HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential
Abstract
1. Introduction
2. Results
2.1. HPLC-DAD-ESI/MS Analysis
No | tR (min) | UV (λmax, nm) | m/z [M+H]+ | m/z [M-H]−/[M-H+HCOOH]− | Compound | Reference | N | A | C |
---|---|---|---|---|---|---|---|---|---|
1 | 4.92 | 214, 268 | 169/- | Gallic acid | tr 1 | tr 1 | + 1 | ||
2 | 6.16 | 211, 268 | -/331 | Salicin | + | ++ | +++ | ||
3 | 6.89 | 213, 274 | 109/- | Pyrocatechol | tr | + | + | ||
4 | 7.72 | 217, 272 | 271, 123/- | Unidentified saligenin derivative t.a. 2 | - | + | + | ||
5 | 8.16 | 260, 296 | 153/- | Protocatechuic acid | + | + | +++ | ||
6 | 9.86 | 210, 286, 333sh | 315/- | Dihydroxybenzoic acid hexoside isomer I | [16] | - | - | tr | |
7 | 9.94 | 192, 278 | 301/- | Unidentified compound | ++ | - | - | ||
8 | 10.06 | 208, 300sh, 326 | 315/- | Dihydroxybenzoic acid hexoside isomer II | [16] | - | - | tr | |
9 | 10.12 | 221, 298sh, 326 | 355 | 353/- | Chlorogenic acid isomer I (mono-Caffeoylquinic acid) | [6,13] | ++ | + | - |
10 | 11.24 | 223, 300 | 337/- | Coumaroylquinic acid isomer I | [6] | - | tr | - | |
11 | 11.36 | 234, 300sh, 326 | 181 | 341/- | Caffeoyl hexoside isomer I | [16,17] | + | - | + |
12 | 12.21 | 210, 260, 300sh | 165 | 325/- | Coumaroyl hexoside isomer I | [17] | + | + | + |
13 | 12.54 | 206, 265, 290sh, 330sh | 327/- | Acetyl-salicin | [7,9] | - | - | + | |
14 | 12.75 | 217, 294sh, 324 | 181 | 341/- | Caffeoyl hexoside isomer II | [16,17] | - | - | tr |
15 | 13.21 | 221, 312 | 339 | 337/- | Coumaroylquinic acid isomer II | [6] | - | tr | - |
16 | 14.73 | 217, 290, 326 | 417, 341/- | Unidentified compound | - | - | ++ | ||
17 | 14.88 | 215, 265 | 329/- | Vanillic acid hexoside | [16] | ++ | - | - | |
18 | 15.88 | 226, 313 | 165 | 325/- | Coumaroyl hexoside isomer II | [17] | tr | tr | + |
19 | 16.98 | 234, 299sh, 324 | 355 | 353/- | Chlorogenic acid | +++ | +++ | +++ | |
20 | 17.48 | 212, 277, 326sh | 291 | 289/- | Catechin | tr | tr | tr | |
21 | 18.18 | 248sh, 293sh, 317 | 355 | 353/- | Chlorogenic acid isomer II (mono-Caffeoylquinic acid) | [6,13] | - | + | + |
22 | 18.26 | 212, 289sh, 320 | 179/- | Caffeic acid | + | - | - | ||
23 | 21.40 | 254, 267sh, 349 | 627 | 625/- | Quercetin-O-dihexoside | [16] | + | - | + |
24 | 22.03 | 230, 310 | 339, 165 | 337/- | Coumaroylquinic acid isomer III | [6] | + | tr | tr |
25 | 22.81 | 211, 260, 306 | 339, 165 | 337/- | Coumaroylquinic acid isomer IV | [6] | + | + | - |
26 | 24.66 | 218, 272 | 423/469 | Salicortin | [9,12] | - | ++ | tr | |
27 | 24.73 | 222, 308 | 165 | 163/- | p-Coumaric acid | ++ | - | - | |
28 | 24.77 | 214, 293sh, 325 | 337, 165 | 335/- | Coumaric acid dihydroxybenzyl ester t.a. | - | - | ++ | |
29 | 29.63 | 251, 264sh, 354 | 757, 303, 611, 465 | 755/- | Quercetin-hexoside-di-rhamnoside | [10,11] | - | ++ | - |
30 | 31.23 | 261, 302sh, 354 | 481, 319 | 479/- | Myricetin-hexoside | [6,15] | - | - | + |
31 | 31.53 | 252, 295sh, 327 | 481/- | Caffeic acid derivative | [17] | - | - | + | |
32 | 32.23 | 254, 270sh, 353 | 611, 303 | 609/- | Quercetin-hexoside-rhamnoside | [13,16] | - | - | tr |
33 | 32.24 | 262, 352 | 741, 449, 287 | 739/- | Kaempferol-hexoside-di-rhamnoside | [10,11] | - | tr | - |
34 | 32.34 | 252, 266sh, 354 | 597, 303, 465 | 595/- | Quercetin-pentosylhexoside | [6] | - | - | + |
35 | 32.80 | 253, 352 | 771, 317, 625, 479 | 769/- | Isorhamnetin-hexoside-di-rhamnoside | [10,13] | - | + | - |
36 | 33.49 | 226, 287sh, 326 | 343/- | Hydrocaffeic acid hexoside | [16] | - | tr | tr | |
37 | 34.6 | 254, 264sh, 304sh, 356 | 611, 465, 303 | 609/- | Quercetin 3-O-rutinoside (rutin) | +++ | +++ | tr | |
38 | 34.74 | 248, 297sh, 330 | 439/- | Caffeic acid derivative | [17] | - | - | + | |
39 | 35.41 | 253, 266sh, 302sh, 350 | 465, 303 | Quercetin 3-O-galactoside (hyperoside, hyperin) | + | - | +++ | ||
40 | 35.44 | 217, 240sh, 307 | 405/451 | Salicyloyl-salicin | [9,12] | - | + | + | |
41 | 36.04 | 254, 266sh, 300sh, 351 | 465, 303 | 463/- | Quercetin 3-O-glucoside (isoquercitrin) | +++ | ++ | +++ | |
42 | 36.65 | 251, 263sh, 346 | 449, 287 | 447/- | Luteolin 7-O-glucoside (cynaroside, luteoloside) | ++ | - | + | |
43 | 37.41 | 253, 264sh, 346 | 463, 287 | 461/- | Luteolin 7-O-glucuronide | ++ | - | +++ | |
44 | 38.46 | 263, 287, 351 | 595, 287 | 593/- | Kaempferol 3-O-rutinoside (nicotiflorin) | + | ++ | - | |
45 | 38.64 | 254, 267sh, 300sh, 350 | 435, 303 | 433/- | Quercertin-3-O-arabinoside (guaiaverin) | - | tr | ++ | |
46 | 39.25 | 227, 312 | 423/- | Grandidentatin | [6,7] | - | + | tr | |
47 | 39.67 | 253, 295sh, 352 | 625, 479, 317 | 623/- | Isorhamnetin-rutinoside | [7,13] | + | +++ | - |
48 | 39.52 | 266, 295sh, 346 | 449, 287 | 447/- | Kaempferol 3-O-glucoside (astragalin) | tr | - | tr | |
49 | 40.47 | 197, 313 | 423/- | Grandidentatin isomer I | [6,21] | - | - | tr | |
50 | 40.59 | 212, 296sh, 326 | 447/- | Populoside/populoside A | [17,22] | - | + | - | |
51 | 40.78 | 252, 266sh, 300sh, 353 | 449, 303 | 447/- | Quercetin 3-O-rhamnoside (quercitrin, quercitroside, quercimelin) | ++ | - | - | |
52 | 40.85 | 219,274 | -/435 | Tremuloidin | [9,12] | - | + | - | |
53 | 41.06 | 253, 267sh, 300sh, 351 | 479, 317 | 477/- | Isorhamnetin-3-O-glucoside | tr | + | ++ | |
54 | 41.13 | 234, 294sh, 329 | 517 | 515/- | 1,5-Dicaffeoylquinic acid | - | ++ | - | |
55 | 41.33 | 265, 340 | 433, 271 | 431/- | Apigenin-7-O-glucoside (Apigetrin) | tr | - | - | |
56 | 42.47 | 266, 333 | 447 | 445, 269/- | Apigenin-glucuronide | [20] | ++ | - | + |
57 | 42.65 | 251, 265sh, 347 | 463, 301 | 461/- | Trihydroxy-methoxyflavone-hexoside | [10] | + | - | + |
58 | 42.92 | 218, 318 | 423/469 | Grandidentatin isomer II | [6,19,21] | - | - | tr | |
59 | 43.16 | 249, 266sh, 346 | 477 | 475/- | Trihydroxy-methoxyflavone-glucuronide | [20] | ++ | - | ++ |
60 | 43.44 | 216, 321 | 461/- | Populoside C | [22] | - | - | ++ | |
61 | 43.65 | 213, 296sh, 325 | 447/- | Populoside/populoside A | [17,22] | + | - | +++ | |
62 | 45.43 | 215, 315 | 287 | 487, 285/- | Unidentified salicin derivative isomer I t.a. | [9] | - | - | + |
63 | 45.55 | 218, 315 | 487/- | Unidentified salicin derivative isomer II t.a. | [9] | - | - | + | |
64 | 45.65 | 268, 306 | 255, 417 | -/461 | Chrysin-hexoside | [18] | + | - | - |
65 | 45.77 | 271, 336 | 273 | 449/- | Unidentified compound | - | + | - | |
66 | 46.13 | 213, 269 | -/435 | Tremuloidin isomer | [9] | tr | - | - | |
67 | 46.5 | 217, 296sh, 327 | 585, 423/469 | Caffeoyl-salicortin t.a. | [6] | - | ++ | + | |
68 | 46.88 | 198, 311 | 471, 327/- | Unidentified acetyl-salicin/fragilin derivative isomer I t.a. | [9] | - | - | + | |
69 | 47.13 | 218, 310 | 471/- | Unidentified acetyl-salicin/fragilin derivative isomer II t.a. | - | - | ++ | ||
70 | 47.44 | 200, 313 | 405, 473, 501/- | Unidentified salicyloylsalicin/salireposide/siebolside derivative t.a. | [9] | - | - | tr | |
71 | 47.71 | 251, 265sh, 344 | 287 | 285/- | Luteolin | + | - | - | |
72 | 47.95 | 220, 271 | 527/573 | Tremulacin | - | +++ | - | ||
73 | 48.59 | 270, 316 | 579, 271 | 577/- | Apigenin-coumaroyl-hexoside isomer I | [14] | - | + | - |
74 | 48.82 | 280, 334sh | 461/- | Unidentified compound | - | - | + | ||
75 | 50.04 | 267, 335 | 271 | 269/- | Apigenin | tr | tr | tr | |
76 | 50.35 | 225, 271, 318 | 423, 527/469, 573 | Tremulacin isomer | [9] | - | + | - | |
77 | 50.45 | 267, 368 | 287 | 285/- | Kaempferol | - | - | + | |
78 | 50.47 | 268, 316 | 579 | 577/- | Apigenin-coumaroyl-hexoside isomer II | [14] | - | + | - |
79 | 53.43 | 218, 272 | 443, 387/- | Unidentified salicylate-like compound t.a. | - | tr | - | ||
80 | 53.83 | 266, 315 | 255 | 253/- | Chrysin | + | - | + | |
81 | 54.16 | 209, 273sh, 313 | 509/- | Salicyloyl tremuloidin t.a. | [2] | - | tr | - | |
82 | 54.18 | 289, 331sh | 257 | 255/- | Pinocembrin | tr | - | tr | |
83 | 54.49 | 263, 316sh, 360 | 271 | 269/- | Galangin | + | - | ++ | |
84 | 54.74 | 212, 240, 337 | 289/- | Unidentified compound | - | - | tr | ||
85 | 55.03 | 266, 367 | 301 | 299/- | Trihydroxy-methoxyflavone | [20] | - | - | tr |
86 | 55.14 | 200, 257 | 557 | 555/- | Unidentified compound | - | + | + |
2.1.1. Identification of Flavonoids
2.1.2. Phenolic Acids
- Hydroxybenzoic acids
- Hydroxycinnamic acids and their derivatives
2.1.3. Salicylate Glycosides
2.1.4. Other Compounds
2.2. Quantitative Analysis of Active Compounds
2.3. Two-Dimensional-TLC Analysis and Antioxidant Bioautographic Tests
2.4. Antioxidant Capacity
3. Discussion
3.1. Identification of Secondary Metabolites and the Determination of Their Content
3.1.1. Flavonoids
3.1.2. Phenolic Acids
3.1.3. Salicylate Glycosides
3.2. Evaluation of Antioxidant Potential
3.2.1. Two-Dimensional-TLC Bioautography
3.2.2. Antioxidant Capacity
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material
4.3. Sample Preparation
4.4. HPLC-DAD-ESI/MS Analysis
4.5. Quantitative Analysis of Salicin
4.6. Quantitative Analysis of Flavonoids
4.7. Quantitative Analysis of Phenolics
4.8. One-Dimensional and Two-Dimensional-TLC and Bioautography
4.9. Antioxidant Capacity Assays
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nisar, A.; Jagtap, S.; Vyavahare, S.; Deshpande, M.; Harsulkar, A.; Ranjekar, P.; Prakash, O. Phytochemicals in the Treatment of Inflammation-Associated Diseases: The Journey from Preclinical Trials to Clinical Practice. Front. Pharmacol. 2023, 14, 1177050. [Google Scholar] [CrossRef]
- Boeckler, G.A.; Gershenzon, J.; Unsicker, S.B. Phenolic Glycosides of the Salicaceae and Their Role as Anti-Herbivore Defenses. Phytochemistry 2011, 72, 1497–1509. [Google Scholar] [CrossRef] [PubMed]
- Beer, A.-M.; Wegener, T. Willow Bark Extract (Salicis cortex) for Gonarthrosis and Coxarthrosis—Results of a Cohort Study with a Control Group. Phytomedicine 2008, 15, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Farmakopea Polska, XIII ed.; Urząd Rejestracji Produktów Leczniczych, Wyrobów Medycznych i Produktów Biobójczych: Warszawa, Poland, 2023.
- Pobłocka-Olech, L.; Głód, D.; Jesionek, A.; Łuczkiewicz, M.; Krauze-Baranowska, M. Studies on the Polyphenolic Composition and the Antioxidant Properties of the Leaves of Poplar (Populus spp.) Various Species and Hybrids. Chem. Biodiver. 2021, 18, e2100227. [Google Scholar] [CrossRef]
- Rusalepp, L.; Lutter, R.; Hepner, H.; Kaasik, A.; Tullus, A. Secondary Metabolites in Leaves of Hybrid Aspen Are Affected by the Competitive Status and Early Thinning in Dense Coppices. Ann. For. Sci. 2021, 78, 1. [Google Scholar] [CrossRef]
- Tawfeek, N.; Sobeh, M.; Hamdan, D.I.; Farrag, N.; Roxo, M.; El-Shazly, A.M.; Wink, M. Phenolic Compounds from Populus alba L. and Salix subserrata Willd. (Salicaceae) Counteract Oxidative Stress in Caenorhabditis Elegans. Molecules 2019, 24, 1999. [Google Scholar] [CrossRef]
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef]
- Abreu, I.N.; Ahnlund, M.; Moritz, T.; Albrectsen, B.R. UHPLC-ESI/TOFMS Determination of Salicylate-like Phenolic Gycosides in Populus tremula Leaves. J. Chem. Ecol. 2011, 37, 857–870. [Google Scholar] [CrossRef]
- Ferreres, F.; Grosso, C.; Gil-Izquierdo, A.; Fernandes, A.; Valentão, P.; Andrade, P.B. Comparing the Phenolic Profile of Pilocarpus pennatifolius Lem. by HPLC–DAD–ESI/MS n with Respect to Authentication and Enzyme Inhibition Potential. Ind. Crops Prod. 2015, 77, 391–401. [Google Scholar] [CrossRef]
- Kachmar, M.R.; Oliveira, A.P.; Valentão, P.; Gil-Izquierdo, A.; Domínguez-Perles, R.; Ouahbi, A.; Badaoui, K.E.; Andrade, P.B.; Ferreres, F. HPLC-DAD-ESI/MSn Phenolic Profile and in Vitro Biological Potential of Centaurium erythraea Rafn Aqueous Extract. Food Chem. 2019, 278, 424–433. [Google Scholar] [CrossRef]
- Kammerer, B.; Kahlich, R.; Biegert, C.; Gleiter, C.H.; Heide, L. HPLC-MS/MS Analysis of Willow Bark Extracts Contained in Pharmaceutical Preparations. Phytochem. Anal. 2005, 16, 470–478. [Google Scholar] [CrossRef]
- Kleszken, E.; Purcarea, C.; Pallag, A.; Ranga, F.; Memete, A.R.; Miere (Groza), F.; Vicas, S.I. Phytochemical Profile and Antioxidant Capacity of Viscum album L. subsp. album and Effects on Its Host Trees. Plants 2022, 11, 3021. [Google Scholar] [CrossRef]
- Król-Kogus, B.; Głód, D.; Krauze-Baranowska, M.; Matławska, I. Application of One- and Two-Dimensional High-Performance Liquid Chromatography Methodologies for the Analysis of C-Glycosylflavones from Fenugreek Seeds. J. Chromatogr. A 2014, 1367, 48–56. [Google Scholar] [CrossRef]
- Matsuda, K.; Matsuo, H. A Flavonoid, Luteolin-7-Glucoside, as Well as Salicin and Populin, Stimulating the Feeding of Leaf Beetles Attacking Salicaceous Plants. Appl. Entomol. Zool. 1985, 20, 305–313. [Google Scholar] [CrossRef]
- Nosrati Gazafroudi, K.; Mailänder, L.K.; Daniels, R.; Kammerer, D.R.; Stintzing, F.C. From Stem to Spectrum: Phytochemical Characterization of Five Equisetum Species and Evaluation of Their Antioxidant Potential. Molecules 2024, 29, 2821. [Google Scholar] [CrossRef]
- Okińczyc, P.; Widelski, J.; Nowak, K.; Radwan, S.; Włodarczyk, M.; Kuś, P.M.; Susniak, K.; Korona-Głowniak, I. Phytochemical Profiles and Antimicrobial Activity of Selected Populus spp. Bud Extracts. Molecules 2024, 29, 437. [Google Scholar] [CrossRef]
- Pearl, I.A.; Darling, S.F. Studies of the Hot Water Extractives of the Bark and Leaves of Populus deltoides Bartr. Can. J. Chem. 1971, 49, 49–55. [Google Scholar] [CrossRef]
- Si, C.-L.; Kim, J.-K.; Bae, Y.-S.; Li, S.-M. Phenolic Compounds in the Leaves of Populus ussuriensis and Their Antioxidant Activities. Planta Med. 2009, 75, 1165–1167. [Google Scholar] [CrossRef]
- Tsagkaris, A.S.; Louckova, A.; Jaegerova, T.; Tokarova, V.; Hajslova, J. The In Vitro Inhibitory Effect of Selected Asteraceae Plants on Pancreatic Lipase Followed by Phenolic Content Identification through Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS). Int. J. Mol. Sci. 2022, 23, 11204. [Google Scholar] [CrossRef]
- Wu, C.; Xu, B.; Li, Z.; Song, P.; Chao, Z. Gender Discrimination of Populus tomentosa Barks by HPLC Fingerprint Combined with Multivariate Statistics. Plant Direct 2021, 5, e00311. [Google Scholar] [CrossRef]
- Zhang, X.; Thuong, P.T.; Min, B.-S.; Ngoc, T.M.; Hung, T.M.; Lee, I.S.; Na, M.; Seong, Y.-H.; Song, K.-S.; Bae, K. Phenolic Glycosides with Antioxidant Activity from the Stem Bark of Populus davidiana. J. Nat. Prod. 2006, 69, 1370–1373. [Google Scholar] [CrossRef]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin/Heidelberg, Germany, 1970; ISBN 978-3-642-88460-3. [Google Scholar]
- Crawford, D.J. A Morphological and Chemical Study of Populus acuminata Rydberg. Brittonia 1974, 26, 74. [Google Scholar] [CrossRef]
- Baiocchi, C.; Saini, G.; Bertolo, P.L.; Carpenito, C.; Marengo, E.; Giacosa, D. HPLC in the Investigation of Taxonomic Problems. Classification of Poplar Genotypes. Chromatographia 1990, 29, 355–362. [Google Scholar] [CrossRef]
- Randriamanana, T.R.; Nybakken, L.; Lavola, A.; Aphalo, P.J.; Nissinen, K.; Julkunen-Tiitto, R. Sex-Related Differences in Growth and Carbon Allocation to Defence in Populus tremula as Explained by Current Plant Defence Theories. Tree Physiol. 2014, 34, 471–487. [Google Scholar] [CrossRef]
- Bertrams, J.; Müller, M.B.; Kunz, N.; Kammerer, D.R.; Stintzing, F.C. Phenolic Compounds as Marker Compounds for Botanical Origin Determination of German Propolis Samples Based on TLC and TLC-MS. J. Appl. Bot. Food Qual. 2013, 86, 143–153. [Google Scholar] [CrossRef]
- Guleria, I.; Kumari, A.; Lacaille-Dubois, M.-A.; Nishant; Kumar, V.; Saini, A.K.; Dhatwalia, J.; Lal, S. A Review on the Genus Populus: A Potential Source of Biologically Active Compounds. Phytochem. Rev. 2022, 21, 987–1046. [Google Scholar] [CrossRef]
- Benedec, D.; Oniga, I.; Muresan, B.; Mot, A.C.; Damian, G.; Nistor, A.; Silaghi-Dumitrescu, R.; Hanganu, D.; Duma, M.; Vlase, L. Contrast between Water- and Ethanol-Based Antioxidant Assays: Aspen (Populus tremula) and Black Poplar (Populus nigra) Extracts as a Case Study. J. Food Qual. 2014, 37, 259–267. [Google Scholar] [CrossRef]
- Kalita, P.; Tapan, B.K.; Pal, T.K.; Kalita, R. Estimation of Total Flavonoids Content (TFC) and Antioxidant Activities of Methanolic Whole Plant Extract of Biophytum sensitivum Linn. J. Drug Deliv. Ther. 2013, 3, 33–37. [Google Scholar] [CrossRef]
- Stanciauskaite, M.; Marksa, M.; Liaudanskas, M.; Ivanauskas, L.; Ivaskiene, M.; Ramanauskiene, K. Extracts of Poplar Buds (Populus balsamifera L., Populus nigra L.) and Lithuanian Propolis: Comparison of Their Composition and Biological Activities. Plants 2021, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Tálos-Nebehaj, E.; Hofmann, T.; Albert, L. Seasonal Changes of Natural Antioxidant Content in the Leaves of Hungarian Forest Trees. Ind. Crops Prod. 2017, 98, 53–59. [Google Scholar] [CrossRef]
- Popović, B.M.; Štajner, D.; Ždero-Pavlović, R.; Tumbas-Šaponjac, V.; Čanadanović-Brunet, J.; Orlović, S. Water Stress Induces Changes in Polyphenol Profile and Antioxidant Capacity in Poplar Plants (Populus spp.). Plant Physiol. Biochem. 2016, 105, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Pearl, I.A.; Darling, S.F. Phenolic Extractives of the Leaves of Populus balsamifera and of P. trichocarpa. Phytochemistry 1971, 10, 2844–2847. [Google Scholar] [CrossRef]
- Na, M.; Thuong, P.T.; Bae, K.H. Natural Compounds with Antioxidant Activity: Recent Findings from Studies on Medicinal Plants. Nat. Prod. Sci. 2011, 17, 65–79. [Google Scholar]
- Picard, S.; Chenault, J.; Augustin, S.; Venot, C. Isolation of a New Phenolic Compound from Leaves of Populus deltoides. J. Nat. Prod. 1994, 57, 808–810. [Google Scholar] [CrossRef]
- Martineau, L.; Muhammad, A.; Saleem, A.; Hervé, J.; Harris, C.; Arnason, J.; Haddad, P. Anti-Adipogenic Activities of Alnus incana and Populus balsamifera Bark Extracts, Part II: Bioassay-Guided Identification of Actives Salicortin and Oregonin. Planta Med. 2010, 76, 1519–1524. [Google Scholar] [CrossRef]
- Palo, R.T. Distribution of Birch (Betula spp.), Willow (Salix spp.), and Poplar (Populus spp.) Secondary Metabolites and Their Potential Role as Chemical Defense against Herbivores. J. Chem. Ecol. 1984, 10, 499–520. [Google Scholar] [CrossRef] [PubMed]
- Pfabel, C.; Eckhardt, K.-U.; Baum, C.; Struck, C.; Frey, P.; Weih, M. Impact of Ectomycorrhizal Colonization and Rust Infection on the Secondary Metabolism of Poplar (Populus trichocarpa × deltoides). Tree Physiol. 2012, 32, 1357–1364. [Google Scholar] [CrossRef]
- Knuth, S.; Schübel, H.; Hellemann, M.; Jürgenliemk, G. Catechol, a Bioactive Degradation Product of Salicortin, Reduces TNF- α Induced ICAM-1 Expression in Human Endothelial Cells. Planta Med 2011, 77, 1024–1026. [Google Scholar] [CrossRef]
- Freiwald, V.; Häikiö, E.; Julkunen-Tiitto, R.; Holopainen, J.K.; Oksanen, E. Elevated Ozone Modifies the Feeding Behaviour of the Common Leaf Weevil on Hybrid Aspen through Shifts in Developmental, Chemical, and Structural Properties of Leaves. Entomol. Exp. Appl. 2008, 128, 66–72. [Google Scholar] [CrossRef]
- Haikio, E.; Freiwald, V.; Julkunen-Tiitto, R.; Beuker, E.; Holopainen, T.; Oksanen, E. Differences in Leaf Characteristics between Ozone-Sensitive and Ozone-Tolerant Hybrid Aspen (Populus tremula × Populus tremuloides) Clones. Tree Physiol. 2008, 29, 53–66. [Google Scholar] [CrossRef]
- Volf, M.; Hrcek, J.; Julkunen-Tiitto, R.; Novotny, V. To Each Its Own: Differential Response of Specialist and Generalist Herbivores to Plant Defence in Willows. J. Animal Ecol. 2015, 84, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Marston, A. Thin-Layer Chromatography with Biological Detection in Phytochemistry. J. Chromatogr. A 2011, 1218, 2676–2683. [Google Scholar] [CrossRef]
- Adelmann, J.; Passos, M.; Breyer, D.H.; Santos, M.H.R.D.; Lenz, C.; Leite, N.F.; Lanças, F.M.; Fontana, J.D. Exotic Flora Dependence of an Unusual Brazilian Propolis: The Pinocembrin Biomarker by Capillary Techniques. J. Pharm. Biomed. Anal. 2007, 43, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Strzelecka, H.; Kamińska, J.; Kowalski, J.; Walewska, E. Chemiczne Metody Badań Roślinnych Surowców Leczniczych, II ed.; Państwowy Zakład Wydawnictw Lekarskich: Warszawa, Poland, 1982; ISBN 83-200-0614-7. [Google Scholar]
- Jeong, Y.E.; Lee, M.-Y. Anti-Inflammatory Activity of Populus deltoides Leaf Extract via Modulating NF-κB and P38/JNK Pathways. Int. J. Mol. Sci. 2018, 19, 3746. [Google Scholar] [CrossRef]
- Gundermann, K.-J.; Müller, J.; Kraft, K. STW1 and Its Versatile Pharmacological and Clinical Effects in Rheumatic Disorders: A Comprehensive Report. Evid. Based Complement. Alternat. Med. 2020, 2020, 7841748. [Google Scholar] [CrossRef]
- Barman, T.K.; Kalita, P.; Pal, T.K. Comparative Evaluation of Total Flavonoid Content and Antioxidant Activity of Methanolic Root Extract of Clerodendrum infortunatum and Methanolic Whole Plant Extract of Biophytum sensitivum. Int. J. Pharm. Sci. Rev. Res. 2013, 22, 62–66. [Google Scholar]
- Czapska-Pietrzak, I.; Studzińska-Sroka, E.; Bylka, W. Ocena działania przeciwcukrzycowego ekstraktów otrzymanych z wybranych surowców roślinnych. Postępy Fitot. 2019, 20, 167–174. [Google Scholar] [CrossRef]
- Jesionek, A.; Poblocka-Olech, L.; Zabiegala, B.; Bucinski, A.; Krauze-Baranowska, M.; Luczkiewicz, M. Validated HPTLC Method for Determination of Ledol and Alloaromadendrene in the Essential Oil Fractions of Rhododendron tomentosum Plants and in Vitro Cultures and Bioautography for Their Activity Screening. J. Chromatogr. B 2018, 1086, 63–72. [Google Scholar] [CrossRef]
- Pobłocka-Olech, L.; Isidorov, V.A.; Krauze-Baranowska, M. Characterization of Secondary Metabolites of Leaf Buds from Some Species and Hybrids of Populus by Gas Chromatography Coupled with Mass Detection and Two-Dimensional High-Performance Thin-Layer Chromatography Methods with Assessment of Their Antioxidant Activity. Int. J. Mol. Sci. 2024, 25, 3971. [Google Scholar] [CrossRef]
Populus Species/Hybrid | Salicin Content [mg/g DM] * | TFC | TPC | ||
---|---|---|---|---|---|
FS | TSC | [mg/g DM QE] * | [mg/g DM RE] * | [mg/g DM GAE] * | |
P. alba (A) | 8.17 ± 0.02 a | 36.16 ± 0.42 a | 6.23 ± 0.27 a | 12.38 ± 0.54 a | 84.13 ± 0.76 a |
P. × candicans (C) | 11.09 ± 0.12 b | 21.47 ± 1.55 b | 8.69 ± 0.08 b | 16.68 ± 1.03 b | 81.75 ± 3.07 a |
P. nigra (N) | 1.40 ± 0.01 c | 4.42 ± 0.66 c | 8.12 ± 0.59 b | 17.02 ± 2.41 b | 85.29 ± 3.45 a |
Populus Species/Hybrid | Antioxidant Capacity [mM TEA/g DM] * | ||
---|---|---|---|
DPPH | FRAP | ABTS | |
P. alba (A) | 0.49 ± 0.03 a | 4.82 ± 0.13 a | 1.81 ± 0.09 a |
P. × candicans (C) | 0.78 ± 0.01 b | 5.19 ± 0.32 a | 2.18 ± 0.21 b |
P. nigra (N) | 0.91 ± 0.05 c | 6.36 ± 0.22 b | 2.51 ± 0.08 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pobłocka-Olech, L.; Krauze-Baranowska, M.; Godlewska, S.; Kimel, K. HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential. Int. J. Mol. Sci. 2025, 26, 6189. https://doi.org/10.3390/ijms26136189
Pobłocka-Olech L, Krauze-Baranowska M, Godlewska S, Kimel K. HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential. International Journal of Molecular Sciences. 2025; 26(13):6189. https://doi.org/10.3390/ijms26136189
Chicago/Turabian StylePobłocka-Olech, Loretta, Mirosława Krauze-Baranowska, Sylwia Godlewska, and Katarzyna Kimel. 2025. "HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential" International Journal of Molecular Sciences 26, no. 13: 6189. https://doi.org/10.3390/ijms26136189
APA StylePobłocka-Olech, L., Krauze-Baranowska, M., Godlewska, S., & Kimel, K. (2025). HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential. International Journal of Molecular Sciences, 26(13), 6189. https://doi.org/10.3390/ijms26136189