Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Field Site
2.2. Remote Sensing of Shorelines from Satellites
2.3. High-Efficiency Shoreline Model
3. Results
3.1. Satellite-Derived Shoreline Retreat
3.2. Verification of Shoreline Model
4. Discussion
4.1. Future Shoreline Evolution
4.2. Strategies for Beach Protection
4.3. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Ranasinghe, R. Assessing climate change impacts on open sandy coasts: A review. Earth-Sci. Rev. 2016, 160, 320–332. [Google Scholar] [CrossRef]
- Shi, J.; Feng, X.; Toumi, R.; Zhang, C.; Hodges, K.I.; Tao, A.; Zhang, W.; Zheng, J. Global increase in tropical cyclone ocean surface waves. Nat. Commun. 2024, 15, 174. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Third Institute of Oceanography, State Oceanic Administration. Coastal Erosion Assessment and Control: The Final Report, Chinese Offshore Investigation and Assessment; Third Institute of Oceanography, State Oceanic Administration: Xiamen, China, 2010; pp. 39–50. [Google Scholar]
- Wang, X.; Yan, F.; Su, F. Changes in coastline and coastal reclamation in the three most developed areas of China, 1980–2018. Ocean. Coast. Manag. 2021, 204, 105542. [Google Scholar] [CrossRef]
- Xu, N.; Gong, P. Significant coastline changes in China during 1991–2015 tracked by Landsat data. Sci. Bull. 2018, 63, 883–886. [Google Scholar] [CrossRef]
- Xu, N.; Wang, Y.; Huang, C.; Jiang, S.; Jia, M.; Ma, Y. Monitoring coastal reclamation changes across Jiangsu Province during 1984–2019 using landsat data. Mar. Policy 2022, 136, 104887. [Google Scholar] [CrossRef]
- Cai, F.; Cao, C.; Qi, H.; Su, X.; Lei, G.; Liu, J.; Zhao, S.; Liu, G.; Zhu, K. Rapid migration of mainland China’s coastal erosion vulnerability due to anthropogenic changes. J. Environ. Manag. 2022, 319, 115632. [Google Scholar] [CrossRef]
- Ji, C.; Zhang, Q.; Chen, T.; Ma, D.; Huang, R. Modeling investigation of wave-induced longshore current distribution patterns on barred beaches. Estuar. Coast. Shelf Sci. 2024, 299, 108685. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Zhao, S.; Qi, H.; Cai, F.; Zheng, J. Equilibrium configurations of sandy-muddy transitional beaches on South China coasts: Role of waves in formation of sand-mud transition boundary. Coast. Eng. 2024, 187, 104401. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Chen, S.; Qi, H.; Dai, W.; Zhu, H.; Sui, T.; Zheng, J. Experimental Investigation on Cross-Shore Profile Evolution of Reef-Fronted Beach. Coast. Eng. 2025, 104653. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, N.; Li, Z.; Huang, C. Satellite derived coastal reclamation expansion in China since the 21st century. Glob. Ecol. Conserv. 2021, 30, e01797. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs, China National Aquatic Technology and Promotion Center, Chinese Society of Aquatic Sciences. China Fisheries Statistics Yearbook; China Agricultural Publishing House: Beijing, China, 2023. [Google Scholar]
- Wang, M.; Mao, D.; Xiao, X.; Song, K.; Jia, M.; Ren, C.; Wang, Z. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016–2021. Remote Sens. Environ. 2023, 284, 113347. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Yang, X.; Huang, C.; Su, F.; Liu, X.; Liu, Y.; Zhang, Y. Global Mapping of the Landside Clustering of Aquaculture Ponds from Dense Time-Series 10 m Sentinel-2 Images on Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103100. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, M.; Luo, X.; You, W.; Ke, C. Transitions, challenges and trends in China’s abalone culture industry. Rev. Aquac. 2023, 15, 1274–1293. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Tan, L.; Zhang, L.; Yang, P.; Tong, C.; Lai, D.Y.F.; Yang, H.; Hong, Y.; Tian, Y.; Tang, C.; Ruan, M.; et al. Effects of conversion of coastal marshes to aquaculture ponds on sediment anaerobic CO2 production and emission in a subtropical estuary of China. J. Environ. Manag. 2023, 338, 117813. [Google Scholar] [CrossRef]
- Lansu, E.M.; Reijers, V.C.; Höfer, S.; Luijendijk, A.; Rietkerk, M.; Wassen, M.J.; Lammerts, E.J.; van der Heide, T. A global analysis of how human infrastructure squeezes sandy coasts. Nat. Commun. 2024, 15, 432. [Google Scholar] [CrossRef]
- Liu, S.; Wu, K.; Yao, L.; Li, Y.; Chen, R.; Zhang, L.; Wu, Z.; Zhou, Q. Characteristics and correlation analysis of heavy metal distribution in China’s freshwater aquaculture pond sediments. Sci. Total Environ. 2024, 931, 172909. [Google Scholar] [CrossRef]
- Chi, S.; Zhang, C.; Wang, P.; Shi, J.; Li, F.; Li, Y.; Wang, P.; Zheng, J.; Sun, J.; Nguyen, V.T. Morphological evolution of paired sand spits at the Fudu river mouth: Wave effects and anthropogenic factors. Mar. Geol. 2023, 456, 106991. [Google Scholar] [CrossRef]
- Liu, G.; Qi, H.; Cai, F.; Zhu, J.; Zhao, S.; Liu, J.; Lei, G.; Cao, C.; He, Y.; Xiao, Z. Initial morphological responses of coastal beaches to a mega offshore artificial island. Earth Surf. Process. Landf. 2022, 47, 1355–1370. [Google Scholar] [CrossRef]
- Chi, S.-H.; Zhang, C.; Sui, T.-T.; Cao, Z.-B.; Zheng, J.-H.; Fan, J.-S. Field observation of wave overtopping at sea dike using shore-based video images. J. Hydrodyn. 2021, 33, 657–672. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Almar, R.; Bergsma, E.W. Satellite optical imagery in coastal engineering. Coast. Eng. 2021, 167, 103919. [Google Scholar] [CrossRef]
- Hanson, H. GENESIS: A generalized shoreline change numerical model. J. Coast. Res. 1989, 5, 1–27. [Google Scholar]
- Kristensen, S.; Drønen, N.; Deigaard, R.; Fredsoe, J. Impact of groyne fields on the littoral drift: A hybrid morphological modelling study. Coast. Eng. 2016, 111, 13–22. [Google Scholar] [CrossRef]
- Tonnon, P.K.; Huisman, B.J.A.; Stam, G.N.; van Rijn, L.C. Numerical modelling of erosion rates, life span and maintenance volumes of mega nourishments. Coast. Eng. 2018, 131, 51–69. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Yates, M.L.; Guza, R.T.; O’reilly, W.C. Equilibrium shoreline response: Observations and modeling. J. Geophys. Res. 2009, 114, C09014. [Google Scholar] [CrossRef]
- Bruun, P. Sea-level rise as cause of shore erosion. J. Waterw. Harb. Div. 1962, 88, 117–130. [Google Scholar] [CrossRef]
- Robinet, A.; Idier, D.; Castelle, B.; Marieu, V. A reduced-complexity shoreline change model combining longshore and cross-shore processes: The LX-shore model. Environ. Model. Softw. 2018, 109, 1–16. [Google Scholar] [CrossRef]
- Davidson, M.A.; Splinter, K.D.; Turner, I.L. A simple equilibrium model for predicting shoreline change. Coast. Eng. 2013, 73, 191–202. [Google Scholar] [CrossRef]
- Kaergaard, K.; Fredsoe, J. A numerical shoreline model for shorelines with large curvature. Coast. Eng. 2013, 74, 19–32. [Google Scholar] [CrossRef]
- Hurst, M.D.; Barkwith, A.; Ellis, M.A.; Thomas, C.W.; Murray, A.B. Exploring the sensitivities of crenulate bay shorelines to wave climates using a new vector-based one-line model. J. Geophys. Res. Earth Surf. 2015, 120, 2586–2608. [Google Scholar] [CrossRef]
- Roelvink, D.; Huisman, B.; Elghandour, A.; Ghonim, M.; Reyns, J. Efficient modeling of complex sandy coastal evolution at monthly to century time scales. Front. Mar. Sci. 2020, 7, 535. [Google Scholar] [CrossRef]
- Cai, F.; Su, X.; Gao, Z.; Chen, J. Stability analysis and beach protection countermeasures of Dacheng Bay at the junction of Fujian and Guangdong. Taiwan Strait 2003, 4, 518–525. [Google Scholar]
- Shi, J.; Zheng, J.; Zhang, C.; Joly, A.; Zhang, W.; Xu, P.; Sui, T.; Chen, T. A 39-year high resolution wave hindcast for the Chinese coast: Model validation and wave climate analysis. Ocean. Eng. 2019, 183, 224–235. [Google Scholar] [CrossRef]
- Carvalho, R.C.; Woodroffe, C.D. Coastal compartments: The role of sediment supply and morphodynamics in a beach management context. J. Coast. Conserv. 2023, 27, 58. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Landsat 8 (L8) Data Users Handbook. 2019. Available online: https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook (accessed on 1 June 2024).
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 1989, 77, 257–286. [Google Scholar] [CrossRef]
- Almonacid-Caballer, J.; Sánchez-García, E.; Pardo-Pascual, J.E.; Balaguer-Beser, A.A.; Palomar-Vázquez, J. Evaluation of annual mean shoreline position deduced from Landsat imagery as a mid-term coastal evolution indicator. Mar. Geol. 2016, 372, 79–88. [Google Scholar] [CrossRef]
- Xu, N. Detecting coastline change with all available landsat data over 1986–2015: A case study for of Texas, USA. Atmosphere 2018, 9, 107. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X. Mapping changes in coastlines and tidal flats in developing islands using the full time series of Landsat images. Remote Sens. Environ. 2020, 239, 111665. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, X.; Jin, H.; Wang, Z.; Liu, Y.; Liu, B.; Zhang, J.; Liu, X.; Gao, K.; Meng, D. Monitoring coastline changes of the Malay Islands based on Google Earth Engine and dense time-series remote sensing images. Remote Sens. 2021, 13, 3842. [Google Scholar] [CrossRef]
- Hallermeier, R.J. Uses for a calculated limit depth to beach erosion. Coast. Eng. Proc. 1978, 1, 88. [Google Scholar] [CrossRef]
- Birkemeier, W.A. Field data on seaward limit of profile change. J. Waterw. Port Coast. Ocean. Eng. 1985, 111, 598–602. [Google Scholar] [CrossRef]
- USACE. Shore Protection Manual; US Army Corps of Engineers: Washington, DC, USA, 1984. [Google Scholar]
- Ministry of Natural Resources. 2023 China Sea Level Bulletin; Ministry of Natural: Beijing, China, 2024. (In Chinese)
- Sutherland, J.; Peet, A.H.; Soulsby, R.L. Evaluating the performance of morphological models. Coast. Eng. 2004, 51, 917–939. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment. Opinions on Strengthening the Supervision and Management of Aquaculture Ecosystems. 2022. Available online: https://www.gov.cn/zhengce/zhengceku/2022-01/12/content_5667762.htm (accessed on 1 June 2024).
- Ministry of Natural Resources and Ministry of Agriculture and Rural Affairs. Notice on Optimization of Management of Sea Use for Aquaculture. 2023. Available online: https://www.gov.cn/zhengce/zhengceku/202312/content_6923452.htm (accessed on 1 June 2024).
- China Association of Oceanic Engineering. Technical Guideline on Coastal Ecological Rehabilitation for Hazard Mitigation; China Association of Oceanic Engineering: Nanjing, China, 2020. [Google Scholar]
- Li, Y.; Zhang, C.; Chen, D.; Zheng, J.; Sun, J.; Wang, P. Barred beach profile equilibrium investigated with a process-based numerical model. Cont. Shelf Res. 2021, 222, 104432. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Dai, W.; Chen, D.; Sui, T.; Xie, M.; Chen, S. Laboratory investigation on morphology response of submerged artificial sandbar and its impact on beach evolution under storm wave condition. Mar. Geol. 2022, 443, 106668. [Google Scholar] [CrossRef]
- Liu, G.; Cai, F.; Qi, H.; Zhu, J.; Liu, J. Morphodynamic evolution and adaptability of nourished beaches. J. Coast. Res. 2019, 35, 737–750. [Google Scholar] [CrossRef]
- Liu, G.; Cai, F.; Qi, H.; Zhu, J.; Lei, G.; Cao, H.; Zheng, J. A method to nourished beach stability assessment: The case of China. Ocean. Coast. Manag. 2019, 177, 166–178. [Google Scholar] [CrossRef]
- Ruessink, B.G.; Kuriyama, Y.; Reniers, A.J.H.M.; Roelvink, J.A.; Walstra, D.J.R. Modeling cross-shore sandbar behavior on the timescale of weeks. J. Geophys. Res. Earth Surf. 2007, 112, 03010. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, C.; Demirbilek, Z.; Lin, L. Numerical study of sandbar migration under wave-undertow interaction. J. Waterw. Port Coast. Ocean. Eng. 2014, 140, 146–159. [Google Scholar] [CrossRef]
- Yang, W.; Cai, F.; Liu, J.; Zhu, J.; Qi, H.; Liu, Z. Beach economy of a coastal tourist city in China: A case study of Xiamen. Ocean. Coast. Manag. 2021, 211, 105798. [Google Scholar] [CrossRef]
- Armstrong, S.B.; Lazarus, E.D.; Limber, P.W.; Goldstein, E.B.; Thorpe, C.; Ballinger, R.C. Indications of a positive feedback between coastal development and beach nourishment. Earth’s Future 2016, 4, 626–635. [Google Scholar] [CrossRef]
- Liu, G.; Cai, F.; Qi, H.; Liu, J.; Lei, G.; Zhu, J.; Cao, H.; Zheng, J.; Zhao, S.; Yu, F. A summary of beach nourishment in China: The past decade of practices. Shore Beach 2020, 2020, 65–73. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Stive, M.J.F.; Roelvink, D. Modelling of climate-change-induced shoreline change. Clim. Chang. 2012, 110, 561–576. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Wöppelmann, G.; Rohmer, J.; Bernon, N.; Idier, D.; Louisor, J.; Salas-Y-Mélia, D. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 42. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef]
Time | Department | Level | Name of the Policy Document |
---|---|---|---|
2022 | Ministry of Ecology and Environment; Ministry of Agriculture and Rural Affairs | State | Opinions on strengthening the supervision and management of aquaculture ecosystems |
2023 | Ministry of Natural Resources; Ministry of Agriculture and Rural Affairs | State | Notice on the optimization of the management of sea use for aquaculture |
2022 | Department of Ecology and Environment of Guangdong Province; Department of Agriculture and Rural Development of Guangdong Province | Guangdong Province | Implementation program on strengthening the supervision and management of aquaculture ecosystems |
2023 | Department of Ecology and Environment of Fujian Province; Bureau of Ocean and Fisheries, Fujian Province | Fujian Province | Work program for tailwater management of marine aquaculture ponds in Fujian Province |
2022 | Bureau of Ecology and Environment of Chaozhou City | Chaozhou City | List of key tasks of the implementation program for strengthening the supervision and management of aquaculture ecosystems in Chaozhou City |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Li, Y.; Chen, W.; Chi, S.; Zhang, C. Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China. Water 2025, 17, 1583. https://doi.org/10.3390/w17111583
Cao Z, Li Y, Chen W, Chi S, Zhang C. Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China. Water. 2025; 17(11):1583. https://doi.org/10.3390/w17111583
Chicago/Turabian StyleCao, Zhubin, Yuan Li, Weiqiu Chen, Shanhang Chi, and Chi Zhang. 2025. "Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China" Water 17, no. 11: 1583. https://doi.org/10.3390/w17111583
APA StyleCao, Z., Li, Y., Chen, W., Chi, S., & Zhang, C. (2025). Assessing the Retreat of a Sandy Shoreline Backed by Coastal Aquaculture Ponds: A Case Study of Two Beaches in Guangdong Province, China. Water, 17(11), 1583. https://doi.org/10.3390/w17111583