Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coastal Exposure
2.2. Coastal Exposure Index
3. Results and Discussion
3.1. Exposure with Current Habitat Conditions
3.2. Exposure Without Habitat Scenario
3.3. Exposure with Habitat Scenario
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNISDR. The Human Cost of Natural Disasters 2015: A Global Perspective; Centre for Research on the Epidemiology of Disasters: Brussels, Belgium; UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Estrella, M.; Renaud, F.G.; Sudmeier-Rieux, K. Opportunities, challenges, and future perspectives for ecosystem-based disaster risk reduction. In The Role of Ecosystems in Disaster Risk Reduction; United Nations University Press: Tokyo, Japan, 2013. [Google Scholar]
- Beck, M.; Gilmer, B.; Ferdana, Z.; Raber, G.T.; Shepard, C.; Meliane, I.; Newkirk, S. Increasing the resilience of human and natural communities to coastal hazards: Supporting decisions in New York and Connecticut. In The Role of Ecosystems in Disaster Risk Reduction; United Nations University Press: Tokyo, Japan, 2013; pp. 140–163. [Google Scholar]
- Global Facility for Disaster Reduction and Recovery (GFDRR). Review of Open Source and Open Access Software Packages Available to Quantify Risk from Natural Hazards; International Bank for Reconstruction and Development, The World Bank: Washington, DC, USA, 2014. [Google Scholar]
- DeFries, R.; Pagiola, S.; Adamowicz, W.L.; Akcakaya, H.R.; Arcenas, A.; Babu, S.; Balk, D.; Confalonieri, U.; Cramer, W.; Falconí, F. Analytical approaches for assessing ecosystem condition and human well-being. In Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005; Volume 1, pp. 37–71. [Google Scholar]
- Assessment, M.E. Ecosystems and Human Well-Being: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Evaluacio’n de los Ecosistemas del Milenio de Espãna (EME). Sı’ntesis de Resultados; Fundacio’n Biodiversidad, Ministerio de Medio Ambiente, y Medio Rural y Marino: Madrid, Spain, 2011. [Google Scholar]
- Watson, R.; Albon, S.; Aspinall, R.; Austen, M.; Bardgett, B.; Bateman, I.; Bradbury, R.; Brown, C.; Bullock, J.; Burgess, J.; et al. UK National Ecosystem Assessment: Understanding Nature’s Value to Society. Synthesis of Key Findings; UNEP-WCMC: Cambridge, UK, 2011. [Google Scholar]
- Harley, C.D.; Randall Hughes, A.; Hultgren, K.M.; Miner, B.G.; Sorte, C.J.; Thornber, C.S.; Williams, S.L. The impacts of climate change in coastal marine systems. Ecol. Lett. 2006, 9, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Savo, V.; Lepofsky, D.; Benner, J.P.; Kohfeld, K.E.; Bailey, J.; Lertzman, K. Observations of climate change among subsistence-oriented communities around the world. Nat. Clim. Chang. 2016, 6, 462–473. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef] [PubMed]
- Artmann, M.; Breuste, J. Cities built for and by residents: Soil sealing management in the eyes of urban dwellers in Germany. J. Urban Plan. Dev. 2015, 141, A5014004. [Google Scholar] [CrossRef]
- Seddon, N.; Smith, A.; Smith, P.; Key, I.; Chausson, A.; Girardin, C.; Turner, B. Getting the message right on nature—based solutions to climate change. Glob. Change Biol. 2021, 27, 1518–1546. [Google Scholar] [CrossRef]
- CBD. Voluntary Guidelines for the Design and Effective Implementation of EbA to Climate Change Adaptation and Disaster Risk Reduction and Supplementary Information; CBD Technical Series No. 93; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2019; p. 93. Available online: https://www.cbd.int/doc/publications/cbd-ts-93-en.pdf (accessed on 23 May 2022).
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; IUCN: Gland, Switzerland, 2016; Volume 97, pp. 2016–2036. [Google Scholar]
- Balian, E.; Eggermont, H.; Le Roux, X. Outputs of the strategic foresight workshop “nature-based solutions in a BiodivERsA context”. In Proceedings of the BiodivERsA Workshop Report 2014, Brussels, Belgium, 11–12 June 2014. [Google Scholar]
- Bauduceau, N.; Berry, P.; Cecchi, C.; Elmqvist, T.; Fernandez, M.; Hartig, T.; Tack, J. Towards an EU Research and Innovation Policy Agenda for Nature-Based Solutions & Re-Naturing Cities: Final Report of the Horizon 2020 Expert Group on Nature-Based Solutions and Re-Naturing Cities; EU: Austria, Belgium, 2015. [Google Scholar]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Bonn, A. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Desa, U.N. World Urbanization Prospects: The 2014 Revision; United Nations Department of Economics and Social Affairs Population Division: New York, NY, USA, 2015; p. 41. [Google Scholar]
- European Environment Agency. Climate Change, Impacts and Vulnerability in Europe 2012: An Indicator-Based Report; Office for Official Publications of the European Union: Luxembourg, 2012. [Google Scholar]
- Kabisch, N.; Korn, H.; Stadler, J.; Bonn, A. Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages Between Science, Policy, and Practice; Springer Nature: Berlin, Germany, 2017. [Google Scholar]
- UNFCCC. National Adaptation Programmes of Action. 2011. Available online: http://unfccc.int/national_reports/napa/items/2719.php (accessed on 20 January 2014).
- Adopted IPCC. Climate Change 2014 Synthesis Report; IPCC: Geneva, Switzerland, 2014; pp. 1059–1072. [Google Scholar]
- Singh, S.; Singh, J.S. Microbial biomass associated with water-stable aggregates in forest, savanna and cropland soils of a seasonally dry tropical region, India. Soil Biol. Biochem. 1995, 27, 1027–1033. [Google Scholar] [CrossRef]
- FAO. Management and Utilization of the Mangroves in Asia and the Pacific; FAO: Rome, Italy, 1997; p. 319. [Google Scholar]
- Mmom, P.C.; Arokoyu, S.B. Mangrove Forest depletion, biodiversity loss and traditional resources management practices in the Niger Delta, Nigeria. Res. J. Appl. Sci. Eng. Technol. 2010, 2, 28–34. [Google Scholar]
- Kamalu, O.J.; Wokocha, C.C. Land resource inventory and ecological vulnerability: Assessment of Onne area in Rivers State, Nigeria. Res. J. Environ. Earth Sci. 2011, 3, 438–447. [Google Scholar]
- Fadairo, O.; Olajuyigbe, S.; Adelakun, O. Drivers of vulnerability to climate change and adaptive responses of forest-edge farming households in major agro-ecological zones of Nigeria. GeoJournal 2023, 88, 2153–2170. [Google Scholar] [CrossRef]
- Ologunorisa, T.E. An assessment of flood vulnerability zones in the Niger Delta, Nigeria. Int. J. Environ. Stud. 2004, 61, 31–38. [Google Scholar] [CrossRef]
- Omo-Irabor, O.; Olobaniyi, S.B.; Akunna, J.; Venus, V.; Maina, J.M.; Paradzayi, C. Mangrove vulnerability modelling in parts of Western Niger Delta, Nigeria using satellite images, GIS techniques and Spatial Multi-Criteria Analysis (SMCA). Environ. Monit. Assess. 2011, 178, 39–51. [Google Scholar] [CrossRef]
- Oloyede, M.O.; Williams, A.B.; Ode, G.O.; Benson, N.U. Coastal vulnerability assessment: A case study of the Nigerian coastline. Sustainability 2022, 14, 2097. [Google Scholar] [CrossRef]
- Benson, A. Social and environmental drivers of climate change vulnerability in the Niger Delta region, Nigeria. Eur. J. Environ. Earth Sci. 2020, 1. [Google Scholar] [CrossRef]
- Balogun, V.S.; Onokerhoraye, A.G. Climate change vulnerability mapping across ecological zones in Delta State, Niger Delta Region of Nigeria. Clim. Serv. 2022, 27, 100304. [Google Scholar] [CrossRef]
- Akpan, E.E. Environmental consequences of oil spills on marine habitats and the mitigating measures—The Niger delta perspective. J. Geosci. Environ. Prot. 2022, 10, 191–203. [Google Scholar] [CrossRef]
- Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Nelson, E.; Ennaanay, D.; Wolny, S.; Sharp, R. InVEST 2.1 Beta User’s Guide: Integrated Valuation of Ecosystem Services and Tradeoffs; The Nature Conservancy: Hong Kong, China, 2011. [Google Scholar]
- Guerry, A.D.; Silver, J.; Beagle, J.; Wyatt, K.; Arkema, K.; Lowe, J.; Hamel, P.; Griffin, R.; Wolny, S.; Plane, E.; et al. Protection and restoration of coastal habitats yield multiple benefits for urban residents as sea levels rise. NPJ Urban Sustain. 2022, 2, 13. [Google Scholar] [CrossRef]
- Mooney, P.F. The effect of human disturbance on site habitat diversity and avifauna community composition in suburban conservation areas. Ecosyst. Sustain. Dev. 2011, 144, 13–26. [Google Scholar]
- Daily, G.C.; Kareiva, P.M.; Polasky, S.; Ricketts, T.H.; Tallis, H. Mainstreaming natural capital into decisions. In Natural Capital: Theory and Practice of Mapping Ecosystem Services, Kindle Edition; Kareiva, P., Tallis, H., Ricketts, T.H., Daily, G.C., Polasky, S., Eds.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Durotoye, A. The Nigerian State at a Critical Juncture: The Dilemma of a Confused Agenda; University of Leipzig: Leipzig, Germany, 2000; Volume 38, pp. 1–28. [Google Scholar]
- Natural Capital Project. InVEST Coastal Vulnerability Model 3.0.0 Documentation. 2014. Available online: https://naturalcapitalproject.stanford.edu/software/invest/invest-downloads-data (accessed on 1 December 2023).
- Peduzzi, P.; Velegrakis, A.; Estrella, M.; Chatenoux, B. Integrating the role of ecosystems in disaster risk and vulnerability assessments: Lessons from the Risk and Vulnerability Assessment Methodology Development Project (RiVAMP) in Negril, Jamaica. In The Role of Ecosystems in Disaster Risk Reduction; United Nations University Press: Tokyo, Japan, 2013; pp. 109–139. [Google Scholar]
- European Union. Mapping and Assessment of Ecosystems and Their Services: Indicators for Ecosystem Assessments Under Action 5 of the EU Biodiversity Strategy to 2020. 2nd Report. 2014. Available online: http://ec.europa.eu/environment/nature/knowledge/ecosystem_assessment/pdf/2ndMAESWorkingPaper.pdf (accessed on 28 April 2015).
- Guannel, G.; Ruggiero, P.; Faries, J.; Arkema, K.; Pinsky, M.; Gelfenbaum, G.; Kim, C.K. Integrated modeling framework to quantify the coastal protection services supplied by vegetation. J. Geophys. Res. Ocean. 2015, 120, 324–345. [Google Scholar] [CrossRef]
- Hammar-Klose, E.S.; Thieler, E.R. Coastal Vulnerability to Sea-Level Rise: A Preliminary Database for the US Atlantic, Pacific, and Gulf of Mexico Coasts (No. 68); US Geological Survey: Reston, VA, USA, 2001. [Google Scholar]
- McKenzie, E.; Irwin, F.; Ranganathan, J.; Hanson, C.; Kousky, C.; Bennett, K.; Paavola, J. Incorporating ecosystem services in decisions. In Natural Capital: Theory and Practice of Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011; pp. 339–355. [Google Scholar]
- Arkema, K.K.; Guannel, G.; Verutes, G.; Wood, S.A.; Guerry, A.; Ruckelshaus, M.; Silver, J.M. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Chang. 2013, 3, 913–918. [Google Scholar] [CrossRef]
- Bayani, N.; Barthélemy, Y. Integrating ecosystems in risk assessments: Lessons from applying InVEST models in data-deficient countries. In Ecosystem-Based Disaster Risk Reduction and Adaptation in Practice; Springer: Berlin/Heidelberg, Germany, 2016; pp. 227–254. [Google Scholar]
- Sutton-Grier, A.E.; Sandifer, P.A. Conservation of wetlands and other coastal ecosystems: A commentary on their value to protect biodiversity, reduce disaster impacts, and promote human health and well-being. Wetlands 2019, 39, 1295–1302. [Google Scholar] [CrossRef]
- Ai, B.; Tian, Y.; Wang, P.; Gan, Y.; Luo, F.; Shi, Q. Vulnerability Analysis of Coastal Zone Based on InVESTModel in Jiaozhou Bay, China. Sustainability 2022, 14, 6913. [Google Scholar] [CrossRef]
- PLoS ONE Staff. Correction: Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PLoS ONE 2015, 10, e0131375. [Google Scholar]
- Silver, J.M.; Arkema, K.K.; Griffin, R.M.; Lashley, B.; Lemay, M.; Maldonado, S.; Moultrie, S.H.; Ruckelshaus, M.; Schill, S.; Thomas, A.; et al. Advancing Coastal Risk Reduction Science and Implementation by Accounting for Climate, Ecosystems, and People. Front. Mar. Sci. 2019, 6, 556. [Google Scholar] [CrossRef]
- Langridge, S.M.; Hartge, E.H.; Clark, R.; Arkema, K.; Verutes, G.M.; Prahler, E.E.; O’Connor, K. Key lessons for incorporating natural infrastructure into regional climate adaptation planning. Ocean. Coast. Manag. 2014, 95, 189–197. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for coastal surveying. Coast. Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Umechuruba, C.I. Health impact assessment of mangrove vegetation in an oil spilled site at the Bodo West field in Rivers State, Nigeria. J. Appl. Sci. Environ. Manag. 2015, 9, 69–73. [Google Scholar]
Model Inputs | Year | Extent | Resolution (m) | Sources |
---|---|---|---|---|
Natural habitats (LULC Mangroves accessed in 2020) | 2020 | Rivers State | 30 | http://sedac.ciesin.columbia.edu/data/set/lulc-global-mangrove-forests-distribution-2000 (accessed on 11 September 2022) |
Digital Elevation Model (DEM) | 2022 | Global | 30 | https://earthexplorer.usgs.gov/ (accessed on 1 December 2023) |
Wind/Wave data | 2005–2010 | Global | - | WAVEWATCH III model hindcast reanalysis results from NOAA’s National Weather Service are used (Embedded in the InVEST model). |
Coastal Geomorphology (Shoreline type) | 2022 | Rivers State | 30 | NGSA (Nigeria Geological Survey Agency website) |
Global land mass polygon shapefile | 2016 | Global | 30 | Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com (Wessel and Smith, 1996) |
Continental Shelf Contour | The original file is used | Global | Embedded in the InVEST model |
Exposure Level | With Habitats (%) | Without Habitats (%) |
---|---|---|
Lowest Exposure (<1.77) | 100% | 0% |
Intermediate Exposure (1.77–2.1) | 10% | 5% |
Highest Exposure (>2.59) | 20% | 90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onwubiko, C.C.; Aheto, D.W. Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State. Coasts 2025, 5, 17. https://doi.org/10.3390/coasts5020017
Onwubiko CC, Aheto DW. Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State. Coasts. 2025; 5(2):17. https://doi.org/10.3390/coasts5020017
Chicago/Turabian StyleOnwubiko, Chinomnso C., and Denis Worlanyo Aheto. 2025. "Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State" Coasts 5, no. 2: 17. https://doi.org/10.3390/coasts5020017
APA StyleOnwubiko, C. C., & Aheto, D. W. (2025). Assessing the Role of Coastal Habitats in Flood Reduction in Selected Communities of Rivers State. Coasts, 5(2), 17. https://doi.org/10.3390/coasts5020017