. Runoff is currently managed via a set of operating rules governing gate operations that prevents flows into the ecological sensitive downstream waterbody from December to April (drier periods in summer and most of autumn). Comparison with observed water level data at three monitoring stations for a continuous simulation period of May 2022 to October 2024 demonstrates satisfactory to excellent model performance (NSE: 0.55–0.79, R2: 0.80–0.89, ISE rating: excellent). Between 1670 × 103 m3 and 2770 × 103 m3 of runoff was intercepted by the nature-based storage facility, representing a 56–70% reduction in stormwater discharge into Lake Connewarre. Our model development underscores the importance of understanding and incorporating user interventions (gate operations and emergency pumping) from the standard operation plan to better manage catchment runoff. As revealed by the seasonal flow analysis for consecutive years, adaptive runoff management practices, capable of responding to rainfall variability, should be incorporated. Full article
Show Figures

Figure 1

13 pages, 3074 KiB  
Proceeding Paper
Evaluation of Surface Area Dynamics of Manta and Beleu Lakes
by Ana Jeleapov
Environ. Earth Sci. Proc. 2025, 32(1), 19; https://doi.org/10.3390/eesp2025032019 - 3 Jun 2025
Viewed by 385
Abstract
This study evaluated the surface area and volume dynamics of the largest and most important natural lakes in the Republic of Moldova: Manta and Beleu. Lakes and surrounding areas represent the main natural ecosystem of the country, are a shelter to thousands of [...] Read more.
This study evaluated the surface area and volume dynamics of the largest and most important natural lakes in the Republic of Moldova: Manta and Beleu. Lakes and surrounding areas represent the main natural ecosystem of the country, are a shelter to thousands of animals and plant species, and are included in the protected areas network. The lakes are situated in the Lower Prut floodplain, with the main water sources being the Prut River through channels, as well as groundwater, surface runoff and precipitation. Regulations of the Prut River flow, climate change, and the increasing frequency of droughts and floods have a certain impact on lake extension and volume dynamics. The main methods used to evaluate surface area variation are the analysis of satellite images (Landsats, from 1975 to 2024) and the application of the NDWI index. As a result, it was identified that the extent of Beleu Lake varied from 0 to 19 km2, and that of Manta Lake from 5 to 27 km2. The actual average surface area is 7–11 km2 for Beleu and 15–19 km2 for Manta. The last catastrophic drought in 2022 decreased the surface area of Beleu by up to 3.7 km2 and that of Manta by up to 5 km2, while the most recent floods in 2020 extended the area of Beleu by up to 12 km2 and that of Manta by up to 27.3 km2. The volumes of Beleu vary from 0 to 40 mil.m3, with an average of 6.5–9 mil.m3, and of Manta from 4.5 mil.m3 to 55 mil.m3, with an average of 15–22 mil.m3. The shoreline lengths corresponding to the average water surface areas are 14–20 km for Beleu and 35–40 km for Manta. Full article
(This article belongs to the Proceedings of The 8th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

11 pages, 2775 KiB  
Article
Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State
by Chinomnso C. Onwubiko and Denis Worlanyo Aheto
Coasts 2025, 5(2), 17; https://doi.org/10.3390/coasts5020017 - 27 May 2025
Viewed by 477
Abstract
Coastal habitats are crucial in mitigating the impact of coastal hazards on society. However, the shortage of information about the role of these habitats in reducing floods in Rivers State, Nigeria, is limited. This study aims to assess the contribution of mangrove habitats [...] Read more.
Coastal habitats are crucial in mitigating the impact of coastal hazards on society. However, the shortage of information about the role of these habitats in reducing floods in Rivers State, Nigeria, is limited. This study aims to assess the contribution of mangrove habitats in protecting coastal communities from flooding using the InVEST coastal vulnerability model (version 3.10.2). The model analyzes various data inputs and assigns relative numbers, ranging from 1 to 5, indicating different levels of exposure. Data on population, bathymetry, shoreline type, land use land cover, and continental shelf were obtained from relevant websites and the InVEST model package. The findings indicate that the mangrove habitats in Rivers State offer minimal protection against coastal flooding due to their degraded state caused by oil spills and over-exploitation. Additionally, sandy beaches provide little to no protection, and the socio-economic conditions in the communities contribute to increased vulnerability to flooding. The study recommends awareness programs to educate the public about the importance of mangroves for coastal protection in addition to their conservation and restoration. Full article
Show Figures

Figure 1

21 pages, 4767 KiB  
Article
Mapping the Distribution and Discharge of Plastic Pollution in the Ganga River
by Ekta Sharma, Aishwarya Ramachandran, Pariva Dobriyal, Srishti Badola, Heather Koldewey, Syed Ainul Hussain and Ruchi Badola
Sustainability 2025, 17(11), 4932; https://doi.org/10.3390/su17114932 - 27 May 2025
Viewed by 1125
Abstract
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving [...] Read more.
The Ganga River, a lifeline for millions and a critical freshwater ecosystem, is under threat from escalating plastic pollution driven by widespread usage and inadequate disposal practices. While marine ecosystems have garnered extensive research attention, freshwater systems—particularly in the Global South—remain underexplored, leaving critical gaps in understanding plastic pollution’s sources and pathways. Addressing these gaps, the study documents the prevalence and typology of plastic debris in urban and underexplored rural communities along the Ganga River, India, aiming to suggest mechanisms for a reduction in source-based pollution. A stratified random sampling approach was used to select survey sites and plastic debris was quantified and categorised through transect surveys. A total of 37,730 debris items were retrieved, dominated by packaging debris (52.46%), fragments (23.38%), tobacco-related debris (5.03%), and disposables (single-use plastic cutleries) (4.73%) along the surveyed segments with varying abundance trends. Floodplains displayed litter densities nearly 28 times higher than river shorelines (6.95 items/m2 vs. 0.25 items/m2), with minor variations between high- and low-population-density areas (7.14 items/m vs. 6.7 items/m2). No significant difference was found between rural and urban areas (V = 41, p = 0.19), with mean densities of 0.87 items/m2 and 0.81 items/m2, respectively. Seasonal variations were insignificant (V = 13, p = 0.30), but treatment sites displayed significant variance (Chi2 = 10.667, p = 0.004) due to flood impacts. The findings underscore the urgent need for tailored waste management strategies integrating industrial reforms, decentralised governance, and community-driven efforts. Enhanced baseline information and coordinated multi-sectoral efforts, including Extended Producer Responsibility (EPR), are crucial for mitigating plastic pollution and protecting freshwater ecosystems, given rivers’ significant contribution to ocean pollution. Full article
Show Figures

Figure 1

24 pages, 13023 KiB  
Article
Empirical Geomorphic Approach to Complement Morphodynamic Modeling on Embayed Beaches
by Changbin Lim, Jung-Lyul Lee and John R. C. Hsu
J. Mar. Sci. Eng. 2025, 13(6), 1053; https://doi.org/10.3390/jmse13061053 - 27 May 2025
Viewed by 416
Abstract
In a coastal engineering project, hydrodynamic models are used to study wave transformations and impacts on structures, while morphodynamic models are applied to calculate the response and evolution of sedimentary beaches. Conventionally, laboratory experiments and numerical modeling have been called to investigate beach [...] Read more.
In a coastal engineering project, hydrodynamic models are used to study wave transformations and impacts on structures, while morphodynamic models are applied to calculate the response and evolution of sedimentary beaches. Conventionally, laboratory experiments and numerical modeling have been called to investigate beach changes, particularly those resulting in the formation of an embayed beach. The former is undertaken in a wave basin, necessitating a huge outdoor facility to fit a project with large dimensions, numerous instrumentations, and manpower, while the latter is performed by powerful numerical models on a desktop, requiring only the advent of computing power and professional skills. Conventionally, both approaches have successfully achieved the expected outcome, though differing in cost and time frame. On the contrary, an efficient empirical geomorphic model for headland-bay beaches has been available since 1989 for assessing the planform stability of a crenulated beach in static equilibrium. The model can readily produce a graphic display of the static bay shape aided by a supporting software within a shorter time frame (in a couple of minutes), instead of in hours or days in laboratory tests and numerical modeling. Several practical examples drawn by the software MeePaSoL for the empirical model are presented to complement the results of a morphodynamic model in a wave basin, as well as to guide the modeler to terminate the programming when equilibrium is reached. We believe this alternative approach could be helpful for the experimentalists and numerical modelers on large engineering projects associated with shoreline beach evolution and shore protection, especially for time-saving and reducing manpower and cost. Full article
(This article belongs to the Special Issue Coastal Hydrodynamic and Morphodynamic Processes)
Show Figures

Figure 1

20 pages, 4934 KiB  
Article
Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China
by Zhubin Cao, Yuan Li, Weiqiu Chen, Shanhang Chi and Chi Zhang
Water 2025, 17(11), 1583; https://doi.org/10.3390/w17111583 - 23 May 2025
Viewed by 430
Abstract
China has the world’s largest area of coastal aquaculture ponds, accounting for 39% of the total coastal aquaculture pond area worldwide. The rapid development of coastal aquaculture can significantly reduce global food shortages and support the development of marine economies on the Chinese [...] Read more.
China has the world’s largest area of coastal aquaculture ponds, accounting for 39% of the total coastal aquaculture pond area worldwide. The rapid development of coastal aquaculture can significantly reduce global food shortages and support the development of marine economies on the Chinese mainland. However, coastal aquaculture ponds have been recognized as a beach hazard because they require pipes to be laid on the surface of the beach to discharge wastewater, polluting the beach and artificially dividing it into multiple segments. Based on a well-conceived remote sensing analysis, the erosion of beaches backed by densely distributed coastal aquaculture ponds was determined to be 10 m/y. A high-efficiency shoreline evolution model was verified using a satellite-derived shoreline dataset. For the present case, the Brier Skill Score (BSS) was calculated to be 0.55, indicating a moderate match between the modeled and satellite-derived shoreline datasets. The verified ShorelineS model was then used to predict the future evolution of a shoreline backed by densely distributed coastal aquacultural ponds. The retreat distance of the erosion hotspot was predicted to increase from 150 m in 2025 to 240 m in 2040. It is expected that the beach will lose the entirety of its dry part in the future. Potential strategies for beach protection include reasonable management and the ecological restoration and nourishment of the beach. Full article
(This article belongs to the Special Issue Coastal Management and Nearshore Hydrodynamics, 2nd Edition)
Show Figures

Figure 1

21 pages, 4104 KiB  
Article
Linkage Analysis Between Coastline Change and Both Sides of Coastal Ecological Spaces
by Xianchuang Fan, Chao Zhou, Tiejun Cui, Tong Wu, Qian Zhao and Mingming Jia
Water 2025, 17(10), 1505; https://doi.org/10.3390/w17101505 - 16 May 2025
Cited by 2 | Viewed by 400
Abstract
As the first marine economic zone, the coastal zone is a complex and active ecosystem, serving as an important resource breeding area. However, during the process of economic development, coastal zone resources have been severely exploited, leading to fragile ecology and frequent natural [...] Read more.
As the first marine economic zone, the coastal zone is a complex and active ecosystem, serving as an important resource breeding area. However, during the process of economic development, coastal zone resources have been severely exploited, leading to fragile ecology and frequent natural disasters. Therefore, it is imperative to analyze coastline changes and their correlation with coastal ecological space. Utilizing long-time series high-resolution remote sensing images, Google Earth images, and key sea area unmanned aerial vehicle (UAV) remote sensing monitoring data, this study selected the coastal zone of Ningbo City as the research area. Remote sensing interpretation mark databases for coastline and typical coastal ecological space were established. Coastline extraction was completed based on the visual discrimination method. With the help of the Modified Normalized Difference Water Index (MNDWI), Normalized Difference Vegetation Index (NDVI) and maximum likelihood classification, a hierarchical classification discrimination process combined with a visual discrimination method was constructed to extract long-time series coastal ecological space information. The changes and the linkage relationship between the coastlines and coastal ecological spaces were analyzed. The results show that the extraction accuracy of ground objects based on the hierarchical classification process is high, and the verification effect is improved with the help of UAV remote sensing monitoring. Through long-time sequence change monitoring, it was found that the change in coastline traffic and transportation is significant. Changes in ecological spaces, such as industrial zones, urban construction, agricultural flood wetlands and irrigation land, dominated the change in artificial shorelines, while the change in Spartina alterniflora dominated the change in biological coastlines. The change in ecological space far away from the coastline on both the land and sea sides has little influence on the coastline. The research shows that the correlation analysis between coastline and coastal ecological space provides a new perspective for coastal zone research. In the future, it can provide technical support for coastal zone protection, dynamic supervision, administration, and scientific research. Full article
(This article belongs to the Special Issue Advanced Remote Sensing for Coastal System Monitoring and Management)
Show Figures

Figure 1

Back to TopTop