water-logo

Journal Browser

Journal Browser

Rivers, Estuaries, and Coastal Zones: Sediment Transport and Morphodynamical Models

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Erosion and Sediment Transport".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 5240

Special Issue Editor


E-Mail Website
Guest Editor
Department of Civil and Environmental Engineering, Koszalin University of Technology, Koszalin, Poland
Interests: rivers, estuaries and coastal zones; hydrodynamics; sediment transport; morpho-dynamics; coastal engineering; granular materials in soil mechanics

Special Issue Information

Dear Colleagues,

Studies that enhance our understanding of how different hydrodynamical inputs influence sediment transport mechanisms and morphodynamic alterations across diverse landscapes are welcome.

The overall focus of this Special Issue is on sediment transport and the bottom changes this induces in rivers, estuaries and coastal zones, seeking to foster discussion on sediment transport mechanisms and morphodynamical changes stemming from various hydrodynamical inputs including, but not limited to, wave motion and steady flow. We aim to foster discussion of an extensive range of grain mobility conditions, from incipient motion to a fully mobilised bed, and we particularly encourage submissions that focus on bedload, contact load, and suspended load close to the bottoms of water courses. This Special Issue is dedicated to comparative approaches to the study of sediment transport and morphodynamical change modelling and experiments in rivers, estuaries, and coastal zones.

Additionally, we invite contributions that employ new technologies and innovative methodologies for monitoring sediment transport and those that investigate the impacts of global changes on sediment transport in rivers, estuaries, and coastal zones. This Special Issue aims to provide robust insights and guidelines for decisionmakers, based on comprehensive analyses of sediment transport mechanisms and their implications for morphodynamic changes in aquatic environments.

Prof. Dr. Leszek M. Kaczmarek
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • granular transport
  • sediment mixtures
  • morphodynamics
  • rivers
  • estuaries
  • coastal zones
  • bedload
  • contact load
  • suspended load

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 2798 KiB  
Article
On the Origin of Sediment Ripples
by Ulrich Zanke and Markus J. Kloker
Water 2025, 17(5), 681; https://doi.org/10.3390/w17050681 - 26 Feb 2025
Viewed by 321
Abstract
As soon as a granular sediment has been set in motion by the currents of droppable fluids or by wind, sand waves form as smaller ripples or larger dunes. The relevance of this phenomenon lies in the roughness effect against the currents and [...] Read more.
As soon as a granular sediment has been set in motion by the currents of droppable fluids or by wind, sand waves form as smaller ripples or larger dunes. The relevance of this phenomenon lies in the roughness effect against the currents and the influence on sediment loads. Likewise, their physical understanding helps us to estimate past flow conditions by means of fossilized sand waves, as well as those on distant planets with proven ripples and dunes, such as Mars and Titan. In the literature, diagrams exist based on observations for the conditions under which the various forms of sand waves develop. However, the cause of their formation is unclear. Various theories have been discussed regarding the further development of ripples once they have formed, but none of them explains the fundamental mechanism that generates the very first ripples. These occur simultaneously over a large area and almost instantly, with a fairly even distance from crest to crest. This contribution presents a solution for how this is possible based on hydrodynamic instability. Full article
Show Figures

Figure 1

22 pages, 7209 KiB  
Article
Beyond Water Surface Profiles: A New Iterative Methodology for 2D Model Calibration in Rivers Using Velocity Data from Multiple Cross-Sections
by Fabian Rivera-Trejo, Gabriel Soto-Cortes, Kory M. Konsoer, Eddy J. Langendoen and Gaston Priego-Hernandez
Water 2025, 17(3), 377; https://doi.org/10.3390/w17030377 - 30 Jan 2025
Viewed by 1010
Abstract
Observed longitudinal water-surface profiles are commonly used to calibrate river hydrodynamic models, relying on assumptions of lateral uniformity in water surface elevation and velocity distribution. While suitable for 1D models, this approach has limitations in regard to 2D model calibration. When 2D flow [...] Read more.
Observed longitudinal water-surface profiles are commonly used to calibrate river hydrodynamic models, relying on assumptions of lateral uniformity in water surface elevation and velocity distribution. While suitable for 1D models, this approach has limitations in regard to 2D model calibration. When 2D flow measurements are available, a more robust quantitative evaluation is necessary to assess model accuracy. This study introduces a novel methodology to improve 2D model calibration and evaluate performance. High-resolution bathymetric and hydrodynamic data collected with a multibeam echosounder (MBES) and acoustic Doppler current profiler (ADCP) were aligned to compare observed and simulated flow velocities at matching spatial locations. Statistical metrics, including relative mean absolute error and root-mean-square error, were employed to assess hydrodynamic modeling. The methodology was tested using MBES and ADCP measurements alongside TELEMAC-2D simulations of a dynamic neck cutoff on the White River, Arkansas, USA. This approach provides a 2D calibration process, enhancing model accuracy and informing parameter selection, such as channel boundary roughness and downstream boundary water surface elevation. Full article
Show Figures

Figure 1

21 pages, 12487 KiB  
Article
The Impact of Foreshore Slope on Cross-Shore Sediment Transport and Sandbar Formation in Beach Berm Nourishment
by Xinglu Liu, Xiaofeng Luo, Chuanteng Lu, Gongjin Zhang and Wei Ding
Water 2024, 16(15), 2212; https://doi.org/10.3390/w16152212 - 5 Aug 2024
Cited by 1 | Viewed by 1791
Abstract
Foreshore slope is crucial in designing beach berm nourishment schemes and understanding coastal responses to wave forces. Beach berm nourishment often suffers from a high loss rate, necessitating theoretical research and design parameter comparison to mitigate these losses early on. This study uses [...] Read more.
Foreshore slope is crucial in designing beach berm nourishment schemes and understanding coastal responses to wave forces. Beach berm nourishment often suffers from a high loss rate, necessitating theoretical research and design parameter comparison to mitigate these losses early on. This study uses Bagnold’s energy conservation method and the small-angle approximation method to establish a relationship between cross-shore sediment transport and foreshore slope. The feedback mechanism between these factors shows that when the foreshore slope is fewer than 10 degrees, a smaller initial slope results in a reduced rate of sediment transport. Over time, the foreshore slope decreases and eventually reaches equilibrium, promoting the formation of an offshore sandbar, which helps reduce sediment loss. Using data from Guanhu Beach in Dapeng Bay, this study constructs a realistic numerical beach model to simulate the dynamic behavior of beach profiles with varying foreshore slopes under the influence of monsoon waves and storm surges. The simulation results support the feedback mechanism findings, demonstrating that profiles with minimal foreshore slopes experience the least initial sediment loss, thus facilitating sandbar formation more effectively. These insights can inform beach berm nourishment strategies, emphasizing early-stage efforts to expand beach areas and reduce sediment loss. Full article
Show Figures

Figure 1

25 pages, 5907 KiB  
Article
Modelling of Granular Sediment Transport in Steady Flow over a Mobile Sloped Bed
by Jarosław Biegowski, Magdalena Pietrzak, Iwona Radosz and Leszek M. Kaczmarek
Water 2024, 16(14), 2022; https://doi.org/10.3390/w16142022 - 17 Jul 2024
Viewed by 1186
Abstract
This paper introduces a three-layer system, proposing a comprehensive model of granular mixture transport over a mobile sloped bed in a steady flow. This system, consisting of the bottom, contact, and upper zones, provides complete, continuous sediment velocity and concentration vertical profiles. The [...] Read more.
This paper introduces a three-layer system, proposing a comprehensive model of granular mixture transport over a mobile sloped bed in a steady flow. This system, consisting of the bottom, contact, and upper zones, provides complete, continuous sediment velocity and concentration vertical profiles. The aim of this study is to develop and experimentally verify this model for sediment transport over a bottom locally sloping in line with or opposite the direction of sediment flow. The model considers gravity’s effect on sediment transport in the bottom (dense) layer when the component of gravity parallel to the bottom acts together with shear stresses associated with water flow. This is a crucial factor often overlooked in previous studies. This effect causes an increase in velocity in the mobile sublayer of the dense layer and significantly affects the vertical distributions of velocity and concentration above this layer. The proposed shear variation due to the interaction between fractions and an intensive sediment mixing and sorting process over a mobile sloped bed adds to the novelty of our approach. The data sets used for the model’s validation cover various conditions, including slopes, grain diameters, densities, and grain mobility conditions, from incipient motion to a fully mobilized bed. This extensive validation process instils confidence in the theoretical description and its applicability to real-world scenarios in the design of hydraulic infrastructure, such as dams, barrages, bridges, and irrigation, and flood control systems. Full article
Show Figures

Figure 1

Back to TopTop