Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Setting
2.2. Demographic and Socioeconomic Status Variables
2.3. Anthropometric Assessment
2.4. Dietary Assessment
2.5. Usual Dietary Intake
2.6. Nutrient Adequacy
2.7. Ultra-Processed Foods Intake
2.8. The Planetary Health Diet Index
2.9. Statistical Analyses
3. Results
3.1. Characteristics, Planetary Health Diet Index, and Ultra-Processed Food Intake of Study Participants
3.2. Planetary Health Diet Index Components Score
3.3. Association Between Adherence to the Planetary Health Diet Index and Nutrient Intakes
3.4. Association Between Adherence to the EAT-Lancet Diet and Ultra-Processed Foods Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
Abbreviations
24-HR | 24-hour recall |
3-FR | 3-day food record |
CI | Confidence interval |
DGV | Dark green leafy vegetables |
EAR | Estimated Average Requirement |
GLM | Generalized linear regression model |
MSM | Multiple Source Method |
NAR | Nutrient Adequacy Ratio |
NCD | Non-communicable disease |
PC-SIDE | PC Software for Intake Distribution Estimation |
PHDI | Planetary Health Diet Index |
PR | Prevalence ratio |
ReV | Red and orange vegetables |
SES | Socioeconomic status |
UPF | Ultra-processed food |
References
- Chipman, A. Why Youth NCD Prevention Is Important. In Addressing Non-Communicable Diseases in Adolescence; The Economist Intelligence Unit: London, UK, 2019; p. 38. [Google Scholar]
- Rivera, J.Á.; De Cossío, T.G.; Pedraza, L.S.; Aburto, T.C.; Sánchez, T.G.; Martorell, R. Childhood and Adolescent Overweight and Obesity in Latin America: A Systematic Review. Lancet Diabetes Endocrinol. 2014, 2, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.R.G.; Macotela, Y.; Velloso, L.A.; Mori, M.A. Determinants of Obesity in Latin America. Nat. Metab. 2024, 6, 409–432. [Google Scholar] [CrossRef] [PubMed]
- Lomaglio, D.B.; Pacheco Agüero, R.E. Effects of the Nutrition Transition in Argentinean Children and Adolescents: A Narrative Review of Overweight and Obesity Prevalence between 2000 and 2021. J. Public Health Emerg. 2022, 6, 37. [Google Scholar] [CrossRef]
- Ministerio de Salud, Costa Rica. Encuesta Colegial de Vigilancia Nutricional y de Actividad Física [High School Survey of Nutritional Surveillance and Physical Activity]; Ministerio de Salud: San José, Costa Rica, 2020. [Google Scholar]
- Palacio-Agüero, A.; Díaz-Torrente, X.; Quintiliano Scarpelli Dourado, D. Relative Handgrip Strength, Nutritional Status and Abdominal Obesity in Chilean Adolescents. PLoS ONE 2020, 15, e0234316. [Google Scholar] [CrossRef]
- Bustos, P.; Saez, K.; Gleisner, A.; Ulloa, N.; Calvo, C.; Asenjo, S. Metabolic Syndrome in Obese Adolescents. Pediatr. Diabetes 2010, 11, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Caceres, M.; Teran, C.G.; Rodriguez, S.; Medina, M. Prevalence of Insulin Resistance and Its Association with Metabolic Syndrome Criteria among Bolivian Children and Adolescents with Obesity. BMC Pediatr. 2008, 8, 31. [Google Scholar] [CrossRef]
- ALjaraedah, T.Y.; Takruri, H.R.; Tayyem, R.F. Dietary Practices and Nutrient Intake among Adolescents: A General Review. Obes. Med. 2019, 16, 100145. [Google Scholar] [CrossRef]
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.-J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A Foundation for Future Health. Lancet 2012, 379, 1630–1640. [Google Scholar] [CrossRef]
- Global Accelerated Action for the Health of Adolescents (AA-HA!): Guidance to Support Country Implementation, 2nd ed.; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-008176-5.
- Dick, B.; Ferguson, B.J. Health for the World’s Adolescents: A Second Chance in the Second Decade. J. Adolesc. Health 2015, 56, 3–6. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Ni, Y.; Yi, C.; Fang, Y.; Ning, Q.; Shen, B.; Zhang, K.; Liu, Y.; Yang, L.; et al. Global Prevalence of Overweight and Obesity in Children and Adolescents: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2024, 178, 800. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Reardon, T. Obesity and the Food System Transformation in LATIN AMERICA. Obes. Rev. 2018, 19, 1028–1064. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Ng, S.W. The Nutrition Transition to a Stage of High Obesity and Noncommunicable Disease Prevalence Dominated by Ultra-processed Foods Is Not Inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Matos, R.A.; Adams, M.; Sabaté, J. Review: The Consumption of Ultra-Processed Foods and Non-Communicable Diseases in Latin America. Front. Nutr. 2021, 8, 622714. [Google Scholar] [CrossRef] [PubMed]
- Webb, P.; Benton, T.G.; Beddington, J.; Flynn, D.; Kelly, N.M.; Thomas, S.M. The Urgency of Food System Transformation Is Now Irrefutable. Nat. Food 2020, 1, 584–585. [Google Scholar] [CrossRef]
- Dorn, L.D.; Hostinar, C.E.; Susman, E.J.; Pervanidou, P. Conceptualizing Puberty as a Window of Opportunity for Impacting Health and Well-Being Across the Life Span. J. Res. Adolesc. 2019, 29, 155–176. [Google Scholar] [CrossRef]
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet Score and Major Health Outcomes: The EPIC-Oxford Study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef]
- Stubbendorff, A.; Sonestedt, E.; Ramne, S.; Drake, I.; Hallström, E.; Ericson, U. Development of an EAT-Lancet Index and Its Relation to Mortality in a Swedish Population. Am. J. Clin. Nutr. 2022, 115, 705–716. [Google Scholar] [CrossRef]
- Ye, Y.-X.; Geng, T.-T.; Zhou, Y.-F.; He, P.; Zhang, J.-J.; Liu, G.; Willett, W.; Pan, A.; Koh, W.-P. Adherence to a Planetary Health Diet, Environmental Impacts, and Mortality in Chinese Adults. JAMA Netw. Open 2023, 6, e2339468. [Google Scholar] [CrossRef]
- Zhang, S.; Dukuzimana, J.; Stubbendorff, A.; Ericson, U.; Borné, Y.; Sonestedt, E. Adherence to the EAT-Lancet Diet and Risk of Coronary Events in the Malmö Diet and Cancer Cohort Study. Am. J. Clin. Nutr. 2023, 117, 903–909. [Google Scholar] [CrossRef]
- Montejano Vallejo, R.; Schulz, C.-A.; Van De Locht, K.; Oluwagbemigun, K.; Alexy, U.; Nöthlings, U. Associations of Adherence to a Dietary Index Based on the EAT–Lancet Reference Diet with Nutritional, Anthropometric, and Ecological Sustainability Parameters: Results from the German DONALD Cohort Study. J. Nutr. 2022, 152, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Karavasiloglou, N.; Thompson, A.S.; Pestoni, G.; Knuppel, A.; Papier, K.; Cassidy, A.; Kühn, T.; Rohrmann, S. Adherence to the EAT-Lancet Reference Diet Is Associated with a Reduced Risk of Incident Cancer and All-Cause Mortality in UK Adults. One Earth 2023, 6, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, A.P.M.; Van De Rest, O.; Witkamp, R.F.; De Groot, L.C.P.G.M. The Association between Adherence to the EAT-Lancet Diet and Cognitive Ageing. Age Ageing 2024, 53, ii39–ii46. [Google Scholar] [CrossRef]
- Berthy, F.; Brunin, J.; Allès, B.; Reuzé, A.; Touvier, M.; Hercberg, S.; Lairon, D.; Pointereau, P.; Mariotti, F.; Baudry, J.; et al. Higher Adherence to the EAT-Lancet Reference Diet Is Associated with Higher Nutrient Adequacy in the NutriNet-Santé Cohort: A Cross-Sectional Study. Am. J. Clin. Nutr. 2023, 117, 1174–1185. [Google Scholar] [CrossRef]
- Frank, S.M.; Jaacks, L.M.; Adair, L.S.; Avery, C.L.; Meyer, K.; Rose, D.; Taillie, L.S. Adherence to the Planetary Health Diet Index and Correlation with Nutrients of Public Health Concern: An Analysis of NHANES 2003–2018. Am. J. Clin. Nutr. 2024, 119, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Cacau, L.T.; Hanley-Cook, G.T.; Huybrechts, I.; De Henauw, S.; Kersting, M.; Gonzalez-Gross, M.; Gottrand, F.; Ferrari, M.; Nova, E.; Castillo, M.J.; et al. Relative Validity of the Planetary Health Diet Index by Comparison with Usual Nutrient Intakes, Plasma Food Consumption Biomarkers, and Adherence to the Mediterranean Diet among European Adolescents: The HELENA Study. Eur. J. Nutr. 2023, 62, 2527–2539. [Google Scholar] [CrossRef]
- Beal, T.; Ortenzi, F.; Fanzo, J. Estimated Micronutrient Shortfalls of the EAT–Lancet Planetary Health Diet. Lancet Planet. Health 2023, 7, e233–e237. [Google Scholar] [CrossRef]
- Leonard, U.M.; Leydon, C.L.; Arranz, E.; Kiely, M.E. Impact of the Dietary Transition to Minimise Environmental Impacts on Micronutrient Intakes: A Systematic Literature Review. Proc. Nutr. Soc. 2023, 82, E377. [Google Scholar] [CrossRef]
- Olmedilla, B.; Granado, F. Growth and Micronutrient Needs of Adolescents. Eur. J. Clin. Nutr. 2000, 54, S11–S15. [Google Scholar] [CrossRef]
- Grosso, G.; Galvano, F. Mediterranean Diet Adherence in Children and Adolescents in Southern European Countries. NFS J. 2016, 3, 13–19. [Google Scholar] [CrossRef]
- Levin, K.A. Urban–Rural Differences in Adolescent Eating Behaviour: A Multilevel Cross-Sectional Study of 15-Year-Olds in Scotland. Public Health Nutr. 2014, 17, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Monge-Rojas, R.; O’Neill, J.; Lee-Bravatti, M.; Mattei, J. A Traditional Costa Rican Adolescents’ Diet Score Is a Valid Tool to Capture Diet Quality and Identify Sociodemographic Groups With Suboptimal Diet. Front. Public Health 2021, 9, 708956. [Google Scholar] [CrossRef] [PubMed]
- Bolton, K.A.; Jacka, F.; Allender, S.; Kremer, P.; Gibbs, L.; Waters, E.; De Silva, A. The Association between Self-reported Diet Quality and Health-related Quality of Life in Rural and Urban Australian Adolescents. Aust. J. Rural Health 2016, 24, 317–325. [Google Scholar] [CrossRef]
- Marchioni, D.M.; Cacau, L.T.; De Carli, E.; Carvalho, A.M.D.; Rulli, M.C. Low Adherence to the EAT-Lancet Sustainable Reference Diet in the Brazilian Population: Findings from the National Dietary Survey 2017–2018. Nutrients 2022, 14, 1187. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Salud y Desarrollo Social, Argentina 2nda Encuesta Nacional de Nutrición y Salud (ENNYS 2), 2018–2019. 2021. Available online: http://datos.salud.gob.ar/dataset/ennys2/archivo/d5c86f64-624e-49ef-88e1-9ce62c1d184e (accessed on 8 May 2025).
- IBGE Coordenação de Trabalho e Rendimento. Pesquisa de Orçamentos Familiares; Ibge: Rio de Janeiro, Brazil, 2024; ISBN 9788524045264. [Google Scholar]
- IBGE Coordenação de Trabalho e Rendimento. Pesquisa de Orçamentos Familiares; Ibge: Rio de Janeiro, Brazil, 2020; ISBN 9786587201153. [Google Scholar]
- Ministerio de Salud de Chile. Encuesta Nacional de Consumo Alimentario. Informe Final 2014. Available online: https://www.ipsuss.cl/ipsuss/site/docs/20150719/20150719224146/enca_2010_informe_final.pdf (accessed on 8 May 2025).
- Instituto Colombiano de Bienestar Familiar. Encuesta Nacional de la Situación Nutricional-ENSIN 2015: Protocolo de Investigación 2015. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/ED/GCFI/documento-metodologico-ensin-2015.pdf (accessed on 8 May 2025).
- Monge-Rojas, R.; Vargas-Quesada, R.; Chinnock, A.; Colón-Ramos, U. Changes in Dietary Intake of Major Nutrients and Food Sources among Costa Rican Adolescents in the Last 20 Years. J. Nutr. 2020, 150, 2405–2411. [Google Scholar] [CrossRef]
- Ramírez-Silva, I.; Rodríguez-Ramírez, S.; Barragán-Vázquez, S.; Castellanos-Gutiérrez, A.; Reyes-García, A.; Martínez-Piña, A.; Pedroza-Tobías, A. Prevalence of Inadequate Intake of Vitamins and Minerals in the Mexican Population Correcting by Nutrient Retention Factors, Ensanut 2016. Salud Publica Mex 2020, 62, 521–531. [Google Scholar] [CrossRef]
- Romero-Martínez, M.; Shamah-Levy, T.; Cuevas-Nasu, L.; Méndez Gómez-Humarán, I.; Gaona-Pineda, E.B.; Gómez-Acosta, L.M.; Rivera-Dommarco, J.Á.; Hernández-Ávila, M. Diseño Metodológico de La Encuesta Nacional de Salud y Nutrición de Medio Camino 2016. Salud Publica Mex 2017, 59, 299. [Google Scholar] [CrossRef]
- Preedy, V.R. (Ed.) Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease; Springer: New York, NY, USA, 2012; ISBN 978-1-4419-1787-4. [Google Scholar]
- World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age; Methods and Development; de Onis, M., Ed.; WHO child growth standards; WHO Press: Geneva, Switzerland, 2006; ISBN 978-92-4-154693-5. [Google Scholar]
- Deitchler, M.; Arimond, M.; Carriquiry, A.; Hotz, C.; Tooze, J.A. Planning and Design Considerations for Quantitative 24-Hour Recall Dietary Surveys in Low- and Middle-Income Countries; Intake—Center for Dietary Assessment/FHI Solutions: Washington, DC, USA, 2020. [Google Scholar]
- Baranowski, T. 24-Hour Recall and Diet Record Methods. In Nutritional Epidemiology; Oxford University Press: London, UK, 2012; pp. 49–69. ISBN 978-0-19-975403-8. [Google Scholar]
- Harttig, U.; Haubrock, J.; Knüppel, S.; Boeing, H.; on behalf of the EFCOVAL Consortium. The MSM Program: Web-Based Statistics Package for Estimating Usual Dietary Intake Using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65, S87–S91. [Google Scholar] [CrossRef]
- Tooze, J. Estimating Usual Intakes from Dietary Surveys: Methodologic Challenges, Analysis Approaches, and Recommendations for Low- and Middle-Income Countries 2020; Intake—Center for Dietary Assessment/FHI Solutions: Washington, DC, USA, 2020. [Google Scholar]
- Carriquiry, A.L. Estimation of Usual Intake Distributions of Nutrients and Foods. J. Nutr. 2003, 133, 601S–608S. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; National Academies Press: Washington, DC, USA, 2006; p. 11537. ISBN 978-0-309-15742-1. [Google Scholar]
- Barr, S.I. Applications of Dietary Reference Intakes in Dietary Assessment and Planning. Appl. Physiol. Nutr. Metab. 2006, 31, 66–73. [Google Scholar] [CrossRef]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization, Food and Agriculture Organization of the United Nations, Eds.; World Health Organization: Geneva, Switzerland; FAO: Rome, Italy, 2004; ISBN 978-92-4-154612-6. [Google Scholar]
- Martinez-Steele, E.; Khandpur, N.; Batis, C.; Bes-Rastrollo, M.; Bonaccio, M.; Cediel, G.; Huybrechts, I.; Juul, F.; Levy, R.B.; Da Costa Louzada, M.L.; et al. Best Practices for Applying the Nova Food Classification System. Nat. Food 2023, 4, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A. Nutrition and Health. The Issue Is Not Food, nor Nutrients, so Much as Processing. Public Health Nutr. 2009, 12, 729–731. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; Castro, I.R.R.D.; Cannon, G. A New Classification of Foods Based on the Extent and Purpose of Their Processing. Cad. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef]
- Cacau, L.T.; Marchioni, D.M. The Planetary Health Diet Index Scores Proportionally and Considers the Intermediate Values of the EAT-Lancet Reference Diet. Am. J. Clin. Nutr. 2022, 115, 1237. [Google Scholar] [CrossRef]
- Cacau, L.T.; De Carli, E.; De Carvalho, A.M.; Lotufo, P.A.; Moreno, L.A.; Bensenor, I.M.; Marchioni, D.M. Development and Validation of an Index Based on EAT-Lancet Recommendations: The Planetary Health Diet Index. Nutrients 2021, 13, 1698. [Google Scholar] [CrossRef]
- Korn, E.L.; Graubard, B.I. Simultaneous Testing of Regression Coefficients with Complex Survey Data: Use of Bonferroni t Statistics. Am. Stat. 1990, 44, 270–276. [Google Scholar] [CrossRef]
- Barros, A.J.; Hirakata, V.N. Alternatives for Logistic Regression in Cross-Sectional Studies: An Empirical Comparison of Models That Directly Estimate the Prevalence Ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.R.; Deddens, J.A. A Comparison of Two Methods for Estimating Prevalence Ratios. BMC Med. Res. Methodol. 2008, 8, 9. [Google Scholar] [CrossRef]
- McNutt, L.-A. Estimating the Relative Risk in Cohort Studies and Clinical Trials of Common Outcomes. Am. J. Epidemiol. 2003, 157, 940–943. [Google Scholar] [CrossRef]
- Zou, G. A Modified Poisson Regression Approach to Prospective Studies with Binary Data. Am. J. Epidemiol. 2004, 159, 702–706. [Google Scholar] [CrossRef]
- Martinez, B.A.F.; Leotti, V.B.; Silva, G.D.S.E.; Nunes, L.N.; Machado, G.; Corbellini, L.G. Odds Ratio or Prevalence Ratio? An Overview of Reported Statistical Methods and Appropriateness of Interpretations in Cross-Sectional Studies with Dichotomous Outcomes in Veterinary Medicine. Front. Vet. Sci. 2017, 4, 193. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, S. Probability and Stochastic Processes. In Machine Learning: A Bayesian and Optimization Perspective; Elsevier Academic Press: London, UK, 2020; ISBN 978-0-12-818803-3. [Google Scholar]
- Vargas-Quesada, R.; Monge-Rojas, R.; Romero-Zúñiga, J.J.; Aguirre, R.A.; Kovalskys, I.; Herrera-Cuenca, M.; Cortés, L.Y.; García, M.C.Y.; Liria-Domínguez, R.; Rigotti, A.; et al. Adherence to the EAT-Lancet Diet and Its Association with Micronutrient Intake in the Urban Population of Eight Latin American Countries. Nutr. Res. 2025, 139, 136–148. [Google Scholar] [CrossRef]
- Ambikapathi, R.; Schneider, K.R.; Davis, B.; Herrero, M.; Winters, P.; Fanzo, J.C. Global Food Systems Transitions Have Enabled Affordable Diets but Had Less Favourable Outcomes for Nutrition, Environmental Health, Inclusion and Equity. Nat. Food 2022, 3, 764–779. [Google Scholar] [CrossRef]
- De Bruin, S.; Dengerink, J.; Van Vliet, J. Urbanisation as Driver of Food System Transformation and Opportunities for Rural Livelihoods. Food Sec. 2021, 13, 781–798. [Google Scholar] [CrossRef]
- Research Institute (Ifpri), I.F.P. Urbanization and the Nutrition Transition; International Food Policy Research Institute: Washington, DC, USA, 2017. [Google Scholar]
- Berdegué, J.A.; Fuentealba, R. The State of Smallholders in Agriculture in Latin America. In New Directions for Smallholder Agriculture; Hazell, P.B.R., Rahman, A., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 115–152. ISBN 978-0-19-968934-7. [Google Scholar]
- Salcedo, S.; Guzmán, L. Agricultura Familiar en América Latina y el Caribe: Recomendaciones de Política; FAO: Santiago, Chile, 2014; ISBN 978-92-5-308364-0. [Google Scholar]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA Food Classification and the Trouble with Ultra-Processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Cacau, L.T.; Souza, T.N.; Louzada, M.L.D.C.; Marchioni, D.M.L. Adherence to the EAT- Lancet Sustainable Diet and Ultra-Processed Food Consumption: Findings from a Nationwide Population-Based Study in Brazil. Public Health Nutr. 2024, 27, e183. [Google Scholar] [CrossRef] [PubMed]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and Adequacy of the Vegan Diet. A Systematic Review of the Evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Monge-Rojas, R.; Vargas-Quesada, R.; Previdelli, A.N.; Kovalskys, I.; Herrera-Cuenca, M.; Cortés, L.Y.; García, M.C.Y.; Liria-Domínguez, R.; Rigotti, A.; Fisberg, R.M.; et al. A Landscape of Micronutrient Dietary Intake by 15- to 65-Years-Old Urban Population in 8 Latin American Countries: Results From the Latin American Study of Health and Nutrition. Food Nutr. Bull. 2024, 45, S11–S25. [Google Scholar] [CrossRef]
- Slavin, J. Whole Grains and Human Health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Fontanelli, M.M.; Kowalskys, I.; Gómez, G.; Rigotti, A.; Cortés, L.Y.; García, M.Y.; Pareja, R.G.; Herrera-Cuenca, M.; Fisberg, M.; et al. Total and Whole Grain Intake in Latin America: Findings from the Multicenter Cross-Sectional Latin American Study of Health and Nutrition (ELANS). Eur. J. Nutr. 2022, 61, 489–501. [Google Scholar] [CrossRef]
- Garzillo, J.M.F.; Machado, P.P.; Louzada, M.L.D.C.; Levy, R.B.; Monteiro, C.A. Footprints of Foods and Culinary Preparations Consumed in Brazil; Universidade de São Paulo, Faculdade de Saúde Pública: São Paulo, Brazil, 2020; ISBN 978-85-88848-40-5. [Google Scholar]
- Garnett, T. What Is a Sustainable Healthy Diet? University of Oxford: Oxford, UK, 2014. [Google Scholar]
- Green, R.; Allen, L.H.; Bjørke-Monsen, A.-L.; Brito, A.; Guéant, J.-L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.-H.; et al. Vitamin B12 Deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Klapp, A.-L.; Wyma, N.; Alessandrini, R.; Ndinda, C.; Perez-Cueto, A.; Risius, A. Recommendations to Address the Shortfalls of the EAT–Lancet Planetary Health Diet from a Plant-Forward Perspective. Lancet Planet. Health 2025, 9, e23–e33. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.F. Vitamin B12 Levels in Children and Adolescents on Plant-Based Diets: A Systematic Review and Meta-Analysis. Nutr. Rev. 2023, 81, 951–966. [Google Scholar] [CrossRef]
- Watanabe, F. Vitamin B12 Sources and Bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.S.; Rauber, F.; Leffa, P.S.; Sangalli, C.N.; Campagnolo, P.D.B.; Vitolo, M.R. Ultra-Processed Food Consumption and Its Effects on Anthropometric and Glucose Profile: A Longitudinal Study during Childhood. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 177–184. [Google Scholar] [CrossRef]
- Costa, C.D.S.; Assunção, M.C.F.; Loret De Mola, C.; Cardoso, J.D.S.; Matijasevich, A.; Barros, A.J.D.; Santos, I.S. Role of Ultra-Processed Food in Fat Mass Index between 6 and 11 Years of Age: A Cohort Study. Int. J. Epidemiol. 2021, 50, 256–265. [Google Scholar] [CrossRef]
- Rauber, F.; Campagnolo, P.D.B.; Hoffman, D.J.; Vitolo, M.R. Consumption of Ultra-Processed Food Products and Its Effects on Children’s Lipid Profiles: A Longitudinal Study. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 116–122. [Google Scholar] [CrossRef]
- Tavares, L.F.; Fonseca, S.C.; Garcia Rosa, M.L.; Yokoo, E.M. Relationship between Ultra-Processed Foods and Metabolic Syndrome in Adolescents from a Brazilian Family Doctor Program. Public Health Nutr. 2012, 15, 82–87. [Google Scholar] [CrossRef]
- Marrero, A.; Nicoson, C.; Kelahan, H.; Mendoza, K.; Salvia, M.; Golden, C.; Mattei, J. Equity as a Priority in EAT–Lancet-Aligned Food System Transformations. Nat. Food 2024, 5, 811–817. [Google Scholar] [CrossRef]
- Chung, A.; Vieira, D.; Donley, T.; Tan, N.; Jean-Louis, G.; Kiely Gouley, K.; Seixas, A. Adolescent Peer Influence on Eating Behaviors via Social Media: Scoping Review. J. Med. Internet Res. 2021, 23, e19697. [Google Scholar] [CrossRef]
- Stok, F.M.; De Vet, E.; De Ridder, D.T.D.; De Wit, J.B.F. The Potential of Peer Social Norms to Shape Food Intake in Adolescents and Young Adults: A Systematic Review of Effects and Moderators. Health Psychol. Rev. 2016, 10, 326–340. [Google Scholar] [CrossRef] [PubMed]
- Higgs, S. Social Norms and Their Influence on Eating Behaviours. Appetite 2015, 86, 38–44. [Google Scholar] [CrossRef] [PubMed]
- FAO. Cost and Affordability of a Healthy Diet (CoAHD). 2024. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/f1ee0c49-04e7-43df-9b83-6820f4f37ca9/content/state-food-security-and-nutrition-2023/cost-affordability-healthy-diet.html (accessed on 6 May 2025).
- Shamah-Levy, T.; Cuevas Nasu, L.; Mayorga Borbolla, E.; Valenzuela Bravo, D. Consumo de alimentos en América Latina y el Caribe. An. Venez. Nutr. 2014, 27, 40–46. [Google Scholar]
- Comisión Económica para América Latina y el Caribe CEPAL; Instituto Nacional de Estadísticas INE. Encuestas de Ingresos y Gastos de los Hogares: Experiencias Recientes en América Latina y el Caribe, Documentos de Proyectos (LC/TS.2021/49) 2021. Available online: https://eulacfoundation.org/system/files/digital_library/2023-07/s2100114_es.pdf (accessed on 5 May 2025).
- Luchman, J.N. Determining Subgroup Difference Importance with Complex Survey Designs: An Application of Weighted Dominance Analysis. Surv. Pract. 2015, 8, 1–10. [Google Scholar] [CrossRef]
- Valliant, R.; Dever, J.A. Survey Weights: A Step-by-Step Guide to Calculation, 1st ed.; A Stata Press Publication; Stata Press: College Station, TX, USA, 2018; ISBN 978-1-59718-260-7. [Google Scholar]
- Valliant, R.; Dever, J.A.; Kreuter, F. Practical Tools for Designing and Weighting Survey Samples; Statistics for Social and Behavioral Sciences; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-93631-4. [Google Scholar]
Characteristic | Total | PHDI Score (Points) | UPF (%TEI) | ||||
---|---|---|---|---|---|---|---|
% 1 | Mean | 95% CI | p-Value 2 | Mean | 95% CI | p-Value 2 | |
Overall | 100.0 | 42.4 | 42.0–42.8 | - | 28.5 | 27.8–29.2 | - |
Sex | |||||||
Male | 50.9 | 42.0 | 41.4–42.7 | 0.050 | 28.4 | 27.4–29.3 | 0.773 |
Female | 49.1 | 42.9 | 42.3–43.4 | 28.6 | 27.6–29.6 | ||
Age | |||||||
10–13 years | 32.2 | 43.5 a | 42.8–44.2 | 0.001 | 28.0 | 27.2–28.9 | 0.548 |
14–16 years | 35.3 | 41.6 b | 41.0–42.2 | 28.8 | 27.5–30.0 | ||
17–19 years | 32.5 | 42.3 ab | 41.5–43.1 | 28.7 | 27.3–30.2 | ||
Country | |||||||
Argentina | 5.4 | 30.3 a | 29.6–31.0 | <0.001 | 29.6 a | 28.2–30.9 | <0.001 |
Brazil | 55.4 | 45.1 b | 44.8–45.5 | 26.5 b | 25.8–27.2 | ||
Chile | 4.2 | 45.3 b | 44.2–46.5 | 26.7 b | 24.5–28.9 | ||
Colombia | 5.4 | 35.6 c | 35.2–36.0 | 21.9 c | 21.3–22.6 | ||
Costa Rica | 0.2 | 42.6 d | 41.8–43.5 | 36.9 d | 35.4–38.4 | ||
Mexico | 29.4 | 40.4 e | 39.3–41.5 | 33.4 e | 31.7–35.3 | ||
Area | |||||||
Urban | 80.5 | 42.1 | 41.6–42.6 | <0.001 | 29.8 | 29.0–30.6 | <0.001 |
Rural 3 | 19.5 | 43.9 | 43.2–44.6 | 23.0 | 21.8–24.3 | ||
Socioeconomic status | |||||||
Low | 30.3 | 42.4 ab | 41.8–43.1 | 0.029 | 22.1 a | 21.2–23.1 | <0.001 |
Middle | 33.5 | 43.1 b | 42.5–43.7 | 28.3 b | 27.4–29.3 | ||
High | 36.2 | 41.8 a | 41.0–42.4 | 34.0 c | 32.6–35.4 | ||
Weight status 4 | |||||||
Non-overweight/obesity | 65.7 | 42.5 | 42.0–43.0 | 0.668 | 28.4 | 27.4–29.3 | 0.589 |
Overweight/obesity | 34.3 | 42.3 | 41.6–43.0 | 28.8 | 27.6–29.9 |
Nutrient | PR 1 | 95% CI | p-Value 2 | p-Trend 3 |
---|---|---|---|---|
Vitamins | ||||
Thiamin 4 | 1.052 | 0.911–1.215 | 0.485 | 0.733 |
Riboflavin 4 | 1.337 | 1.119–1.599 | 0.001 | 0.006 |
Niacin 4 | 1.499 | 1.250–1.798 | <0.001 | <0.001 |
Pyridoxine 4,5 | 1.026 | 0.919–1.146 | 0.648 | 0.692 |
Folate equivalents 4 | 0.674 | 0.596–0.763 | <0.001 | <0.001 |
Cobalamin 4 | 1.302 | 1.024–1.656 | 0.032 | 0.041 |
Vitamin C | 0.597 | 0.536–0.666 | <0.001 | <0.001 |
Vitamin A | 1.001 | 0.937–1.069 | 0.982 | 0.762 |
Vitamin D 4 | 0.998 | 0.996–1.001 | 0.180 | 0.652 |
Minerals | ||||
Calcium | 1.016 | 0.957–1.079 | 0.604 | 0.941 |
Iron | 0.993 | 0.908–1.086 | 0.882 | 0.485 |
Magnesium 4 | 0.720 | 0.663–0.783 | <0.001 | <0.001 |
Zinc | 1.041 | 0.888–1.219 | 0.623 | 0.739 |
Nutrient | Urban | Rural 6 | ||||||
---|---|---|---|---|---|---|---|---|
Inadequate Intake | Inadequate Intake | |||||||
PR 1 | 95% CI | p-Value 2 | p-Trend 3 | PR 1 | 95% CI | p-Value 2 | p-Trend 3 | |
Vitamins | ||||||||
Thiamin 4 | 1.058 | 0.882–1.268 | 0.541 | 0.734 | 0.949 | 0.749–1.201 | 0.662 | 0.835 |
Riboflavin 4 | 1.403 | 1.111–1.772 | 0.004 | 0.024 | 1.032 | 0.760–1.401 | 0.842 | 0.355 |
Niacin 4 | 1.432 | 1.154–1.778 | 0.001 | 0.002 | 1.251 | 0.797–1.963 | 0.331 | 0.155 |
Pyridoxine 4,5 | 1.089 | 0.941–1.262 | 0.252 | 0.356 | 0.943 | 0.798–1.115 | 0.494 | 0.532 |
Folate equivalents 4 | 0.691 | 0.594–0.805 | <0.001 | <0.001 | 0.668 | 0.559–0.799 | <0.001 | <0.001 |
Cobalamin 4 | 1.396 | 1.009–1.934 | 0.044 | 0.043 | 1.039 | 0.755–1.428 | 0.974 | 0.800 |
Vitamin C | 0.577 | 0.508–0.654 | <0.001 | <0.001 | 0.775 | 0.630–0.953 | 0.016 | 0.005 |
Vitamin A | 0.989 | 0.911–1.073 | 0.785 | 0.701 | 1.004 | 0.922–1.095 | 0.913 | 0.915 |
Vitamin D 4 | 1.000 | 0.997–1.002 | 0.729 | 0.944 | 0.997 | 0.991–1.004 | 0.419 | 0.177 |
Minerals | ||||||||
Calcium | 1.021 | 0.948–1.099 | 0.587 | 0.806 | 0.959 | 0.878–1.047 | 0.350 | 0.481 |
Iron | 1.005 | 0.899–1.123 | 0.936 | 0.730 | 0.904 | 0.813–1.004 | 0.059 | 0.078 |
Magnesium 4 | 0.753 | 0.683–0.830 | <0.001 | <0.001 | 0.601 | 0.515–0.702 | <0.001 | <0.001 |
Zinc | 1.094 | 0.906–1.320 | 0.352 | 0.955 | 0.877 | 0.672–1.146 | 0.337 | 0.254 |
Models | PHDI Quintile | UPF (%TEI) | ||||
---|---|---|---|---|---|---|
β 1 | 95% CI | p-Value 5 | p-Trend 6 | |||
Fully-adjusted 2 (n = 19,601) | 1st | ref | ref | - | <0.001 | |
2nd | −0.089 | −0.155–−0.023 | 0.008 | |||
3rd | −0.214 | −0.279–−0.149 | <0.001 | |||
4th | −0.309 | −0.370–−0.247 | <0.001 | |||
5th | −0.573 | −0.638–−0.507 | <0.001 | |||
Stratified analysis | Urban 3 (n = 14,671) | 1st | ref | ref | - | <0.001 |
2nd | −0.083 | −0.158–−0.008 | 0.031 | |||
3rd | −0.199 | −0.275–−0.124 | <0.001 | |||
4th | −0.301 | −0.373–−0.229 | <0.001 | |||
5th | −0.545 | −0.620–−0.471 | <0.001 | |||
Rural 3,4 (n = 4930) | 1st | ref | ref | - | <0.001 | |
2nd | −0.031 | −0.176–0.115 | 0.681 | |||
3rd | −0.235 | −0.361–−0.109 | <0.001 | |||
4th | −0.336 | −0.471–−0.202 | <0.001 | |||
5th | −0.646 | −0.802–−0.489 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Quesada, R.; Monge-Rojas, R.; Rodríguez-Ramírez, S.; Araneda-Flores, J.; Cacau, L.T.; Cediel, G.; Gaitán-Charry, D.; Pizarro Quevedo, T.; Pinheiro Fernandes, A.C.; Rovirosa, A.; et al. Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption. Nutrients 2025, 17, 2048. https://doi.org/10.3390/nu17122048
Vargas-Quesada R, Monge-Rojas R, Rodríguez-Ramírez S, Araneda-Flores J, Cacau LT, Cediel G, Gaitán-Charry D, Pizarro Quevedo T, Pinheiro Fernandes AC, Rovirosa A, et al. Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption. Nutrients. 2025; 17(12):2048. https://doi.org/10.3390/nu17122048
Chicago/Turabian StyleVargas-Quesada, Rulamán, Rafael Monge-Rojas, Sonia Rodríguez-Ramírez, Jacqueline Araneda-Flores, Leandro Teixeira Cacau, Gustavo Cediel, Diego Gaitán-Charry, Tito Pizarro Quevedo, Anna Christina Pinheiro Fernandes, Alicia Rovirosa, and et al. 2025. "Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption" Nutrients 17, no. 12: 2048. https://doi.org/10.3390/nu17122048
APA StyleVargas-Quesada, R., Monge-Rojas, R., Rodríguez-Ramírez, S., Araneda-Flores, J., Cacau, L. T., Cediel, G., Gaitán-Charry, D., Pizarro Quevedo, T., Pinheiro Fernandes, A. C., Rovirosa, A., Sánchez-Pimienta, T. G., & Zapata, M. E. (2025). Adherence to the EAT-Lancet Diet Among Urban and Rural Latin American Adolescents: Associations with Micronutrient Intake and Ultra-Processed Food Consumption. Nutrients, 17(12), 2048. https://doi.org/10.3390/nu17122048