Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sparrovale Wetland and Its Associated Hydraulic Engineering Structures
2.3. Data
2.4. Model Development
2.4.1. PCSWMM Configuration for Catchment and Wetland Model
2.4.2. Modeling Hydraulic Structures and Gate Operation Scenarios
- Standard operation plan (SOP) (as outlined in Table 2);
- Standard operation with user interventions (SUI), based on the schedule provided by the City of Greater Geelong;
- No operation rules, with all gates fully open (NR).
2.4.3. Goodness of Fit
- ISE rating quantifies the cumulative squared deviation between observed and simulated values, with lower values indicating better performance. Model performance is categorized as follows: Excellent (0% ≤ ISE < 3%), Very Good (3% ≤ ISE < 6%), Good (6% ≤ ISE < 10%), Fair (10% ≤ ISE < 25%), and Poor (ISE ≥ 25%) [57].
- NSE measures the extent to which the simulated data matches the observed data relative to the mean of the observations, with a value of 1 representing a perfect fit. The performance ranges are as follows: Excellent (0.75 ≤ NSE < 1), Very Good (0.65 ≤ NSE < 0.75), Good (0.5 ≤ NSE < 0.65), Fair (0.3 ≤ NSE < 0.5), and Poor (NSE < 0.3) [58].
- R2 indicates the proportion of variability in the observed data that is explained by the model, ranging from 0 to 1, with higher values signifying less unexplained variance. The performance classifications are as follows: Very Good (0.7 ≤ R2 < 1), Good (0.5 ≤ R2 < 0.7), Satisfactory (0.4 ≤ R2 < 0.5), and Unsatisfactory (R2 < 0.4) [59].
3. Result and Discussion
3.1. Model Calibration
3.2. Flow Across Hydraulic Control Structures
3.3. Sparrovale Catchment Runoff Characteristics and Water Budget
3.4. Seasonal Consideration for the Management of Sparrovale Wetlands
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourne, L.S. Reinventing the Suburbs: Old Myths and New Realities. Prog. Plan. 1996, 46, 163–184. [Google Scholar] [CrossRef]
- McManus, R.; Ethington, P.J. Suburbs in Transition: New Approaches to Suburban History. Urban Hist. 2007, 34, 317–337. [Google Scholar] [CrossRef]
- Lang, R.E.; LeFurgy, J.; Nelson, A.C. The Six Suburban Eras of the United States: Research Note. Opolis 2006, 2, 65–72. [Google Scholar]
- Davison, G. Australia: The First Suburban Nation? J. Urban Hist. 1995, 22, 40–74. [Google Scholar] [CrossRef]
- Zhang, X.Q. The Trends, Promises and Challenges of Urbanisation in the World. Habitat Int. 2016, 54, 241–252. [Google Scholar] [CrossRef]
- Kahn, M.E. The Environmental Impact of Suburbanization. J. Pol. Anal. Manag. 2000, 19, 569–586. [Google Scholar] [CrossRef]
- Bai, X.; McPhearson, T.; Cleugh, H.; Nagendra, H.; Tong, X.; Zhu, T.; Zhu, Y.-G. Linking Urbanization and the Environment: Conceptual and Empirical Advances. Annu. Rev. Environ. Resour. 2017, 42, 215–240. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, Management and Modelling of Urban Hydrology and Its Consequences for Receiving Waters: A State of the Art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of Urbanisation on Hydrological and Water Quality Dynamics, and Urban Water Management: A Review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Faulkner, S. Urbanization Impacts on the Structure and Function of Forested Wetlands. Urban Ecosyst. 2004, 7, 89–106. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive Global Wetland Loss over the Past Three Centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Bino, G.; Kingsford, R.T.; Brandis, K. Australia’s Wetlands—Learning from the Past to Manage for the Future. Pac. Conserv. Biol. 2016, 22, 116. [Google Scholar] [CrossRef]
- Brock, M.A.; Smith, R.G.B.; Jarman, P.J. Drain It, Dam It: Alteration of Water Regime in Shallow Wetlands on the New England Tableland of New South Wales, Australia. Wetl. Ecol. Manag. 1999, 7, 37–46. [Google Scholar] [CrossRef]
- Davis, J.A.; Froend, R. Loss and Degradation of Wetlands in Southwestern Australia: Underlying Causes, Consequences and Solutions. Wetl. Ecol. Manag. 1999, 7, 13–23. [Google Scholar] [CrossRef]
- Tapsuwan, S.; Ingram, G.; Burton, M.; Brennan, D. Capitalized Amenity Value of Urban Wetlands: A Hedonic Property Price Approach to Urban Wetlands in Perth, Western Australia*. Aust. J. Agric. Resour. Econ. 2009, 53, 527–545. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Convention on Wetlands. Global Wetland Outlook: Special Edition 2021; Secretariat of the Convention on Wetlands: Gland, Switzerland, 2021. [Google Scholar]
- Gell, P.A.; Finlayson, C.M.; Davidson, N.C. Understanding Change in the Ecological Character of Ramsar Wetlands: Perspectives from a Deeper Time—Synthesis. Mar. Freshw. Res. 2016, 67, 869. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Wetland and Water Synthesis; World Resources Institute: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/documents/document.358.aspx.pdf (accessed on 17 January 2025).
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core Principles for Successfully Implementing and Upscaling Nature-Based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Barton, A.B.; Argue, J.R. A Review of the Application of Water Sensitive Urban Design (WSUD) to Residential Development in Australia. Australas. J. Water Resour. 2007, 11, 31–40. [Google Scholar] [CrossRef]
- Beza, B.B.; Zeunert, J.; Hanson, F. The Role of WSUD in Contributing to Sustainable Urban Settings. In Approaches to Water Sensitive Urban Design; Elsevier: Amsterdam, The Netherlands, 2019; pp. 367–380. ISBN 978-0-12-812843-5. [Google Scholar]
- Radcliffe, J.C. History of Water Sensitive Urban Design/Low Impact Development Adoption in Australia and Internationally. In Approaches to Water Sensitive Urban Design; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–24. ISBN 978-0-12-812843-5. [Google Scholar]
- Wong, T.H.F. An Overview of Water Sensitive Urban Design Practices in Australia. Water Pract. Technol. 2006, 1, wpt2006018. [Google Scholar] [CrossRef]
- Irvine, K.; Chua, L.H.C.; Hua’an, Z.; Qi, L.E.; Xuan, L.Y. Nature-Based Solutions to Manage Particle-Bound Metals in Urban Stormwater Runoff: Current Design Practices and Knowledge Gaps. J. Soils Sediments 2023, 23, 3671–3688. [Google Scholar] [CrossRef]
- Ruangpan, L.; Vojinovic, Z.; Di Sabatino, S.; Leo, L.S.; Capobianco, V.; Oen, A.M.P.; McClain, M.E.; Lopez-Gunn, E. Nature-Based Solutions for Hydro-Meteorological Risk Reduction: A State-of-the-Art Review of the Research Area. Nat. Hazards Earth Syst. Sci. 2020, 20, 243–270. [Google Scholar] [CrossRef]
- Bush, J.; Frantzeskaki, N.; Ossola, A.; Pineda-Pinto, M. Priorities for Mainstreaming Urban Nature-Based Solutions in Australian Cities. Nat.-Based Solut. 2023, 3, 100065. [Google Scholar] [CrossRef]
- Moosavi, S.; Browne, G.R.; Bush, J. Perceptions of Nature-Based Solutions for Urban Water Challenges: Insights from Australian Researchers and Practitioners. Urban For. Urban Green. 2021, 57, 126937. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, Y.; Kendal, D.; Fraser, L.; Flies, E.J. Nature-Based Solutions in Australia: A Systematic Quantitative Literature Review of Terms, Application and Policy Relevance. Nat.-Based Solut. 2023, 4, 100092. [Google Scholar] [CrossRef]
- Nias, R.; Lawrence, A.; Kendal, D.; Flies, E. Nature-Based Solutions in Australia—Applications and Opportunities to Deliver Real Outcomes for Communities and Nature; University of Tasmania: Tasmania, Australia, 2023. [Google Scholar]
- Lafortezza, R.; Chen, J.; Van Den Bosch, C.K.; Randrup, T.B. Nature-Based Solutions for Resilient Landscapes and Cities. Environ. Res. 2018, 165, 431–441. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Geelong, Census All Persons QuickStats. Available online: https://www.abs.gov.au/census/find-census-data/quickstats/2021/203 (accessed on 15 January 2025).
- Department of Environment, Land, Water and Planning. Port Phillip Bay (Western Shoreline) and Bellarine Peninsula Ramsar Site Management Plan Summary; Department of Environment, Land, Water and Planning: East Melbourne, Australia, 2018.
- Reeves, J.M.; Gell, P.A.; Reichman, S.M.; Trewarn, A.J.; Zawadzki, A. Industrial Past, Urban Future: Using Palaeo-Studies to Determine the Industrial Legacy of the Barwon Estuary, Victoria, Australia. Mar. Freshw. Res. 2016, 67, 837. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Armstrong Creek, Census All Persons QuickStats. Available online: https://www.abs.gov.au/census/find-census-data/quickstats/2021/SAL20068 (accessed on 16 January 2025).
- City of Greater Geelong. Armstrong Creek—Whole of Growth Area. Available online: https://www.geelongaustralia.com.au/armstrongcreek/armstrong/article/item/8cfafd49ea31e3f.aspx (accessed on 16 January 2025).
- Australian Bureau of Meteorology. Rainfall: Breakwater (Geelong Racecourse). Available online: http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=87184 (accessed on 16 January 2025).
- Australian Bureau of Meteorology. Evapotranspiration: Breakwater (Geelong Racecourse). Available online: http://www.bom.gov.au/watl/eto/tables/vic/breakwater_(geelong_racecourse)/breakwater_(geelong_racecourse).html (accessed on 16 January 2025).
- Smithyman, D.; Provily, S. Building a Regional Park: The Sparrovale Wetlands Project, Growing Geelong’s Natural Areas. Plan. News 2020, 46, 28–29. [Google Scholar]
- City of Greater Geelong. Sparrovale Ngubitj Yoorree Wetlands Master Plan; City of Greater Geelong: Geelong, Australia, 2021; Available online: https://hdp-au-prod-app-ggc-yoursay-files.s3.ap-southeast-2.amazonaws.com/8716/2754/1264/Sparrovale_Master_Plan_Final_-_18.06.21.PDF (accessed on 16 January 2025).
- Water Technology. Sparrovale Wetland Operating Rules; Technical Report (unpublished report); City of Greater Geelong: Geelong, Australia, 2022. [Google Scholar]
- Irvine, K.; Chua, L. Modeling Stormwater Runoff from an Urban Park, Singapore Using PCSWWM. J. Water Manag. Model. 2016, 25, C410. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Chikabvumbwa, S.R.; Haq, F.U. Assessing the Efficacy of Permeable Interlocking Concrete Pavers (PICP) in Managing Stormwater Runoff under Climate Change and Land Use Scenarios. J. Hydrol. 2025, 646, 132329. [Google Scholar] [CrossRef]
- Akhter, M.; Hewa, G. The Use of PCSWMM for Assessing the Impacts of Land Use Changes on Hydrological Responses and Performance of WSUD in Managing the Impacts at Myponga Catchment, South Australia. Water 2016, 8, 511. [Google Scholar] [CrossRef]
- Aziz, F.; Wang, X.; Qasim Mahmood, M.; Guild, R. Wastewater Flooding Risk Assessment for Coastal Communities: Compound Impacts of Climate Change and Population Growth. J. Hydrol. 2024, 645, 132136. [Google Scholar] [CrossRef]
- Chitwatkulsiri, D.; Miyamoto, H.; Irvine, K.N.; Pilailar, S.; Loc, H.H. Development and Application of a Real-Time Flood Forecasting System (RTFlood System) in a Tropical Urban Area: A Case Study of Ramkhamhaeng Polder, Bangkok, Thailand. Water 2022, 14, 1641. [Google Scholar] [CrossRef]
- Dharmasena, T.; Chua, L.H.C.; Barron, N.; Zhang, H. Performance Assessment of a Constructed Wetland Using a Numerical Modelling Approach. Ecol. Eng. 2021, 173, 106441. [Google Scholar] [CrossRef]
- Ghofrani, Z.; Sposito, V.; Faggian, R. Designing a Pond and Evaluating Its Impact Upon Storm-Water Quality and Flow: A Case Study in Rural Australia. Ecol. Chem. Eng. S 2019, 26, 475–491. [Google Scholar] [CrossRef]
- Irvine, K.; Sovann, C.; Suthipong, S.; Kok, S.; Chea, E. Application of PCSWMM to Assess Wastewater Treatment and Urban Flooding Scenarios in Phnom Penh, Cambodia: A Tool to Support Eco-City Planning. J. Water Manag. Model. 2015, 23, C389. [Google Scholar] [CrossRef]
- Petschek, P.; Aung, A.P.P.; Suwanarit, A.; Irvine, K.N. Integration of Building Information Modeling and Stormwater Runoff Modeling: Enhancing Design Tools for Nature-Based Solutions in Sustainable Landscapes. Sustainability 2024, 16, 3694. [Google Scholar] [CrossRef]
- Wu, W.; Jamali, B.; Zhang, K.; Marshall, L.; Deletic, A. Water Sensitive Urban Design (WSUD) Spatial Prioritisation through Global Sensitivity Analysis for Effective Urban Pluvial Flood Mitigation. Water Res. 2023, 235, 119888. [Google Scholar] [CrossRef]
- Rossman, L.A. Stormwater Management Model: User’s Manual Version 5.0; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Rawls, W.J.; Brakensiek, D.L.; Miller, N. Green-ampt Infiltration Parameters from Soils Data. J. Hydraul. Eng. 1983, 109, 62–70. [Google Scholar] [CrossRef]
- EverGraze. South-West Victoria Lower Soils; EverGraze. Available online: https://www.evergraze.com.au/library-content/south-west-victoria-lower-soils/index.html (accessed on 10 February 2025).
- Nearmap. High-Resolution Aerial Maps & Location Intelligence: Nearmap Australia. Available online: https://www.nearmap.com/ (accessed on 22 August 2022).
- Sarma, P.; Delleur, J.; Rao, A. Comparison of Rainfall-Runoff Models for Urban Areas. J. Hydrol. 1973, 18, 329–347. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Hlaing, P.T.; Humphries, U.W.; Waqas, M. Hydrological Model Parameter Regionalization: Runoff Estimation Using Machine Learning Techniques in the Tha Chin River Basin, Thailand. MethodsX 2024, 13, 102792. [Google Scholar] [CrossRef]
- Althoff, D.; Rodrigues, L.N. Goodness-of-Fit Criteria for Hydrological Models: Model Calibration and Performance Assessment. J. Hydrol. 2021, 600, 126674. [Google Scholar] [CrossRef]
- Irvine, K.; Chua, L.; Ashrafi, M.; Loc, H.H.; Le, S.H. Drivers of Model Uncertainty for Urban Runoff in a Tropical Climate: The Effect of Rainfall Variability and Subcatchment Parameterization. J. Water Manag. Model. 2023, 31, C496. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance Evaluation of Hydrological Models: Statistical Significance for Reducing Subjectivity in Goodness-of-Fit Assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Courty, L.G.; Rico-Ramirez, M.Á.; Pedrozo-Acuña, A. The Significance of the Spatial Variability of Rainfall on the Numerical Simulation of Urban Floods. Water 2018, 10, 207. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Bureau of Meteorology Submission to the Inquiry into the 2022 Flood Event in Victoria: Victorian Upper House Parliamentary Inquiry; Commonwealth of Australia, 2023. Available online: https://www.parliament.vic.gov.au/4af93b/contentassets/08059cabb8cb4ead975055ae0f5da617/073.-bureau-of-meteorology_red.pdf (accessed on 10 May 2025).
- Gámez-Balmaceda, E.; López-Ramos, A.; Martínez-Acosta, L.; Medrano-Barboza, J.P.; Remolina López, J.F.; Seingier, G.; Daesslé, L.W.; López-Lambraño, A.A. Rainfall Intensity-Duration-Frequency Relationship. Case Study: Depth-Duration Ratio in a Semi-Arid Zone in Mexico. Hydrology 2020, 7, 78. [Google Scholar] [CrossRef]
- Yang, P.; Chua, L.H.C.; Irvine, K.N.; Nguyen, M.T.; Low, E.-W. Impacts of a Floating Photovoltaic System on Temperature and Water Quality in a Shallow Tropical Reservoir. Limnology 2022, 23, 441–454. [Google Scholar] [CrossRef]
Hydraulic Systems | Control Structures | Dimension | Elevation (mAHD) |
---|---|---|---|
Horseshoe Bend Linear Wetland System (Figure S3) | Pocket wetlands | n/a (×4) | 0.35 |
Sediment basins | 1517–2930 m2 | −1.2 to −0.5 | |
Outlet pool | n/a | −0.5 | |
Overflow weir | 49.5 m long | 1.5 | |
Twin chamber outfall pit with gates | 2.48 m × 2.48 m × 2 m | 1 | |
Balog Channel (Figures S1 and S2) | Inlet gate | 0.9 m × 0.6 m (×2) | 0.8 |
Outlet gate | 1.2 m | 0.1 | |
Surcharge pit | 1.8 m × 1.2 m | 0.8 | |
Trapezoidal channel | 1.5 km long, 1:3 side slope | −0.5 | |
Overflow banks | 1.5–15 m width | 0.91 to 1.66 | |
Warralily DIDR1 Wetland (Figure S5) | Pocket wetlands | n/a (×10) | −0.5 to 0.65 |
Sediment basin | n/a | −0.5 | |
Overflow bank | 200 m long | 1.3 | |
Culvert outlet | 3.5 m long, 0.6 m × 0.45 m | 1.1 | |
Fishway outlet | 18 m long, 1.65 m × 0.7 m | 0.98 | |
Sparrovale Wetland (Figure S4) | Outlet gate | 0.95 m × 0.75 m | 0.2 |
Control Gates | Timing | Action |
---|---|---|
Horseshoe Bend Linear Wetland outlets: twin chamber outfall and overflow weir (1) | All Year | Open |
Balog Channel inlet and outlet gates (2, 3) | December–April | Open |
May–November | Closed | |
Culvert and Fishway outlet gates (4, 5) | December–April | Closed |
May–November | Open | |
Sparrovale outlet gate (6) | All Year | Closed |
Hydraulic Systems | Control Structures | Weir Configurations | Height (m) | Length (m) | Side Slope (m/m) | Weir Coefficient (Cw, m3/s) |
---|---|---|---|---|---|---|
Horseshoe Bend Linear Wetland | Overflow weir | Trapezoidal | 0.3 | 49 | 0.17 | 1.83 |
Twin chamber outfall pit with gates | Transverse | 0.5 | 0.625 | n/a | 1.83 | |
Balog Channel | Inlet gate (×2) | Transverse | 0.6 | 0.9 | n/a | 1.83 |
Outlet gate | Transverse | 1.2 | 1.515 | n/a | 1.83 | |
Surcharge pit | Transverse | 3 | 3 | n/a | 1.83 | |
Overflow bank (×5) | Transverse | 0.5–2 | 1.5–15 | n/a | 1.83 | |
Warralily DIDR1 Wetland | Overflow bank | Transverse | 1.5 | 200 | n/a | 1.83 |
Culvert outlet | Transverse | 0.45 | 2 | n/a | 1.83 | |
Fishway outlet | Transverse | 0.77 | 1.65 | n/a | 1.83 | |
Sparrovale Wetland | Outlet gate | Transverse | 0.75 | 0.95 | n/a | 1.83 |
Control Structures | Design (m3/s) | Model Result (m3/s) |
---|---|---|
Balog Channel | 0.8–1 | 1.3–1.8 |
Fishway | 1 | 0.6–1 |
Culvert | 0.6–1 | 1–1.3 |
Parameters | May 2022– April 2023 | May 2023– April 2024 |
---|---|---|
Total rainfall (mm) | 596 | 425 |
Total catchment runoff (103 m3), Horseshoe Bend | 1095 | 390 |
Total catchment runoff (103 m3), Armstrong Creek | 3847 | 1997 |
Total catchment runoff (103 m3) | 4942 | 2387 |
Total flow into Sparrovale (103 m3) | 2769 | 1666 |
Total flow into Baenschs Wetland (103 m3) | 2464 | 885 |
Total outflow from Sparrovale outlet gate (103 m3) | 1214 | 500 |
Total loss in Sparrovale through infiltration and ETA (103 m3) | 1191 | 225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teang, L.; Irvine, K.N.; Chua, L.H.C.; Usman, M. Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland. Hydrology 2025, 12, 141. https://doi.org/10.3390/hydrology12060141
Teang L, Irvine KN, Chua LHC, Usman M. Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland. Hydrology. 2025; 12(6):141. https://doi.org/10.3390/hydrology12060141
Chicago/Turabian StyleTeang, Lihoun, Kim N. Irvine, Lloyd H. C. Chua, and Muhammad Usman. 2025. "Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland" Hydrology 12, no. 6: 141. https://doi.org/10.3390/hydrology12060141
APA StyleTeang, L., Irvine, K. N., Chua, L. H. C., & Usman, M. (2025). Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland. Hydrology, 12(6), 141. https://doi.org/10.3390/hydrology12060141