Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (588)

Search Parameters:
Keywords = riboflavin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 642 KiB  
Article
Evaluation of the Profile of Selected Bioactive Compounds and the Potential of Barley Wort Enriched with Malted and Unmalted Hemp Seeds for Brewing Applications
by Marek Zdaniewicz, Robert Duliński, Jana Lakatošová, Janusz Gołaszewski and Krystyna Żuk-Gołaszewska
Molecules 2025, 30(15), 3261; https://doi.org/10.3390/molecules30153261 - 4 Aug 2025
Viewed by 194
Abstract
The incorporation of Cannabis sativa L. seeds into barley wort was investigated to enhance the functional profile of beer. Hemp seeds (cv. Henola) were malted via controlled steeping, germination, and kilning, then added to barley malt at 10% and 30% (w/ [...] Read more.
The incorporation of Cannabis sativa L. seeds into barley wort was investigated to enhance the functional profile of beer. Hemp seeds (cv. Henola) were malted via controlled steeping, germination, and kilning, then added to barley malt at 10% and 30% (w/w) in both malted and unmalted forms. Standard congress mashing produced worts whose physicochemical parameters (pH, extract, colour, turbidity, filtration and saccharification times) were assessed, alongside profiles of fermentable sugars, polyphenols, B-group vitamins, and cannabinoids. Addition of hemp seeds reduced extract yield without impairing saccharification or filtration and slightly elevated mash pH and turbidity. Maltose and glucose levels declined significantly at higher hemp dosages, whereas sucrose remained stable. Wort enriched with 30% unmalted seeds exhibited the highest levels of trans-ferulic (20.61 µg/g), gallic (5.66 µg/g), trans-p-coumaric (3.68 µg/g), quercetin (6.07 µg/g), and trans-cinnamic (4.07 µg/g) acids. Malted hemp addition enhanced thiamine (up to 0.302 mg/mL) and riboflavin (up to 178.8 µg/mL) concentrations. Cannabinoids (THCA-A, THCV, CBDV, CBG, CBN) were successfully extracted at µg/mL levels, with the total cannabinoid content peaking at 14.59 µg/mL in the 30% malted treatment. These findings demonstrate that hemp seeds, particularly in malted form, can enrich barley wort with bioactive polyphenols, vitamins, and non-psychoactive cannabinoids under standard mashing conditions, without compromising key brewing performance metrics. Further work on fermentation, sensory evaluation, stability, and bioavailability is warranted to realise hemp-enriched functional beers. Full article
Show Figures

Figure 1

15 pages, 5467 KiB  
Article
Comparative Genomic Analysis of Lactiplantibacillus plantarum: Insights into Its Genetic Diversity, Metabolic Function, and Antibiotic Resistance
by Ruiqi Li and Chongpeng Bi
Genes 2025, 16(8), 869; https://doi.org/10.3390/genes16080869 - 24 Jul 2025
Viewed by 214
Abstract
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative [...] Read more.
Background/Objectives: Lactiplantibacillus plantarum is widely utilized in the fermentation industry and offers potential health benefits. However, large-scale comparative genomic analyses aimed at exploring its metabolic functions and conducting safety assessments are still lacking. Methods: In this study, we performed a comparative genomic analysis of 324 L. plantarum strains sourced from various origins and geographical locations. Results: The results revealed that L. plantarum possesses a total of 2403 core genes, of which 12.3% have an unknown function. The phylogenetic analysis revealed a mixed distribution from various origins, suggesting complex transmission pathways. The metabolic analysis demonstrated that L. plantarum strains can produce several beneficial metabolites, including lysine, acetate, and riboflavin. Furthermore, L. plantarum is highly capable of degrading various carbohydrates and proteins, increasing its adaptability. Further, we profiled the antimicrobial peptides (AMPs) in the genomes of L. plantarum. We identified a widely distributed AMP and its variants, presenting in a total of 280 genomes. In our biosafety assessment of L. plantarum, we identified several antibiotic resistance genes, such as Tet(M), ANT(6)-Ia, and mdeA, which may have potential for horizontal gene transfer within the Lactobacillaceae family. Conclusions: This study provides genomic insights into the genetic diversity, metabolic functions, antimicrobial properties, and biosafety of L. plantarum, underscoring its potential applications in biotechnology and environmental adaptation. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

22 pages, 4544 KiB  
Article
Aspirin Eugenol Ester Ameliorates HFD-Induced NAFLD in Mice via the Modulation of Bile Acid Metabolism
by Zhi-Jie Zhang, Qi Tao, Ji Feng, Qin-Fang Yu, Li-Ping Fan, Zi-Hao Wang, Wen-Bo Ge, Jian-Yong Li and Ya-Jun Yang
Int. J. Mol. Sci. 2025, 26(15), 7044; https://doi.org/10.3390/ijms26157044 - 22 Jul 2025
Viewed by 197
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition worldwide and represents a major global health challenge. Pharmacological and pharmacodynamic results indicate that aspirin eugenol ester (AEE) performs various pharmacological activities. However, it is unclear whether AEE can ameliorate the NAFLD. This [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent condition worldwide and represents a major global health challenge. Pharmacological and pharmacodynamic results indicate that aspirin eugenol ester (AEE) performs various pharmacological activities. However, it is unclear whether AEE can ameliorate the NAFLD. This study investigated the ameliorative effects of AEE on glucose and lipid metabolism disorders by in vitro and in vivo experiments. In the cellular model, TC increased to 0.104 μmol/mg and TG increased to 0.152 μmol/mg in the model group, while TC decreased to 0.043 μmol/mg and TG decreased to 0.058 μmol/mg in the AEE group. In the model group, the area occupied by lipid droplets within the visual field was significantly elevated to 17.338%. However, the administration of AEE resulted in a substantial reduction in this area to 10.064%. AEE significantly reduced the lipid droplet area and TC and TG levels (p < 0.05), increased bile acids in the cells and in the medium supernatant (p < 0.05), and significantly up-regulated the expression of LRH-1, PPARα, CYP7A1, and BSEP mRNA levels (p < 0.05) compared to the model group. In the animal model, different doses of AEE administration significantly down-regulated the levels of TC, TG, LDL, GSP, and FBG (p < 0.05) compared to the high-fat-diet (HFD) group, and 216 mg/kg of AEE significantly improved hepatocellular steatosis, attenuated liver injury, and reduced the area of glycogen staining (p < 0.05). In the HFD group, the glycogen area within the visual field exhibited a significant increase to 18.250%. However, the administration of AEE resulted in a notable reduction in the glycogen area to 13.314%. Liver and serum metabolomics results show that AEE can reverse the metabolite changes caused by a HFD. The major metabolites were involved in seven pathways, including riboflavin metabolism, glycerophospholipid metabolism, tryptophan metabolism, primary bile acid biosynthesis, biosynthesis of unsaturated fatty acids, nicotinate and nicotinamide metabolism, and tryptophan metabolism. In conclusion, AEE had a positive regulatory effect on NAFLD. Full article
(This article belongs to the Special Issue Using Model Organisms to Study Complex Human Diseases)
Show Figures

Figure 1

12 pages, 246 KiB  
Article
Riboflavin Transporter Deficiency Type 2: Expanding the Phenotype of the Lebanese Founder Mutation p.Gly306Arg in the SLC52A2 Gene
by Jean-Marc T. Jreissati, Leonard Lawandos, Julien T. Jreissati and Pascale E. Karam
Metabolites 2025, 15(7), 491; https://doi.org/10.3390/metabo15070491 - 21 Jul 2025
Viewed by 385
Abstract
Background: Riboflavin transporter deficiency type 2 is an ultra-rare, yet treatable, inborn error of metabolism. This autosomal recessive disorder is caused by pathogenic mutations in the SLC52A2 gene leading to progressive ataxia, polyneuropathy, and hearing and visual impairment. The early initiation of [...] Read more.
Background: Riboflavin transporter deficiency type 2 is an ultra-rare, yet treatable, inborn error of metabolism. This autosomal recessive disorder is caused by pathogenic mutations in the SLC52A2 gene leading to progressive ataxia, polyneuropathy, and hearing and visual impairment. The early initiation of riboflavin therapy can prevent or mitigate the complications. To date, only 200 cases have been reported, mostly in consanguineous populations. The p.Gly306Arg founder mutation, identified in patients of Lebanese descent, is the most frequently reported worldwide. It was described in a homozygous state in a total of 21 patients. Therefore, studies characterizing the phenotypic spectrum of this mutation remain scarce. Methods: A retrospective review of charts of patients diagnosed with riboflavin transporter deficiency type 2 at a tertiary-care reference center in Lebanon was performed. Clinical, biochemical, and molecular profiles were analyzed and compared to reported cases in the literature. Results: A total of six patients from three unrelated families were diagnosed between 2018 and 2023. All patients exhibited the homozygous founder mutation, p.Gly306Arg, with variable phenotypes, even among family members. The median age of onset was 3 years. Diagnosis was achieved by exome sequencing at a median age of 5 years, as clinical and biochemical profiles were inconsistently suggestive. The response to riboflavin was variable. One patient treated with high-dose riboflavin recovered his motor function, while the others were stabilized. Conclusions: This study expands the current knowledge of the phenotypic spectrum associated with the p.Gly306Arg mutation in the SLC52A2 gene. Increased awareness among physicians of the common manifestations of this rare disorder is crucial for early diagnosis and treatment. In the absence of a consistent clinical or biochemical phenotype, the use of next-generation sequencing as a first-tier diagnostic test may be considered. Full article
(This article belongs to the Special Issue Research of Inborn Errors of Metabolism)
27 pages, 1303 KiB  
Review
Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging
by Fanny Cecília Dusa, Tibor Vellai and Miklós Sipos
Dietetics 2025, 4(3), 30; https://doi.org/10.3390/dietetics4030030 - 14 Jul 2025
Viewed by 616
Abstract
Methylation is a biochemical process involving the addition of methyl groups to proteins, lipids, and nucleic acids (both DNA and RNA). DNA methylation predominantly occurs on cytosine and adenine nucleobases, and the resulting products—most frequently 5-methylcytosine and N6-methyladenine epigenetic marks—can significantly [...] Read more.
Methylation is a biochemical process involving the addition of methyl groups to proteins, lipids, and nucleic acids (both DNA and RNA). DNA methylation predominantly occurs on cytosine and adenine nucleobases, and the resulting products—most frequently 5-methylcytosine and N6-methyladenine epigenetic marks—can significantly influence gene activity at the affected genomic sites without modifying the DNA sequence called nucleotide order. Various environmental factors can alter the DNA methylation pattern. Among these, methyl donor micronutrients, such as specific amino acids, choline, and several B vitamins (including folate, pyridoxine, thiamine, riboflavin, niacin, and cobalamin), primarily regulate one-carbon metabolism. This molecular pathway stimulates glutathione synthesis and recycles intracellular methionine. Glutathione plays a pivotal role during oocyte activation by protecting against oxidative stress, whereas methionine is crucial for the production of S-adenosyl-L-methionine, which serves as the universal direct methyl donor for cellular methylation reactions. Because local DNA methylation patterns at genes regulating fertility can be inherited by progeny for multiple generations even in the absence of the original disrupting factors to which the parent was exposed, and DNA methylation levels at specific genomic sites highly correlate with age and can also be passed to offspring, nutrition can influence reproduction and life span in a transgenerational manner. Full article
Show Figures

Figure 1

37 pages, 3498 KiB  
Review
Pigments from Microorganisms: A Sustainable Alternative for Synthetic Food Coloring
by Akshay Chavan, Jaya Pawar, Umesh Kakde, Mekala Venkatachalam, Mireille Fouillaud, Laurent Dufossé and Sunil Kumar Deshmukh
Fermentation 2025, 11(7), 395; https://doi.org/10.3390/fermentation11070395 - 10 Jul 2025
Viewed by 1083
Abstract
Microbial pigments are gaining acceptance as a green, sustainable substitute for synthetic food pigments due to growing health issues and their adverse health impacts. This review provides an overview of the potential of microbial pigments as natural food colorants and the advantages of [...] Read more.
Microbial pigments are gaining acceptance as a green, sustainable substitute for synthetic food pigments due to growing health issues and their adverse health impacts. This review provides an overview of the potential of microbial pigments as natural food colorants and the advantages of microbial pigments over synthetic pigments. Microbial pigments are a natural source of color with medicinal properties like anticancer, antimicrobial, and antioxidant activity. Important pigments covered are astaxanthin, phycocyanin, prodigiosin, riboflavin, β-carotene, violacein, melanin, and lycopene, and their microbial origins and characteristics. The review also covers commercial production of microbial pigments, i.e., strain development and fermentation processes. Microbial pigments also find extensive applications in food industries, including preservatives for food. Also covered are their pharmacological activity and other applications, such as in the formation of nanoparticles. Finally, the challenges and future directions of microbial pigment production are covered, including the need for cost-effective production, regulatory acceptability, and the potential of genetic engineering and fermentation-based technologies to enhance pigment yield and quality. Full article
(This article belongs to the Special Issue Metabolic Engineering in Microbial Synthesis)
Show Figures

Figure 1

17 pages, 532 KiB  
Review
The Fundamental Role of Nutrients for Metabolic Balance and Epigenome Integrity Maintenance
by Ana Paula de Souza, Vitor Marinho and Marcelo Rocha Marques
Epigenomes 2025, 9(3), 23; https://doi.org/10.3390/epigenomes9030023 - 9 Jul 2025
Viewed by 458
Abstract
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining [...] Read more.
Epigenetic modifications act as crucial regulators of gene activity and are influenced by both internal and external environmental factors, with diet being the most impactful external factor. On the other hand, cellular metabolism encompasses a complex network of biochemical reactions essential for maintaining cellular function, and it impacts every cellular process. Many metabolic cofactors are critical for the activity of chromatin-modifying enzymes, influencing methylation and the global acetylation status of the epigenome. For instance, dietary nutrients, particularly those involved in one-carbon metabolism (e.g., folate, vitamins B12 and B6, riboflavin, methionine, choline, and betaine), take part in the generation of S-adenosylmethionine (SAM), which represents the main methyl donor for DNA and histone methylation; α-ketoglutarate and ascorbic acid (vitamin C) act, respectively, as a co-substrate and cofactor for Ten-eleven Translocation (TET), which is responsible for DNA demethylation; and metabolites such as Acetyl-CoA directly impact histone acetylation, linking metabolism of the TCA cycle to epigenetic regulation. Further, bioactive compounds, such as polyphenols, modulate epigenetic patterns by affecting methylation processes or targeting epigenetic enzymes. Since diet and nutrition play a critical role in shaping epigenome functions and supporting human health, this review offers a comprehensive update on recent advancements in metabolism, epigenetics, and nutrition, providing insights into how nutrients contribute to metabolic balance, epigenome integrity maintenance and, consequently, disease prevention. Full article
(This article belongs to the Collection Feature Papers in Epigenomes)
Show Figures

Graphical abstract

16 pages, 2838 KiB  
Article
Transcriptomic Response of Azospirillum brasilense Co-Cultured with Green Microalgae Chlorella sp. and Scenedesmus sp. During CO2 Biogas Fixation
by Carolina Garciglia-Mercado, Oskar A. Palacios, Claudia A. Contreras-Godínez, Jony Ramiro Torres-Velázquez and Francisco J. Choix
Processes 2025, 13(7), 2177; https://doi.org/10.3390/pr13072177 - 8 Jul 2025
Viewed by 699
Abstract
Microalgal–bacterial consortia are the environmentally sustainable biotechnological strategy to enhance the potential of microalgae. Understanding the regulatory mechanisms that enable bacteria to adapt to culture conditions of each bioprocess is crucial to ensure a successful synergic interaction. Thus, the present study evaluated the [...] Read more.
Microalgal–bacterial consortia are the environmentally sustainable biotechnological strategy to enhance the potential of microalgae. Understanding the regulatory mechanisms that enable bacteria to adapt to culture conditions of each bioprocess is crucial to ensure a successful synergic interaction. Thus, the present study evaluated the transcriptomic response of microalgal growth-promoting bacteria (MGPB) A. brasilense separately co-cultured with both green microalgae Scenedesmus sp. and Chlorella sorokiniana during CO2 fixation from biogas through a microarray-based approach. The transcriptome profiling revealed a total of 416 differentially expressed genes (DEGs) in A. brasilense: 228 (140 upregulated and 88 downregulated) interacting with Scenedesmus sp. and 188 (40 upregulated and 148 downregulated) associated with C. sorokiniana. These results support the modulation of signal molecules: indole-3-acetic acid (IAA), riboflavin, and biotin, during co-cultivation with both microalgae. The findings suggest that the metabolic A. brasilense adaptation was mainly favored during the mutualistic interaction with Scenedesmus sp. Finally, a valuable contribution is provided to the biotechnological potential of the microalga–Azospirillum consortium as an environmentally sustainable strategy to improve the bio-refinery capacity of these microalgae and biogas upgrading by valorizing CO2 of these gaseous effluent. Full article
Show Figures

Figure 1

12 pages, 239 KiB  
Article
Ten Years’ Experience Using Proxymetacaine Hydrochloride 0.5% for Postoperative Pain Control in Epithelium-Off Corneal Crosslinking
by Mohamed Gamal Elghobaier, Issac Levy and Mayank A. Nanavaty
J. Clin. Med. 2025, 14(13), 4692; https://doi.org/10.3390/jcm14134692 - 2 Jul 2025
Viewed by 275
Abstract
Background/Objectives: To evaluate the efficacy and safety of using the preservative-free topical proxymetacaine hydrochloride (Minims, 0.5% w/v, Bausch & Lomb, UK) to control postoperative pain after epithelium-off corneal crosslinking (CXL) for keratoconus. Methods: This is an observational study [...] Read more.
Background/Objectives: To evaluate the efficacy and safety of using the preservative-free topical proxymetacaine hydrochloride (Minims, 0.5% w/v, Bausch & Lomb, UK) to control postoperative pain after epithelium-off corneal crosslinking (CXL) for keratoconus. Methods: This is an observational study of patients with mild to severe keratoconus who have undergone epithelium-off CXL. CXL was completed by applying dextran-free riboflavin (0.1%) for 10 min (Vibex Rapid; Avedro, Inc.), followed by continuous UV-A light (Avedro KXL system; Avedro, Inc.) for 30 min at an intensity of 3 mW/cm2 and an energy of 5.4 J/cm2. All patients were prescribed postoperative proxymetacaine hydrochloride PRN with an allowed frequency of up to eight times per 24 h for the first 3 days to control postoperative pain. Patients were reviewed at 1–2 weeks postoperatively for a comprehensive examination, including assessment of delayed corneal healing, removal of the bandage contact lens, and recording of subjective symptoms. Results: There were 223 eyes of 180 patients with a mean age of 24.9 ± 8.6 years (range: 13–38 years). Male patients were 72%. At their planned first postoperative visit, we found no corneal healing abnormalities, such as persistent epithelial defects, epithelial irregularities, or early postoperative stromal haze, in any patient. All patients subjectively reported that proxymetacaine drops helped them to control postoperative pain, particularly in the first 48 h. Conclusions: None of the patients reported pain after 3 days of using proxymetacaine drops up to eight times a day for the first 3 days. It appears to be a safe and effective solution to control postoperative pain without any complications. Full article
(This article belongs to the Special Issue Advances in Anterior Segment Surgery: Second Edition)
32 pages, 1834 KiB  
Review
Regulation of Riboflavin Biosynthesis in Microorganisms and Construction of the Advanced Overproducers of This Vitamin
by Justyna Ruchala, Alicja Najdecka, Dominik Wojdyla, Wen Liu and Andriy Sibirny
Int. J. Mol. Sci. 2025, 26(13), 6243; https://doi.org/10.3390/ijms26136243 - 28 Jun 2025
Viewed by 688
Abstract
Riboflavin (vitamin B2) is an essential micronutrient required for all living organisms. It is naturally synthesized by plants and most microorganisms, including the bacterium Bacillus subtilis, the filamentous fungus Ashbya gossypii, and the yeast Candida famata—all of which [...] Read more.
Riboflavin (vitamin B2) is an essential micronutrient required for all living organisms. It is naturally synthesized by plants and most microorganisms, including the bacterium Bacillus subtilis, the filamentous fungus Ashbya gossypii, and the yeast Candida famata—all of which are known to be riboflavin overproducers. The choice of production organism in industrial applications depends on factors such as yield, ease of cultivation, and the availability of genetic tools. As a result, several microorganisms are commonly used, and their relative prominence can shift over time with advances in metabolic engineering and process optimization. This review presents a comparative analysis of riboflavin biosynthesis across prokaryotic and eukaryotic systems, with a particular focus on regulatory mechanisms governing flavinogenesis. Special attention is given to recent advances in metabolic engineering strategies, including the application of CRISPR/Cas9 genome editing in Bacillus subtilis and Ashbya gossypii. In yeast systems, significant improvements in riboflavin production have been achieved primarily through the manipulation of transcriptional regulators (e.g., SEF1, SFU1, TUP1) and metabolic genes. The role of other important genes (PRS3, ADE4, ZWF1, GND1, RFE1, VMA1, etc.) in riboflavin overproduction in C. famata is described. The review also explores the use of alternative, low-cost feedstocks—including lignocellulosic hydrolysates and dairy by-products—to support more sustainable and economically viable riboflavin production. Although considerable progress has been achieved in genetic optimization and bioprocess development, further work is required to fine-tune metabolic flux and maximize riboflavin synthesis, particularly under industrial conditions. This review highlights key opportunities for future research aimed at refining metabolic interventions and expanding the use of renewable substrates for environmentally sustainable riboflavin production. Full article
(This article belongs to the Special Issue New Advances in Metabolic Engineering and Synthetic Biology of Yeasts)
Show Figures

Figure 1

29 pages, 4978 KiB  
Article
HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential
by Loretta Pobłocka-Olech, Mirosława Krauze-Baranowska, Sylwia Godlewska and Katarzyna Kimel
Int. J. Mol. Sci. 2025, 26(13), 6189; https://doi.org/10.3390/ijms26136189 - 27 Jun 2025
Viewed by 378
Abstract
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × [...] Read more.
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × candicans, and Populus nigra, in order to search for a source of raw plant material rich in active compounds. Total salicylate (TSC), flavonoid (TFC), and phenolic compound (TPC) contents were determined, and the antioxidant potential was assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) diammonium salt), and FRAP (ferric reducing antioxidant power) assays as well as 2D-TLC (two-dimensional thin layer chromatography) bioautography using DPPH, riboflavin-light-NBT (nitro blue tetrazolium chloride), and xanthine oxidase inhibition tests. Secondary metabolites present in the analyzed poplar leaves were identified under the developed HPLC-DAD-ESI/MS (high performance liquid chromatography with photodiode array detection and electrospray ionization mass spectrometric detection analysis conditions and using the 2D-TLC method. Among the 80 identified compounds, 13 were shown for the first time in the genus Populus. The most diverse and similar set of flavonoids characterized the leaves of P. × candicans and P. nigra, while numerous salicylic compounds were present in the leaves of P. alba and P. × candicans. All analyzed leaves are a rich source of phenolic compounds. The highest flavonoid content was found in the leaves of P. × candicans and P. nigra, while the leaves of P. alba were characterized by the highest content of salicylates. All examined poplar leaves demonstrated antioxidant potential in all the assays used, which decreased in the following order: P. nigra, P. × candicans, P. alba. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

20 pages, 912 KiB  
Article
Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption
by Rulamán Vargas-Quesada, Rafael Monge-Rojas, Sonia Rodríguez-Ramírez, Jacqueline Araneda-Flores, Leandro Teixeira Cacau, Gustavo Cediel, Diego Gaitán-Charry, Tito Pizarro Quevedo, Anna Christina Pinheiro Fernandes, Alicia Rovirosa, Tania G. Sánchez-Pimienta and María Elisa Zapata
Nutrients 2025, 17(12), 2048; https://doi.org/10.3390/nu17122048 - 19 Jun 2025
Viewed by 1363
Abstract
Background/Objectives: Adolescents in Latin America are experiencing rising rates of overweight/obesity and non-communicable diseases, while public health nutrition efforts targeting this group remain limited. This study explores adherence to the EAT-Lancet diet and its relationship with micronutrient adequacy and ultra-processed food (UPF) consumption. [...] Read more.
Background/Objectives: Adolescents in Latin America are experiencing rising rates of overweight/obesity and non-communicable diseases, while public health nutrition efforts targeting this group remain limited. This study explores adherence to the EAT-Lancet diet and its relationship with micronutrient adequacy and ultra-processed food (UPF) consumption. Methods: Cross-sectional data from national nutrition surveys of 19,601 adolescents across six Latin American countries were analyzed. Data on sociodemographics, anthropometrics, and dietary habits were collected using standardized questionnaires and 24 h dietary recalls or food records. Nutrient intake was estimated via statistical modeling, and nutrient adequacy ratios were based on age- and sex-specific requirements. UPF intake was classified using the NOVA system, and adherence to the EAT-Lancet diet was assessed with the Planetary Health Diet Index. Results: Overall adherence to the EAT-Lancet diet was low (mean score: 28.3%). Rural adolescents had higher adherence than urban adolescents, and those aged 10–13 and 17–19 showed better adherence compared to adolescents aged 14–16. Adolescents from lower socioeconomic backgrounds adhered more than those from higher socioeconomic backgrounds. Adherence varied from 20.2% in Argentina to 30.2% in Brazil and Chile. Higher adherence was associated with lower UPF intake. Among urban adolescents, greater adherence was linked to a higher risk of inadequate riboflavin, niacin, and cobalamin intake, a trend not observed in rural adolescents. Conclusions: Adherence to the EAT-Lancet diet is low among Latin American adolescents, particularly in urban areas. Public health efforts should prioritize reducing UPF consumption, improving access to nutrient-dense, culturally appropriate foods, and supporting fortified staple foods. Full article
(This article belongs to the Section Nutritional Epidemiology)
Show Figures

Figure 1

42 pages, 18742 KiB  
Article
Mitochondrial Unfolded Protein Response (mtUPR) Activation Improves Pathological Alterations in Cellular Models of Ethylmalonic Encephalopathy
by José Manuel Romero-Domínguez, Paula Cilleros-Holgado, David Gómez-Fernández, Rocío Piñero-Pérez, Diana Reche-López, Ana Romero-González, Mónica Álvarez-Córdoba, Alejandra López-Cabrera, Marta Castro De Oliveira, Andrés Rodríguez-Sacristán, Susana González-Granero, José Manuel García-Verdugo, Angeles Aroca and José A. Sánchez-Alcázar
Antioxidants 2025, 14(6), 741; https://doi.org/10.3390/antiox14060741 - 16 Jun 2025
Viewed by 2572
Abstract
Ethylmalonic encephalopathy (EE) is a serious metabolic disorder that usually appears in early childhood development and the effects are seen primarily in the brain, gastrointestinal tract, and peripheral vessels. EE is caused by pathogenic variants in the gene that encodes the ETHE1 protein, [...] Read more.
Ethylmalonic encephalopathy (EE) is a serious metabolic disorder that usually appears in early childhood development and the effects are seen primarily in the brain, gastrointestinal tract, and peripheral vessels. EE is caused by pathogenic variants in the gene that encodes the ETHE1 protein, and its main features are high levels of acidic compounds in body fluids and decreased activity of the mitochondrial complex IV, which limits energy production in tissues that require a large supply of energy. ETHE1 is a mitochondrial sulfur dioxygenase that plays the role of hydrogen sulfide (H2S) detoxification, and, when altered, it leads to the accumulation of this gaseous molecule due to its deficient elimination. In this article, we characterised the pathophysiology of ETHE1 deficiency in cellular models, fibroblasts, and induced neurons, derived from a patient with a homozygous pathogenic variant in ETHE1. Furthermore, we evaluated the effect of the activation of the mitochondrial unfolded protein response (mtUPR) on the mutant phenotype. Our results suggest that mutant fibroblasts have alterations in ETHE1 protein expression levels, associated with elevated levels of H2S and protein persulfidation, mitochondrial dysfunction, iron/lipofuscin accumulation, and oxidative stress. We also identified a cocktail of compounds consisting of pterostilbene, nicotinamide, riboflavin, thiamine, biotin, lipoic acid, and L-carnitine that improved the cellular and metabolic alterations. The positive effect of the cocktail was dependent on sirtuin 3 activation (SIRT3) and was also confirmed in induced neurons obtained by direct reprogramming. In conclusion, personalised precision medicine in EE using patient-derived cellular models can be an interesting approach for the screening and evaluation of potential therapies. In addition, the activation of the SIRT3 axe of mtUPR is a promising therapeutic strategy for rescuing ETHE1 pathogenic variants. Full article
Show Figures

Graphical abstract

15 pages, 2347 KiB  
Article
In Vitro Evaluation of Candida spp. and Staphylococcus aureus Sensitivity to 450 nm Diode Laser-Mediated Antimicrobial Photodynamic Therapy with Curcumin and Riboflavin
by Marcin Tkaczyk, Anna Mertas, Anna Kuśka-Kiełbratowska, Jakub Fiegler-Rudol, Elżbieta Bobela, Maria Cisowska, Tadeusz Morawiec, Dariusz Skaba and Rafał Wiench
Int. J. Mol. Sci. 2025, 26(12), 5645; https://doi.org/10.3390/ijms26125645 - 12 Jun 2025
Viewed by 710
Abstract
Oral candidiasis, commonly caused by Candida (C.) albicans and other non-albicans Candida species, increases resistance to conventional antifungal therapies. This study aimed to evaluate the in vitro efficacy of antimicrobial photodynamic therapy (aPDT) using a 450 nm diode laser in combination [...] Read more.
Oral candidiasis, commonly caused by Candida (C.) albicans and other non-albicans Candida species, increases resistance to conventional antifungal therapies. This study aimed to evaluate the in vitro efficacy of antimicrobial photodynamic therapy (aPDT) using a 450 nm diode laser in combination with curcumin and riboflavin against Candida spp. and Staphylococcus (S.) aureus. Reference strains of C. albicans, C. glabrata, C. krusei, and S. aureus were exposed to aPDT under varying incubation times and laser parameters, then viable microorganism cells (CFU) counts were assessed the microbial reduction, and statistical analyses were performed to evaluate significance. aPDT significantly reduced microbial viability in a time- and dose-dependent manner. Optimal incubation times were 20 min for Candida spp. and 10 min for S. aureus, with the highest efficacy observed at 400 mW and 120 s irradiation. The photosensitizer or laser alone had no significant antimicrobial effect. Curcumin/riboflavin-mediated aPDT is a promising alternative or adjunctive approach to conventional antimicrobial therapy, particularly for resistant oral infections. Full article
(This article belongs to the Special Issue Recent Advances in Laser and Photodynamic Therapy)
Show Figures

Figure 1

17 pages, 1259 KiB  
Article
In Vitro Analysis and Assessment of the Bioavailability of Selected Minerals and B Vitamins in Kefir Enriched with Microalgae
by Łukasz Byczyński, Robert Duliński and Sylwester Smoleń
Appl. Sci. 2025, 15(12), 6567; https://doi.org/10.3390/app15126567 - 11 Jun 2025
Viewed by 573
Abstract
In the presented work, an attempt was made to digest kefir enriched with microalgae additives from the species Arthrospira platensis and Chlorella pyrenoidosa in four concentrations—0.1, 0.5, 1, and 5%. The level of released protein, phosphorus, iron, iodine, and selected vitamins from the [...] Read more.
In the presented work, an attempt was made to digest kefir enriched with microalgae additives from the species Arthrospira platensis and Chlorella pyrenoidosa in four concentrations—0.1, 0.5, 1, and 5%. The level of released protein, phosphorus, iron, iodine, and selected vitamins from the B group was analyzed, and their bioavailability was additionally estimated. The amount of iron released in these conditions increased significantly from 0.1% of the supplementation level. Higher values of iron were obtained for Chlorella, and in the case of protein, slightly higher values were noted for Spirulina. In turn, for vitamin B2, higher amounts were noted for Chlorella for doses of 1 and 5%. In the case of vitamin B12, significantly higher amounts were noted in the case of Spirulina supplementation. After in vitro digestion, an increase in the bioavailability of protein and phosphorus was observed with an increase in the dose of microalgae. The relative bioavailability of iron decreased with an increase in the dose of microalgae used, similarly to vitamin B12. Chlorella was characterized by higher iron bioavailability than Spirulina, and in the case of vitamin B2 only at the highest doses of 1 and 5% of the algal supplement. The tests carried out show that microalgae supplementation significantly increases the content of protein, phosphorus, iron, and vitamin B12 in the tested kefir. Full article
(This article belongs to the Special Issue Bioprocessing and Fermentation Technology for Biomass Conversion)
Show Figures

Figure 1

Back to TopTop