Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging
Abstract
1. Introduction
2. S-Adenosyl-L-Methionine as a Universal Methyl Donor for Biochemical Methylation Reactions
3. DNA Methylation
4. Nutrition and DNA Methylation
5. Epigenetic Regulation of Fertility and Embryo Viability
6. Nutrition and Reproduction
7. DNA Methylation and Aging
8. Reproductive Aging
9. Nutrition and Aging
10. Transgenerational Effects of Nutrition on Reproduction and Aging
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Mentch, S.J.; Locasale, J.W. One-carbon metabolism and epigenetics: Understanding the specificity. Ann. N. Y. Acad. Sci. 2016, 1363, 91–98. [Google Scholar] [CrossRef]
- Friso, S.; Udali, S.; De Santis, D.; Choi, S.W. One-carbon metabolism and epigenetics. Mol. Asp. Med. 2017, 54, 28–36. [Google Scholar] [CrossRef]
- Creegan, R.; Hunt, W.; McManus, A.; Rainey-Smith, S.R. Diet, nutrients and metabolism: Cogs in the wheel driving Alzheimer’s disease pathology? Br. J. Nutr. 2015, 113, 1499–1517. [Google Scholar] [CrossRef]
- Smith, Z.D.; Hetzel, S.; Meissner, A. DNA methylation in mammalian development and disease. Nat. Rev. Genet. 2025, 26, 7–30. [Google Scholar] [CrossRef]
- Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859. [Google Scholar] [CrossRef]
- Locasale, J.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 2013, 13, 572–583. [Google Scholar] [CrossRef]
- Heijer, M.D.; Graafsma, S.; Lee, S.Y.; van Landeghem, B.; Kluijtmans, L.; Verhoef, P.; Beaty, T.H.; Blom, H. Homocysteine levels—Before and after methionine loading—In 51 Dutch families. Eur. J. Hum. Genet. 2005, 13, 753–762. [Google Scholar] [CrossRef]
- Pasquale, L.R.; Borrás, T.; Fingert, J.H.; Wiggs, J.L.; Ritch, R. Exfoliation syndrome: Assembling the puzzle pieces. Acta Ophthalmol. 2016, 94, e505–e512. [Google Scholar] [CrossRef]
- Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A.F. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 2003, 66, 1499–1503. [Google Scholar] [CrossRef]
- Greenberg, M.V.C.; Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Greer, E.L.; Maures, T.J.; Ucar, D.; Hauswirth, A.G.; Mancini, E.; Lim, J.P.; Benayoun, B.A.; Shi, Y.; Brunet, A. Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 2011, 479, 365–371. [Google Scholar] [CrossRef]
- Villalobos, T.V.; Ghosh, B.; DeLeo, K.R.; Alam, S.; Ricaurte-Perez, C.; Wang, A.; Mercola, B.M.; Butsch, T.J.; Ramos, C.D.; Das, S.; et al. Tubular lysosome induction couples animal starvation to healthy aging. Nat. Aging 2023, 3, 1091–1106. [Google Scholar] [CrossRef]
- Sigmond, T.; Vellai, T. Lysosomal alteration links food limitation to longevity. Nat. Aging 2023, 3, 1048–1050. [Google Scholar] [CrossRef]
- Greer, E.L.; Blanco, M.A.; Gu, L.; Sendinc, E.; Liu, J.; Aristizábal-Corrales, D.; Hsu, C.-H.; Aravind, L.; He, C.; Shi, Y. DNA Methylation on N6-Adenine in C. elegans. Cell 2015, 161, 868–878. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, H.; Liu, D.; Cheng, Y.; Liu, X.; Zhang, W.; Yin, R.; Zhang, D.; Zhang, P.; Liu, J.; et al. N6-methyladenine DNA modification in Drosophila. Cell 2015, 161, 893–906. [Google Scholar] [CrossRef]
- Wu, T.P.; Wang, T.; Seetin, M.G.; Lai, Y.; Zhu, S.; Lin, K.; Liu, Y.; Byrum, S.D.; Mackintosh, S.G.; Zhong, M.; et al. DNA methylation on N6-adenine in mammalian embryonic stem cells. Nature 2016, 532, 329–333. [Google Scholar] [CrossRef]
- Sturm, Á.; Saskői, É.; Hotzi, B.; Tarnóci, A.; Barna, J.; Bodnár, F.; Sharma, H.; Kovács, T.; Ari, E.; Weinhardt, N.; et al. Downregulation of transposable elements extends lifespan in Caenorhabditis elegans. Nat. Commun. 2023, 14, 5278. [Google Scholar] [CrossRef]
- Hao, Z.; Wu, T.; Cui, X.; Zhu, P.; Tan, C.; Dou, X.; Hsu, K.-W.; Lin, X.-T.; Peng, P.-H.; Zhang, L.-S.; et al. N6-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Mol. Cell 2020, 78, 382–395.e8. [Google Scholar] [CrossRef]
- Sturm, Á.; Sharma, H.; Bodnár, F.; Aslam, M.; Kovács, T.; Németh, Á.; Hotzi, B.; Billes, V.; Sigmond, T.; Tátrai, K.; et al. N6-Methyladenine Progressively Accumulates in Mitochondrial DNA during Aging. Int. J. Mol. Sci. 2023, 24, 14858. [Google Scholar] [CrossRef]
- Yoder, J.A.; Walsh, C.P.; Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997, 13, 335–340. [Google Scholar] [CrossRef]
- Morandini, F.; Lu, J.Y.; Rechsteiner, C.; Shadyab, A.H.; Casanova, R.; Snively, B.M.; Seluanov, A.; Gorbunova, V. Transposable element 5mC methylation state of blood cells predicts age and disease. Nat. Aging 2025, 5, 193–204. [Google Scholar] [CrossRef]
- Hotzi, B.; Vellai, T. Transposable element methylation tracks age. Nat. Aging 2025, 5, 179–181. [Google Scholar] [CrossRef]
- Luo, G.-Z.; He, C. DNA N6-methyladenine in metazoans: Functional epigenetic mark or bystander? Nat. Struct. Mol. Biol. 2017, 24, 503–506. [Google Scholar] [CrossRef]
- McCarty, M.F.; Barroso-Aranda, J.; Contreras, F. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy. Med. Hypotheses 2009, 72, 125–128. [Google Scholar] [CrossRef]
- Waterland, R.A. Assessing the effects of high methionine intake on DNA methylation. J. Nutr. 2006, 136 (Suppl. S6), 1706S–1710S. [Google Scholar] [CrossRef]
- Kok, D.E.G.; Dhonukshe-Rutten, R.A.M.; Lute, C.; Heil, S.G.; Uitterlinden, A.G.; van der Velde, N.; van Meurs, J.B.J.; van Schoor, N.M.; Hooiveld, G.J.E.J.; de Groot, L.C.P.G.M.; et al. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects. Clin. Epigenet. 2015, 7, 121. [Google Scholar] [CrossRef]
- McCullough, L.E.; Miller, E.E.; Mendez, M.A.; Murtha, A.P.; Murphy, S.K.; Hoyo, C. Maternal B vitamins: Effects on offspring weight and DNA methylation at genomically imprinted domains. Clin. Epigenet. 2016, 8, 8. [Google Scholar] [CrossRef]
- Tanaka, T.; Scheet, P.; Giusti, B.; Bandinelli, S.; Piras, M.G.; Usala, G.; Lai, S.; Mulas, A.; Corsi, A.M.; Vestrini, A.; et al. Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am. J. Hum. Genet. 2009, 84, 477–482. [Google Scholar] [CrossRef]
- Furness, D.; Fenech, M.; Dekker, G.; Khong, T.Y.; Roberts, C.; Hague, W. Folate, vitamin B12, vitamin B6 and homocysteine: Impact on pregnancy outcome. Matern. Child Nutr. 2013, 9, 155–166. [Google Scholar] [CrossRef]
- Fareed, M.M.; Ullah, S.; Qasmi, M.; Shityakov, S. The Role of Vitamins in DNA Methylation as Dietary Supplements or Neutraceuticals: A Systematic Review. Curr. Mol. Med. 2023, 23, 1012–1027. [Google Scholar] [CrossRef]
- Niculescu, M.D.; Craciunescu, C.N.; Zeisel, S.H. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006, 20, 43–49. [Google Scholar] [CrossRef]
- Zeisel, S. Choline, Other Methyl-Donors and Epigenetics. Nutrients 2017, 9, 445. [Google Scholar] [CrossRef]
- Locker, J.; Reddy, T.V.; Lombardi, B. DNA methylation and hepatocarcinogenesis in rats fed a choline-devoid diet. Carcinogenesis 1986, 7, 1309–1312. [Google Scholar] [CrossRef]
- Veenendaal, M.V.E.; Painter, R.C.; de Rooij, S.R.; Bossuyt, P.M.M.; van der Post, J.A.M.; Gluckman, P.D.; Hanson, M.A.; Roseboom, T.J. Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 2013, 120, 548–553. [Google Scholar] [CrossRef]
- Yatsenko, S.A.; Rajkovic, A. Genetics of human female infertility. Biol. Reprod. 2019, 101, 549–566. [Google Scholar] [CrossRef]
- Zorrilla, M.; Yatsenko, A.N. The Genetics of Infertility: Current Status of the Field. Curr. Genet. Med. Rep. 2013, 1, 247–260. [Google Scholar] [CrossRef]
- Layman, L.C. Human gene mutations causing infertility. J. Med. Genet. 2002, 39, 153–161. [Google Scholar] [CrossRef]
- Wu, J.; Li, D.; Liu, X.; Li, Q.; He, X.; Wei, J.; Li, X.; Li, M.; Rehman, A.U.; Xia, Y.; et al. IDDB: A comprehensive resource featuring genes, variants and characteristics associated with infertility. Nucleic Acids Res. 2021, 49, D1218–D1224. [Google Scholar] [CrossRef]
- Chon, S.J.; Umair, Z.; Yoon, M.-S. Premature Ovarian Insufficiency: Past, Present, and Future. Front. Cell Dev. Biol. 2021, 9, 672890. [Google Scholar] [CrossRef]
- Tran, S.; Wang, Y.; Lamba, P.; Zhou, X.; Boehm, U.; Bernard, D.J. The CpG island in the murine Foxl2 proximal promoter is differentially methylated in primary and immortalized cells. PLoS ONE 2013, 8, e76642. [Google Scholar] [CrossRef] [PubMed]
- Kober, P.; Rymuza, J.; Baluszek, S.; Maksymowicz, M.; Nyc, A.; Mossakowska, B.J.; Zieliński, G.; Kunicki, J.; Bujko, M. DNA Methylation Pattern in Somatotroph Pituitary Neuroendocrine Tumors. Neuroendocrinology 2024, 114, 51–63. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Ding, X. Pan-cancer investigation of psoriasis-related BUB1B gene: Genetical alteration and oncogenic immunology. Sci. Rep. 2023, 13, 6058. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, M.H.; Alrubie, T.M.; Alshareeda, A.T.; Albarakati, N.; Almotiri, A.; Alamri, A.M.; Almutairi, B.O.; Alanazi, M. Differential expression and regulation of ADAD1, DMRTC2, PRSS54, SYCE1, SYCP1, TEX101, TEX48, and TMPRSS12 gene profiles in colon cancer tissues and their in vitro response to epigenetic drugs. PLoS ONE 2024, 19, e0307724. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, Z.; Zhang, Q.; Xie, Z.; Liu, H.; Li, Q. Differential mRNA expression and promoter methylation status of SYCP3 gene in testes of yaks and cattle-yaks. Reprod. Domest. Anim. 2012, 47, 455–462. [Google Scholar] [CrossRef]
- Zhou, Y.; Connor, E.E.; Bickhart, D.M.; Li, C.; Baldwin, R.L.; Schroeder, S.G.; Rosen, B.D.; Yang, L.; Van Tassell, C.P.; Liu, G.E. Comparative whole genome DNA methylation profiling of cattle sperm and somatic tissues reveals striking hypomethylated patterns in sperm. GigaScience 2018, 7, giy039. [Google Scholar] [CrossRef]
- Yu, M.; Wang, H.; Xu, H.; Lv, Y.; Li, Q. High MCM8 expression correlates with unfavorable prognosis and induces immune cell infiltration in hepatocellular carcinoma. Aging 2022, 14, 10027–10049. [Google Scholar] [CrossRef]
- Lu, Z.; Hou, G. Characterization of the function and clinical value of ERCC family genes in lung adenocarcinoma. Front. Oncol. 2024, 14, 1476100. [Google Scholar] [CrossRef]
- Terribas, E.; Bonache, S.; García-Arévalo, M.; Sánchez, J.; Franco, E.; Bassas, L.; Larriba, S. Changes in the expression profile of the meiosis-involved mismatch repair genes in impaired human spermatogenesis. J. Androl. 2010, 31, 346–357. [Google Scholar] [CrossRef]
- Yao, C.; Lu, L.; Ji, Y.; Zhang, Y.; Li, W.; Shi, Y.; Liu, J.; Sun, M.; Xia, F. Hypo-Hydroxymethylation of Nobox is Associated with Ovarian Dysfunction in Rat Offspring Exposed to Prenatal Hypoxia. Reprod. Sci. 2022, 29, 1424–1436. [Google Scholar] [CrossRef]
- Gamal, L.; Noshy, M.M.; Aboul-Naga, A.M.; Sabit, H.; El-Shorbagy, H.M. DNA methylation of GDF-9 and GHR genes as epigenetic regulator of milk production in Egyptian Zaraibi goat. Genes Genom. 2024, 46, 135–148. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, X.; Di, R.; Liu, Q.; Hu, W.; Cao, X.; Guo, X.; He, X.; Lv, S.; Li, F.; et al. A 5-Methylcytosine Site of Growth Differentiation Factor 9 (GDF9) Gene Affects Its Tissue-Specific Expression in Sheep. Animals 2018, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Chao, H.; Chen, B.; Zhang, L.; Li, L.; Sun, X.; Shen, W. DNA methylation of germ-cell-specific basic helix-loop-helix (HLH) transcription factors, Sohlh2 and Figlα during gametogenesis. Mol. Hum. Reprod. 2011, 17, 550–561. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Cui, Z.; Zhang, H.; Mani, S.K.; Diab, A.; Lefrancois, L.; Fares, N.; Merle, P.; Andrisani, O. DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection. Oncogene 2017, 36, 2435–2445. [Google Scholar] [CrossRef] [PubMed]
- Li, L.C.; Okino, S.T.; Dahiya, R. DNA methylation in prostate cancer. Biochim. Biophys. Acta BBA Rev. Cancer 2004, 1704, 87–102. [Google Scholar] [CrossRef]
- Griswold, M.D.; Kim, J.S. Site-specific methylation of the promoter alters deoxyribonucleic acid-protein interactions and prevents follicle-stimulating hormone receptor gene transcription. Biol. Reprod. 2001, 64, 602–610. [Google Scholar] [CrossRef]
- Li, X.; Liao, J.; Guo, Z. Detection value of FOXO1 gene methylation, blood glucose and lipids in patients with type 2 diabetic kidney disease. Medicine 2022, 101, e31663. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, M.; Hu, D. Identification of Prognostic Immune-Related Genes by Integrating mRNA Expression and Methylation in Lung Adenocarcinoma. Int. J. Genom. 2020, 20, 9548632. [Google Scholar] [CrossRef]
- Spitschak, M.; Vanselow, J. Bovine large luteal cells show increasing de novo DNA methylation of the main ovarian CYP19A1 promoter P2. Gen. Comp. Endocrinol. 2012, 178, 37–45. [Google Scholar] [CrossRef]
- Grelet, S.; Andries, V.; Polette, M.; Gilles, C.; Staes, K.; Martin, A.P.; Kileztky, C.; Terryn, C.; Dalstein, V.; Cheng, C.W.; et al. The human NANOS3 gene contributes to lung tumour invasion by inducing epithelial-mesenchymal transition. J. Pathol. 2015, 237, 25–37. [Google Scholar] [CrossRef]
- Maekawa, R.; Mihara, Y.; Sato, S.; Okada, M.; Tamura, I.; Shinagawa, M.; Shirafuta, Y.; Takagi, H.; Taketani, T.; Tamura, H.; et al. Aberrant DNA methylation suppresses expression of estrogen receptor 1 (ESR1) in ovarian endometrioma. J. Ovarian Res. 2019, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Richards, J.S.; Shimada, M. The Cell Type—Specific Expression of Lhcgr in Mouse Ovarian Cells: Evidence for a DNA-Demethylation—Dependent Mechanism. Endocrinology 2018, 159, 2062–2074. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Lin, Z.; Ye, Z.; Liang, J.; Yu, R.; Wan, Z.; Hou, J. Development of a prognostic model for early-stage gastric cancer-related DNA methylation-driven genes and analysis of immune landscape. Front. Mol. Biosci. 2024, 11, 1455890. [Google Scholar] [CrossRef]
- Yu, J.; Liang, Q.; Wang, J.; Wang, K.; Gao, J.; Zhang, J.; Zeng, Y.; Chiu, P.W.; Ng, E.K.; Sung, J.J. REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene 2017, 36, 182–193. [Google Scholar] [CrossRef]
- Topham, L.; Gregoire, S.; Kang, H.; Salmon-Divon, M.; Lax, E.; Millecamps, M.; Szyf, M.; Stone, L. The methyl donor S-adenosyl methionine reverses the DNA methylation signature of chronic neuropathic pain in mouse frontal cortex. Pain Rep. 2021, 6, e944. [Google Scholar] [CrossRef]
- Shao, K.; Pu, W.; Zhang, J.; Guo, S.; Qian, F.; Glurich, I.; Jin, Q.; Ma, Y.; Ju, S.; Zhang, Z.; et al. DNA hypermethylation contributes to colorectal cancer metastasis by regulating the binding of CEBPB and TFCP2 to the CPEB1 promoter. Clin. Epigenet. 2021, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.R.; In, Y.H.; Park, J.; Park, T.; Jung, K.H.; Chai, J.C.; Chung, M.K.; Lee, Y.S.; Chai, Y.G. Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture. Exp. Mol. Med. 2012, 44, 503–512. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, P.; Ying, X.; Tang, X.; Deng, Y.; Gao, X.; Yang, X. Pregnancy induced hypertension and umbilical cord blood DNA methylation in newborns: An epigenome-wide DNA methylation study. BMC Pregnancy Childbirth 2024, 24, 433. [Google Scholar] [CrossRef]
- Spindola, L.M.; Santoro, M.L.; Pan, P.M.; Ota, V.K.; Xavier, G.; Carvalho, C.M.; Talarico, F.; Sleiman, P.; March, M.; Pellegrino, R.; et al. Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths. Clin. Epigenet. 2019, 11, 146. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, X.; Cui, W.; Wei, Z. Bioinformatics and Experimental Analyses Reveal MAP4K4 as a Potential Marker for Gastric Cancer. Genes 2022, 13, 1786. [Google Scholar] [CrossRef]
- Mijnes, J.; Veeck, J.; Gaisa, N.T.; Burghardt, E.; de Ruijter, T.C.; Gostek, S.; Dahl, E.; Pfister, D.; Schmid, S.C.; Knüchel, R.; et al. Promoter methylation of DNA damage repair (DDR) genes in human tumor entities: RBBP8/CtIP is almost exclusively methylated in bladder cancer. Clin. Epigenet. 2018, 10, 15. [Google Scholar] [CrossRef]
- Vasilyev, S.A.; Skryabin, N.A.; Kashevarova, A.A.; Tolmacheva, E.N.; Savchenko, R.R.; Vasilyeva, O.Y.; Lopatkina, M.E.; Zarubin, A.A.; Fishman, V.S.; Belyaeva, E.O.; et al. Differential DNA Methylation of the IMMP2L Gene in Families with Maternally Inherited 7q31.1 Microdeletions is Associated with Intellectual Disability and Developmental Delay. Cytogenet. Genome Res. 2021, 161, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Liu, G.; Jin, H.; Chen, X.; He, J.; Xiao, J.; Qin, Y.; Mao, Y.; Zhao, L. The Dysregulation of SOX Family Correlates with DNA Methylation and Immune Microenvironment Characteristics to Predict Prognosis in Hepatocellular Carcinoma. Dis. Markers 2022, 2022, 2676114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.Q.; Ling, X.Z.; Zhao, X.H.; Zhou, K.Z.; Wang, J.Y.; Zhang, G.X. Prediction of the Effect of Methylation in the Promoter Region of ZP2 Gene on Egg Production in Jinghai Yellow Chickens. Vet. Sci. 2022, 9, 570. [Google Scholar] [CrossRef]
- Breton, C.V.; Salam, M.T.; Gilliland, F.D. Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase. Epigenetics 2011, 6, 895–898. [Google Scholar] [CrossRef]
- Mudduluru, G.; Allgayer, H. The human receptor tyrosine kinase Axl gene-promoter characterization and regulation of constitutive expression by Sp1, Sp3 and CpG methylation. Biosci. Rep. 2008, 28, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Motta, A.B. Epigenetic Marks in Polycystic Ovary Syndrome. Curr. Med. Chem. 2020, 27, 6727–6743. [Google Scholar] [CrossRef]
- Bar-Sadeh, B.; Pnueli, L.; Keestra, S.; Bentley, G.R.; Melamed, P. Srd5a1 is Differentially Regulated and Methylated During Prepubertal Development in the Ovary and Hypothalamus. J. Endocr. Soc. 2023, 7, bvad108. [Google Scholar] [CrossRef]
- Shi, D.; Zhou, X.; Cai, L.; Wei, X.; Zhang, L.; Sun, Q.; Zhou, F.; Sun, L. Placental DNA methylation analysis of selective fetal growth restriction in monochorionic twins reveals aberrant methylated CYP11A1 gene for fetal growth restriction. FASEB J. 2023, 37, e23207. [Google Scholar] [CrossRef]
- Horning, A.M.; Awe, J.A.; Wang, C.M.; Liu, J.; Lai, Z.; Wang, V.Y.; Jadhav, R.R.; Louie, A.D.; Lin, C.L.; Kroczak, T.; et al. DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence. Prostate 2015, 75, 1790–1801. [Google Scholar] [CrossRef]
- Kandi, V.; Vadakedath, S. Effect of DNA Methylation in Various Diseases and the Probable Protective Role of Nutrition: A Mini-Review. Cureus 2015, 7, e309. [Google Scholar] [CrossRef]
- Kuroda, A.; Rauch, T.A.; Todorov, I.; Ku, H.T.; Al-Abdullah, I.H.; Kandeel, F.; Mullen, Y.; Pfeifer, G.P.; Ferreri, K. Insulin gene expression is regulated by DNA methylation. PLoS ONE 2009, 4, e6953. [Google Scholar] [CrossRef]
- Zhong, X.; Jin, F.; Huang, C.; Du, M.; Gao, M.; Wei, X. DNA methylation of AMHRII and INSR gene is associated with the pathogenesis of Polycystic Ovary Syndrome (PCOS). Technol. Health Care 2021, 29 (Suppl. S1), 11–25. [Google Scholar] [CrossRef] [PubMed]
- Canivell, S.; Ruano, E.G.; Sisó-Almirall, A.; Kostov, B.; González-de Paz, L.; Fernandez-Rebollo, E.; Hanzu, F.A.; Párrizas, M.; Novials, A.; Gomis, R. Differential methylation of TCF7L2 promoter in peripheral blood DNA in newly diagnosed, drug-naïve patients with type 2 diabetes. PLoS ONE 2014, 9, e99310. [Google Scholar] [CrossRef] [PubMed]
- Smail, H.O.; Mohamad, D.A. Identification of DNA methylation of CAPN10 gene changes in the patients with type 2 diabetes mellitus as a predictive biomarker instead of HbA1c, random blood sugar, lipid profile, kidney function test, and some risk factors. Endocr. Regul. 2023, 57, 221–234. [Google Scholar] [CrossRef]
- Yu, J.T.; Hu, X.W.; Chen, H.Y.; Yang, Q.; Li, H.D.; Dong, Y.H.; Zhang, Y.; Wang, J.N.; Jin, J.; Wu, Y.G.; et al. DNA methylation of FTO promotes renal inflammation by enhancing m6A of PPAR-α in alcohol-induced kidney injury. Pharmacol. Res. 2021, 163, 105286. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.N.; Qin, Y.; Wu, B.; Peng, H.; Li, M.; Luo, H.; Liu, L.L. DNA methylation in polycystic ovary syndrome: Emerging evidence and challenges. Reprod. Toxicol. 2022, 111, 11–19. [Google Scholar] [CrossRef]
- Diboun, I.; Wani, S.; Ralston, S.H.; Albagha, O.M.E. Epigenetic DNA Methylation Signatures Associated with the Severity of Paget’s Disease of Bone. Front. Cell Dev. Biol. 2022, 10, 903612. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Naselli, F.; Cruciata, I.; Volpes, S.; Schimmenti, C.; Serio, G.; Mauro, M.; Librizzi, M.; Luparello, C.; Chiarelli, R.; et al. Indicaxanthin Induces Autophagy in Intestinal Epithelial Cancer Cells by Epigenetic Mechanisms Involving DNA Methylation. Nutrients 2023, 15, 3495. [Google Scholar] [CrossRef]
- Zhao, G.; Zhou, J.; Gao, J.; Liu, Y.; Gu, S.; Zhang, X.; Su, P. Genome-wide DNA methylation analysis in permanent atrial fibrillation. Mol. Med. Rep. 2017, 16, 5505–5514. [Google Scholar] [CrossRef]
- Xu, S.; Furukawa, T.; Kanai, N.; Sunamura, M.; Horii, A. Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J. Hum. Genet. 2005, 50, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.S.; Li, L.; Ji, M.; Cheng, Y.; Ying, J.; Fan, Y.; Zhong, L.; Liu, X.; Tsao, S.W.; Chan, A.T.; et al. FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma. Carcinogenesis 2013, 34, 1984–1993. [Google Scholar] [CrossRef]
- Salpea, P.; Russanova, V.R.; Hirai, T.H.; Sourlingas, T.G.; Sekeri-Pataryas, K.E.; Romero, R.; Epstein, J.; Howard, B.H. Postnatal development- and age-related changes in DNA-methylation patterns in the human genome. Nucleic Acids Res. 2012, 40, 6477–6494. [Google Scholar] [CrossRef] [PubMed]
- Meng, M.; Ma, Y.; Xu, J.; Chen, G.; Mahato, R.K. DNA methylation-mediated FGFR1 silencing enhances NF-κB signaling: Implications for asthma pathogenesis. Front. Mol. Biosci. 2024, 11, 1433557. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, L.; Monti, P.; Favero, C.; Carugno, M.; Tarantini, L.; Maggioni, C.; Bonzini, M.; Pesatori, A.C.; Bollati, V. Association between night shift work and methylation of a subset of immune-related genes. Front. Public Health 2023, 10, 1083826. [Google Scholar] [CrossRef]
- Alvarado, S.G.; Lenkov, K.; Williams, B.; Fernald, R.D. Social Crowding during Development Causes Changes in GnRH1 DNA Methylation. PLoS ONE 2015, 10, e0142043. [Google Scholar] [CrossRef]
- Bui, C.; Ouzzine, M.; Talhaoui, I.; Sharp, S.; Prydz, K.; Coughtrie, M.W.; Fournel-Gigleux, S. Epigenetics: Methylation-associated repression of heparan sulfate 3-O-sulfotransferase gene expression contributes to the invasive phenotype of H-EMC-SS chondrosarcoma cells. FASEB J. 2010, 24, 436–450. [Google Scholar] [CrossRef]
- Brockman, Q.R.; Rytlewski, J.D.; Milhem, M.; Monga, V.; Dodd, R.D. Integrated Epigenetic and Transcriptomic Analysis Identifies Interleukin 17 DNA Methylation Signature of Malignant Peripheral Nerve Sheath Tumor Progression and Metastasis. JCO Precis. Oncol. 2024, 8, e2300325. [Google Scholar] [CrossRef]
- Wyatt, A.K.; Zavodna, M.; Viljoen, J.L.; Stanton, J.A.; Gemmell, N.J.; Jasoni, C.L. Changes in methylation patterns of Kiss1 and Kiss1r gene promoters across puberty. Genet. Epigenet. 2013, 5, 51–62. [Google Scholar] [CrossRef]
- Demanelis, K.; Argos, M.; Tong, L.; Shinkle, J.; Sabarinathan, M.; Rakibuz-Zaman, M.; Sarwar, G.; Shahriar, H.; Islam, T.; Rahman, M.; et al. Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. Environ. Health Perspect. 2019, 127, 57011. [Google Scholar] [CrossRef]
- Shi, J.; Xu, J.; Chen, Y.E.; Li, J.S.; Cui, Y.; Shen, L.; Li, J.J.; Li, W. The concurrence of DNA methylation and demethylation is associated with transcription regulation. Nat. Commun. 2021, 12, 5285. [Google Scholar] [CrossRef] [PubMed]
- Beetch, M.; Lubecka, K.; Shen, K.; Flower, K.; Harandi-Zadeh, S.; Suderman, M.; Flanagan, J.M.; Stefanska, B. Stilbenoid-Mediated Epigenetic Activation of Semaphorin 3A in Breast Cancer Cells Involves Changes in Dynamic Interactions of DNA with DNMT3A and NF1C Transcription Factor. Mol. Nutr. Food Res. 2019, 63, e1801386. [Google Scholar] [CrossRef]
- Stuckel, A.J.; Zeng, S.; Lyu, Z.; Zhang, W.; Zhang, X.; Dougherty, U.; Mustafi, R.; Khare, T.; Zhang, Q.; Joshi, T.; et al. Sprouty4 is epigenetically upregulated in human colorectal cancer. Epigenetics 2023, 18, 2145068. [Google Scholar] [CrossRef]
- Singh, V.; Singh, L.C.; Vasudevan, M.; Chattopadhyay, I.; Borthakar, B.B.; Rai, A.K.; Phukan, R.K.; Sharma, J.; Mahanta, J.; Kataki, A.C.; et al. Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population. OMICS 2015, 19, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Huang, Z.; Zeng, Z.; Li, J.; Xie, H.; Xie, C. An integrative analysis of DNA methylation and gene expression to predict lung adenocarcinoma prognosis. Front. Genet. 2022, 13, 970507. [Google Scholar] [CrossRef] [PubMed]
- Nobile, V.; Pucci, C.; Chiurazzi, P.; Neri, G.; Tabolacci, E. DNA Methylation, Mechanisms of FMR1 Inactivation and Therapeutic Perspectives for Fragile X Syndrome. Biomolecules 2021, 11, 296. [Google Scholar] [CrossRef]
- Xu, C.J.; Bonder, M.J.; Söderhäll, C.; Bustamante, M.; Baïz, N.; Gehring, U.; Jankipersadsing, S.A.; van der Vlies, P.; van Diemen, C.C.; van Rijkom, B.; et al. The emerging landscape of dynamic DNA methylation in early childhood. BMC Genom. 2017, 18, 25. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, P.; Fan, H.; Liang, H.; Zhang, K.; Zhao, Y.; Guo, S.; Schrodi, S.J.; Fan, Y.; Zhang, D. Gene body hypomethylation of pyroptosis-related genes NLRP7, NLRP2, and NLRP3 facilitate non-invasive surveillance of hepatocellular carcinoma. Funct. Integr. Genom. 2023, 23, 198. [Google Scholar] [CrossRef]
- Dietrich, D.; Hasinger, O.; Liebenberg, V.; Field, J.K.; Kristiansen, G.; Soltermann, A. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn. Mol. Pathol. 2012, 21, 93–104. [Google Scholar] [CrossRef]
- Luzón-Toro, B.; Villalba-Benito, L.; Fernández, R.M.; Torroglosa, A.; Antiñolo, G.; Borrego, S. RMRP, RMST, FTX and IPW: Novel potential long non-coding RNAs in medullary thyroid cancer. Orphanet J. Rare Dis. 2021, 16, 4. [Google Scholar] [CrossRef]
- Anvar, Z.; Chakchouk, I.; Demond, H.; Sharif, M.; Kelsey, G.; Van den Veyver, I.B. DNA Methylation Dynamics in the Female Germline and Maternal-Effect Mutations That Disrupt Genomic Imprinting. Genes 2021, 12, 1214. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wu, W.; Luo, H.; Liu, Z.; Liu, H.; Li, Q.; Pan, Z. Molecular characterization and epigenetic regulation of Mei1 in cattle and cattle-yak. Gene 2015, 573, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fukui, N.; Yahata, M.; Katsuragawa, Y.; Tashiro, T.; Ikegawa, S.; Lee, M.T. Genome-wide DNA methylation profile implicates potential cartilage regeneration at the late stage of knee osteoarthritis. Osteoarthr. Cartil. 2016, 24, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Fridley, B.L.; Song, H.; Lawrenson, K.; Cunningham, J.M.; Ramus, S.J.; Cicek, M.S.; Tyrer, J.; Stram, D.; Larson, M.C.; et al. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat. Commun. 2013, 4, 1628. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, X.; Li, C.; Zhang, X.; Yang, D.; Liu, Y.; Li, L. DNA methylation of HOX genes and its clinical implications in cancer. Exp. Mol. Pathol. 2023, 134, 104871. [Google Scholar] [CrossRef]
- Gao, P.; Sun, N.; Zhao, T.; Sun, Y.; Gu, J.; Ma, D.; Tian, H.; Peng, Z.; Zhang, Y.; Han, F.; et al. Identification of prognostic indicators, diagnostic markers, and possible therapeutic targets among LIM homeobox transcription factors in breast cancer. Cancer Innov. 2022, 1, 252–269. [Google Scholar] [CrossRef]
- Wang, C.; Xing, Q.; Song, B.; Li, G.; Xu, Z.; Wang, T.; Chen, Y.; Xu, Y.; Cao, Y. Aberrant DNA methylation in the PAX2 promoter is associated with Müllerian duct anomalies. Arch. Gynecol. Obstet. 2020, 301, 1455–1461. [Google Scholar] [CrossRef]
- Yu, H.; Pask, A.J.; Shaw, G.; Renfree, M.B. Comparative analysis of the mammalian WNT4 promoter. BMC Genom. 2009, 10, 416. [Google Scholar] [CrossRef]
- Yamashita, S.; Tsujino, Y.; Moriguchi, K.; Tatematsu, M.; Ushijima, T. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2′-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci. 2006, 97, 64–71. [Google Scholar] [CrossRef]
- Inagaki, H.; Ota, S.; Nishizawa, H.; Miyamura, H.; Nakahira, K.; Suzuki, M.; Nishiyama, S.; Kato, T.; Yanagihara, I.; Kurahashi, H. Obstetric complication-associated ANXA5 promoter polymorphisms may affect gene expression via DNA secondary structures. J. Hum. Genet. 2019, 64, 459–466. [Google Scholar] [CrossRef]
- Di Dalmazi, G.; Morandi, L.; Rubin, B.; Pilon, C.; Asioli, S.; Vicennati, V.; De Leo, A.; Ambrosi, F.; Santini, D.; Pagotto, U.; et al. DNA Methylation of Steroidogenic Enzymes in Benign Adrenocortical Tumors: New Insights in Aldosterone-Producing Adenomas. J. Clin. Endocrinol. Metab. 2020, 105, dgaa585. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Shu, M.; Liu, C.; Du, Y.; Xu, C.; Jiang, H.; Hou, J.; Chen, X.; Wang, L.; Wu, X. Unveiling the role of UPF3B in hepatocellular carcinoma: Potential therapeutic target. Cancer Sci. 2024, 115, 2646–2658. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wu, M.; Hu, X.; Yang, J.; Han, R.; Ma, Y.; Zhang, X.; Yuan, Y.; Liu, R.; Jiang, G.; et al. Ankylosing spondylitis is associated with aberrant DNA methylation of IFN regulatory factor 8 gene promoter region. Clin. Rheumatol. 2019, 38, 2161–2169. [Google Scholar] [CrossRef]
- Do, W.L.; Conneely, K.; Gabram-Mendola, S.; Krishnamurti, U.; D’Angelo, O.; Miller-Kleinhenz, J.; Gogineni, K.; Torres, M.; McCullough, L.E. Obesity-associated methylation in breast tumors: A possible link to disparate outcomes? Breast Cancer Res. Treat. 2020, 181, 135–144. [Google Scholar] [CrossRef]
- Adkins, R.M.; Thomas, F.; Tylavsky, F.A.; Krushkal, J. Parental ages and levels of DNA methylation in the newborn are correlated. BMC Med. Genet. 2011, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, W.; Tang, Y.; Zhou, D.; Gao, Y.; Zhang, Q.; Zhou, X.; Zhu, H.; Xing, L.; Yu, J. mRNA and methylation profiling of radioresistant esophageal cancer cells: The involvement of Sall2 in acquired aggressive phenotypes. J. Cancer 2017, 8, 646–656. [Google Scholar] [CrossRef]
- Qin, R.; Cao, L.; Wang, J.; Liu, J. Promoter Methylation of Ezrin and its Impact on the Incidence and Prognosis of Cervical Cancer. Cell. Physiol. Biochem. 2018, 50, 277–287. [Google Scholar] [CrossRef]
- Gong, G.; Lin, T.; Yuan, Y. Integrated analysis of gene expression and DNA methylation profiles in ovarian cancer. J. Ovarian Res. 2020, 13, 30. [Google Scholar] [CrossRef]
- Dubovsky, J.A.; McNeel, D.G.; Power, J.J.; Gordon, J.; Sotomayor, E.M.; Pinilla-Ibarz, J.A. Treatment of chronic lymphocytic leukemia with a hypomethylating agent induces expression of NXF2, an immunogenic cancer testis antigen. Clin. Cancer Res. 2009, 15, 3406–3415. [Google Scholar] [CrossRef]
- Sung, H.Y.; Choi, E.N.; Jo, S.A.; Oh, S.; Ahn, J.-H. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line. Biochem. Biophys. Res. Commun. 2011, 414, 700–705. [Google Scholar] [CrossRef]
- Lindqvist, B.M.; Farkas, S.A.; Wingren, S.; Nilsson, T.K. DNA methylation pattern of the SLC25A43 gene in breast cancer. Epigenetics 2012, 7, 300–306. [Google Scholar] [CrossRef]
- Liang, Y.; Zeng, J.; Luo, B.; Li, W.; He, Y.; Zhao, W.; Hu, N.; Jiang, N.; Luo, Y.; Xian, Y.; et al. TET2 promotes IL-1β expression in J774.1 cell through TLR4/MAPK signaling pathway with demethylation of TAB2 promoter. Mol. Immunol. 2020, 126, 136–142. [Google Scholar] [CrossRef]
- Ishido, M.; Higashi, K.; Mori, H.; Ueno, M.; Kurokawa, K. DNA methylation profiles of transgenerational rat hyperactivity primed by silver nanoparticles: Comparison with valproate model rats of autism. Behav. Brain Res. 2025, 477, 115293. [Google Scholar] [CrossRef]
- Nishino, K.; Hattori, N.; Tanaka, S.; Shiota, K. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J. Biol. Chem. 2004, 279, 22306–22313. [Google Scholar] [CrossRef]
- Topalovic, V.; Krstic, A.; Schwirtlich, M.; Dolfini, D.; Mantovani, R.; Stevanovic, M.; Mojsin, M. Epigenetic regulation of human SOX3 gene expression during early phases of neural differentiation of NT2/D1 cells. PLoS ONE 2017, 12, e0184099. [Google Scholar] [CrossRef]
- Zhou, X.; He, Y.; Li, N.; Bai, G.; Pan, X.; Zhang, Z.; Zhang, H.; Li, J.; Yuan, X. DNA methylation mediated RSPO2 to promote follicular development in mammals. Cell Death Dis. 2021, 12, 653. [Google Scholar] [CrossRef]
- Giordano, A.; Pignolet, B.; Mascia, E.; Clarelli, F.; Sorosina, M.; Misra, K.; Bucciarelli, F.; Ferrè, L.; Moiola, L.; Liblau, R.; et al. DNA Methylation in the Anti-Mullerian Hormone Gene and the Risk of Disease Activity in Multiple Sclerosis. Ann. Neurol. 2024, 96, 289–301. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Sun, C.X.; Liu, Y.K.; Li, Y.; Wang, L.; Zhang, W. Genome-wide screen of ovary-specific DNA methylation in polycystic ovary syndrome. Fertil. Steril. 2015, 104, 145–153.e6. [Google Scholar] [CrossRef]
- Dhawan, S.; Georgia, S.; Tschen, S.I.; Fan, G.; Bhushan, A. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 2011, 20, 419–429. [Google Scholar] [CrossRef]
- Li, S.; Zhu, D.; Duan, H.; Ren, A.; Glintborg, D.; Andersen, M.; Skov, V.; Thomassen, M.; Kruse, T.; Tan, Q. Differential DNA methylation patterns of polycystic ovarian syndrome in whole blood of Chinese women. Oncotarget 2017, 8, 20656–20666. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kanda, M.; Sugimoto, H.; Shimizu, D.; Sueoka, S.; Takami, H.; Ezaka, K.; Hashimoto, R.; Okamura, Y.; Iwata, N.; et al. Translational implication of Kallmann syndrome-1 gene expression in hepatocellular carcinoma. Int. J. Oncol. 2015, 46, 2546–2554. [Google Scholar] [CrossRef]
- Xiang, Y.; Cheng, Y.; Li, X.; Li, Q.; Xu, J.; Zhang, J.; Liu, Y.; Xing, Q.; Wang, L.; He, L.; et al. Up-regulated expression and aberrant DNA methylation of LEP and SH3PXD2A in pre-eclampsia. PLoS ONE 2013, 8, e59753. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Wu, J.; Qiao, M.; Zhou, J.; Xu, Z.; Li, Z.; Sun, H.; Peng, X.; Mei, S. Comprehensive Analysis of Methylome and Transcriptome to Identify Potential Genes Regulating Porcine Testis Development. Int. J. Mol. Sci. 2024, 25, 9105. [Google Scholar] [CrossRef]
- Fujii, S.; Srivastava, V.; Hegde, A.; Kondo, Y.; Shen, L.; Hoshino, K.; Gonzalez, Y.; Wang, J.; Sasai, K.; Ma, X.; et al. Regulation of AURKC expression by CpG island methylation in human cancer cells. Tumour Biol. 2015, 36, 8147–8158. [Google Scholar] [CrossRef]
- Namous, H.; Braz, C.U.; Wang, Y.; Khatib, H. The Activation of Protamine 1 Using Epigenome Editing Decreases the Proliferation of Tumorigenic Cells. Front. Genome Ed. 2022, 4, 844904. [Google Scholar] [CrossRef]
- Sujit, K.M.; Pallavi, S.; Singh, V.; Andrabi, S.W.; Trivedi, S.; Sankhwar, S.N.; Gupta, G.; Rajender, S. SPATA16 promoter hypermethylation and downregulation in male infertility. Andrologia 2022, 54, e14548. [Google Scholar] [CrossRef]
- Nanavaty, V.; Abrash, E.W.; Hong, C.; Park, S.; Fink, E.E.; Li, Z.; Sweet, T.J.; Bhasin, J.M.; Singuri, S.; Lee, B.H.; et al. DNA Methylation Regulates Alternative Polyadenylation via CTCF and the Cohesin Complex. Mol. Cell 2020, 78, 752–764.e6. [Google Scholar] [CrossRef]
- Yang, Q.; Xie, Y.; Pan, B.; Cheng, Y.; Zhu, Y.; Fei, X.; Li, X.; Yu, J.; Chen, Z.; Li, J.; et al. The Expression and Epigenetic Characteristics of the HSF2 Gene in Cattle-Yak and the Correlation with Its Male Sterility. Animals 2024, 14, 1410. [Google Scholar] [CrossRef]
- Ivascu, C.; Wasserkort, R.; Lesche, R.; Dong, J.; Stein, H.; Thiel, A.; Eckhardt, F. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas. Int. J. Biochem. Cell Biol. 2007, 39, 1523–1538. [Google Scholar] [CrossRef]
- Coppens, G.; Vanhorebeek, I.; Güiza, F.; Derese, I.; Wouters, P.J.; Téblick, A.; Dulfer, K.; Joosten, K.F.; Verbruggen, S.C.; Berghe, G.V.D. Abnormal DNA methylation within HPA-axis genes years after paediatric critical illness. Clin. Epigenet. 2024, 16, 31. [Google Scholar] [CrossRef]
- Amor, H.; Zeyad, A.; Hammadeh, M.E. Tobacco smoking and its impact on the expression level of sperm nuclear protein genes: H2BFWT, TNP1, TNP2, PRM1 and PRM2. Andrologia 2021, 53, e13964. [Google Scholar] [CrossRef]
- Gross, N.; Peñagaricano, F.; Khatib, H. Integration of whole-genome DNA methylation data with RNA sequencing data to identify markers for bull fertility. Anim. Genet. 2020, 51, 502–510. [Google Scholar] [CrossRef]
- Han, W.; Xue, Q.; Li, G.; Yin, J.; Zhang, H.; Zhu, Y.; Xing, W.; Cao, Y.; Su, Y.; Wang, K.; et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 2020, 112, 2677–2687. [Google Scholar] [CrossRef]
- Zhu, L.; Li, X.; Yuan, Y.; Dong, C.; Yang, M. APC Promoter Methylation in Gastrointestinal Cancer. Front. Oncol. 2021, 11, 653222. [Google Scholar] [CrossRef]
- Dobrovic, A.; Simpfendorfer, D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997, 57, 3347–3350. [Google Scholar] [PubMed]
- Rauch, T.A.; Wang, Z.; Wu, X.; Kernstine, K.H.; Riggs, A.D.; Pfeifer, G.P. DNA methylation biomarkers for lung cancer. Tumour Biol. 2012, 33, 287–296. [Google Scholar] [CrossRef]
- Pan, X.; Chen, Z.; Huang, R.; Yao, Y.; Ma, G. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts. PLoS ONE 2013, 8, e60335. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Li, G.; Wang, G.; Huo, Z.; Feng, X.; Du, L.; Li, Y.; Yang, Q.; Ma, X.; Yu, B.; et al. Development of a Risk Score Model for Osteosarcoma Based on DNA Methylation-Driven Differentially Expressed Genes. J. Oncol. 2022, 2022, 7596122. [Google Scholar] [CrossRef]
- Tompa, M.; Kajtar, B.; Galik, B.; Gyenesei, A.; Kalman, B. DNA methylation and protein expression of Wnt pathway markers in progressive glioblastoma. Pathol. Res. Pract. 2021, 222, 153429. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhu, Y.; Yu, H.; Zhou, C.; Kijlstra, A.; Yang, P. Dynamic DNA Methylation Changes of Tbx21 and Rorc during Experimental Autoimmune Uveitis in Mice. Mediat. Inflamm. 2018, 2018, 9129163. [Google Scholar] [CrossRef]
- Cui, B.; Xiao, X.; Wang, J.; Wang, H.; Wu, C.; Yan, Y.; Zheng, J.; Wang, J.; Zong, Y.; Zhang, Y.; et al. Low THRB (thyroid hormone receptor beta) Promoter Methylation Levels in Peripheral Blood Leukocytes Induced by Systematic Inflammation Are Involved in Low Thyroid Hormone Function in Metabolic Syndrome. Hypertension 2021, 78, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Sang, M.; Li, Y.; Li, Y.; Yuan, E.; Yang, L.; Shi, W.; Yuan, Y.; Yang, B.; Yang, P.; et al. WNT3 hypomethylation counteracts low activity of the Wnt signaling pathway in the placenta of preeclampsia. Cell. Mol. Life Sci. 2021, 78, 6995–7008. [Google Scholar] [CrossRef]
- Gonseth, S.; Shaw, G.M.; Roy, R.; Segal, M.R.; Asrani, K.; Rine, J.; Wiemels, J.; Marini, N.J. Epigenomic profiling of newborns with isolated orofacial clefts reveals widespread DNA methylation changes and implicates metastable epiallele regions in disease risk. Epigenetics 2019, 14, 198–213. [Google Scholar] [CrossRef]
- Mathios, D.; Hwang, T.; Xia, Y.; Phallen, J.; Rui, Y.; See, A.P.; Maxwell, R.; Belcaid, Z.; Casaos, J.; Burger, P.C.; et al. Genome-wide investigation of intragenic DNA methylation identifies ZMIZ1 gene as a prognostic marker in glioblastoma and multiple cancer types. Int. J. Cancer 2019, 145, 3425–3435. [Google Scholar] [CrossRef] [PubMed]
- Chim, C.-S.; Wong, S.-Y.; Pang, A.; Chu, P.; Lau, J.S.; Wong, K.-F.; Kwong, Y.-L. Aberrant promoter methylation of the retinoic acid receptor alpha gene in acute promyelocytic leukemia. Leukemia 2005, 19, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Simonova, O.A.; Kuznetsova, E.B.; Tanas, A.S.; Rudenko, V.V.; Poddubskaya, E.V.; Kekeeva, T.V.; Trotsenko, I.D.; Larin, S.S.; Kutsev, S.I.; Zaletaev, D.V.; et al. Abnormal Hypermethylation of CpG Dinucleotides in Promoter Regions of Matrix Metalloproteinases Genes in Breast Cancer and Its Relation to Epigenomic Subtypes and HER2 Overexpression. Biomedicines 2020, 8, 116. [Google Scholar] [CrossRef]
- Da Silva Melo, A.R.; Barroso, H.; De Araújo, D.U.; Pereira, F.R.; De Oliveira, N.F.P. The influence of sun exposure on the DNA methylation status of MMP9, miR-137, KRT14 and KRT19 genes in human skin. Eur. J. Dermatol. 2015, 25, 436–443. [Google Scholar] [CrossRef]
- Strelnikov, V.V.; Kuznetsova, E.B.; Tanas, A.S.; Rudenko, V.V.; Kalinkin, A.I.; Poddubskaya, E.V.; Kekeeva, T.V.; Chesnokova, G.G.; Trotsenko, I.D.; Larin, S.S.; et al. Abnormal promoter DNA hypermethylation of the integrin, nidogen, and dystroglycan genes in breast cancer. Sci. Rep. 2021, 11, 2264. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, H.; Yang, M.; Zhu, C. DNA methylation profiling analysis identifies a DNA methylation signature for predicting prognosis and recurrence of lung adenocarcinoma. Oncol. Lett. 2019, 18, 5831–5842. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Yu, U.; Huang, X.; Wang, H.; Lu, Y.; Liu, S.; Zhang, J. Genome-wide methylation and gene-expression analyses in thalassemia. Aging 2024, 16, 11591–11605. [Google Scholar] [CrossRef]
- Légaré, C.; Overend, G.; Guay, S.P.; Monckton, D.G.; Mathieu, J.; Gagnon, C.; Bouchard, L. DMPK gene DNA methylation levels are associated with muscular and respiratory profiles in DM1. Neurol Genet. 2019, 5, e338. [Google Scholar] [CrossRef] [PubMed]
- Pagliara, D.; Ciolfi, A.; Pedace, L.; Haghshenas, S.; Ferilli, M.; Levy, M.A.; Miele, E.; Nardini, C.; Cappelletti, C.; Relator, R.; et al. Identification of a robust DNA methylation signature for Fanconi anemia. Am. J. Hum. Genet. 2023, 110, 1938–1949. [Google Scholar] [CrossRef] [PubMed]
- Adeoye, O.; Olawumi, J.; Opeyemi, A.; Christiania, O. Review on the role of glutathione on oxidative stress and infertility. JBRA Assist. Reprod. 2018, 22, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Franzago, M.; Santurbano, D.; Vitacolonna, E.; Stuppia, L. Genes and Diet in the Prevention of Chronic Diseases in Future Generations. Int. J. Mol. Sci. 2020, 21, 2633. [Google Scholar] [CrossRef]
- Bekdash, R.A. Epigenetics, Nutrition, and the Brain: Improving Mental Health through Diet. Int. J. Mol. Sci. 2024, 25, 4036. [Google Scholar] [CrossRef]
- Bekdash, R.A. Early Life Nutrition and Mental Health: The Role of DNA Methylation. Nutrients 2021, 13, 3111. [Google Scholar] [CrossRef]
- Puche-Juarez, M.; Toledano, J.M.; Moreno-Fernandez, J.; Gálvez-Ontiveros, Y.; Rivas, A.; Diaz-Castro, J.; Ochoa, J.J. The Role of Endocrine Disrupting Chemicals in Gestation and Pregnancy Outcomes. Nutrients 2023, 15, 4657. [Google Scholar] [CrossRef]
- Erdoğan, K.; Sanlier, N.T.; Sanlier, N. Are epigenetic mechanisms and nutrition effective in male and female infertility? J. Nutr. Sci. 2023, 12, e103. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on Dietary Reference Values for choline. EFSA J. 2016, 14, e04484. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, Novel Foods and Food Allergens; Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Scientific Opinion on the safety of betaine as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2019, 17, e05658. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies. Scientific Opinion on Dietary Reference Values for folate. EFSA J. 2014, 12, 3893. [Google Scholar] [CrossRef]
- Crider, K.S.; Yang, T.P.; Berry, R.J.; Bailey, L.B. Folate and DNA methylation: A review of molecular mechanisms and the evidence for folate’s role. Adv. Nutr. 2012, 3, 21–38. [Google Scholar] [CrossRef]
- Nazni, P. Association of western diet & lifestyle with decreased fertility. Indian J. Med. Res. 2014, 140 (Suppl. S1), S78–S81. [Google Scholar]
- Ling, C.; Rönn, T. Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 2019, 29, 1028–1044. [Google Scholar] [CrossRef]
- Fernandez-Twinn, D.S.; Hjort, L.; Novakovic, B.; Ozanne, S.E.; Saffery, R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia 2019, 62, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, K.M.; Reynolds, R.M.; Prescott, S.L.; Nyirenda, M.; Jaddoe, V.W.; Eriksson, J.G.; Broekman, B.F. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017, 5, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, S. Dietary trends and the decline in male reproductive health. Hormones 2023, 22, 165–197. [Google Scholar] [CrossRef]
- Salvaleda-Mateu, M.; Rodríguez-Varela, C.; Labarta, E. Do Popular Diets Impact Fertility? Nutrients 2024, 16, 1726. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Chavarro, J.E.; Souter, I. Diet and female fertility: Doctor, what should I eat? Fertil. Steril. 2018, 110, 560–569. [Google Scholar] [CrossRef]
- Kirkwood, T.B.L. A systematic look at an old problem. Nature 2008, 451, 644–647. [Google Scholar] [CrossRef]
- Kenyon, C.J. The genetics of ageing. Nature 2010, 464, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Vellai, T.; Takács-Vellai, K. Regulation of protein turnover by longevity pathways. Adv. Exp. Med. Biol. 2010, 694, 69–80. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Vellai, T. How the amino acid leucine activates the key cell-growth regulator mTOR. Nature 2021, 596, 192–194. [Google Scholar] [CrossRef]
- Vellai, T.; Takács-Vellai, K.; Sass, M.; Klionsky, D.J. The regulation of aging: Does autophagy underlie longevity? Trends Cell Biol. 2009, 19, 487–494. [Google Scholar] [CrossRef]
- Hotzi, B.; Kosztelnik, M.; Hargitai, B.; Takács-Vellai, K.; Barna, J.; Bördén, K.; Málnási-Csizmadia, A.; Lippai, M.; Ortutay, C.; Bacquet, C.; et al. Sex-specific regulation of aging in Caenorhabditis elegans. Aging Cell 2018, 17, e12724. [Google Scholar] [CrossRef]
- Vellai, T.; Tóth, M.L.; Kovács, A.L. Janus-faced autophagy: A dual role of cellular self-eating in neurodegeneration? Autophagy 2007, 3, 461–463. [Google Scholar] [CrossRef]
- Billes, V.; Kovács, T.; Hotzi, B.; Manzéger, A.; Tagscherer, K.; Komlós, M.; Tarnóci, A.; Pádár, Z.; Erdős, A.; Bjelik, A.; et al. AUTEN-67 (Autophagy Enhancer-67) Hampers the Progression of Neurodegenerative Symptoms in a Drosophila model of Huntington’s Disease. J. Huntingt. Dis. 2016, 5, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Sigmond, T.; Barna, J.; Tóth, M.L.; Takács-Vellai, K.; Pásti, G.; Kovács, A.L.; Vellai, T. Autophagy in Caenorhabditis elegans. Methods Enzymol. 2008, 451, 521–540. [Google Scholar] [CrossRef]
- Sturm, Á.; Vellai, T. How does maternal age affect genomic stability in the offspring? Aging Cell 2022, 21, e13612. [Google Scholar] [CrossRef]
- Gorbunova, V.; Seluanov, A.; Mita, P.; McKerrow, W.; Fenyö, D.; Boeke, J.D.; Linker, S.B.; Gage, F.H.; Kreiling, J.A.; Petrash, A.P.; et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 2021, 596, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, A.R.E.; Moghadam, M.T.; Hemadi, M.; Saki, G. Oocyte quality and aging. JBRA Assist. Reprod. 2022, 26, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Pino, V.; Sanz, A.; Valdés, N.; Crosby, J.; Mackenna, A. The effects of aging on semen parameters and sperm DNA fragmentation. JBRA Assist. Reprod. 2020, 24, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Koubova, J.; Guarente, L. How does calorie restriction work? Genes Dev. 2003, 17, 313–321. [Google Scholar] [CrossRef]
- Mattson, M.P.; de Cabo, R. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2020, 382, 1773–1774. [Google Scholar] [CrossRef]
- Guarente, L.; Picard, F. Calorie restriction—The SIR2 connection. Cell 2005, 120, 473–482. [Google Scholar] [CrossRef]
- Bordone, L.; Guarente, L. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat. Rev. Mol. Cell Biol. 2005, 6, 298–305. [Google Scholar] [CrossRef]
- Niculescu, M.D.; Zeisel, S.H. Diet, methyl donors and DNA methylation: Interactions between dietary folate, methionine and choline. J. Nutr. 2002, 132 (Suppl. S8), 2333S–2335S. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Trapali, M.; Apostolopoulos, V. Role of Vitamin B in Healthy Ageing and Disease. Subcell. Biochem. 2024, 107, 245–268. [Google Scholar] [CrossRef]
- Morgan, D.K.; Whitelaw, E. The case for transgenerational epigenetic inheritance in humans. Mamm. Genome 2008, 19, 394–397. [Google Scholar] [CrossRef]
- Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 2018, 9, 2973. [Google Scholar] [CrossRef] [PubMed]
- Whitelaw, N.C.; Whitelaw, E. Transgenerational epigenetic inheritance in health and disease. Curr. Opin. Genet. Dev. 2008, 18, 273–279. [Google Scholar] [CrossRef] [PubMed]
Gene/Locus | Name | Function in Fertilization/Reproduction | DNA Methylation Changes | References |
---|---|---|---|---|
FEMALE | ||||
FOXL2 | Forkhead box L2 | Primordial germ cell generation [phenotype: gonadal dysgenesis] | yes | [41] |
NR5A1 | Nuclear receptor subfamily 5 group A member 1 | yes | [42] | |
WNT4 | Wnt family member 4 | - | ||
WT1 | WT1 transcription factor | - | ||
STAR | Steroidogenic Acute Regulatory Protein | - | ||
BUB1B | BUB1 (budding uninhibited by benzimidazoles 1) mitotic checkpoint serine/threonine kinase B | Oogonia clustering [phenotype: gonadal dysgenesis/premature ovarian failure—POF] | yes | [43] |
HFM1 | Helicase for meiosis 1 | - | ||
NUP107 | Nucleoporin 107 | - | ||
PSMC31P | Proteasome 26S Subunit interacting protein | - | ||
SGO2 | Shugoshin 2 | - | ||
STAG3 | Stromal antigen 3 | - | ||
SYCE1 | Synaptonemal complex central element protein 1 | yes | [44] | |
SYCP3 | Synaptonemal complex protein 3 | yes | [45,46] | |
MCM8, 9 | Minichromosome maintenance 8 homologous recombination repair factor | yes | [47] | |
XRCC4 | X-Ray repair cross complementing 4 | - | ||
ERCC6 | Excision repair 6, chromatin remodeling factor | yes | [48] | |
MSH5 | MutS protein homolog 5 | yes | [49] | |
NOBOX | Newborn ovary homeobox gene | Primordial follicle [phenotype: depletion of ovarian reserve] | yes | [50] |
BMP15 | Bone morphogenetic protein 15 | - | ||
GDF9 | Growth differentiation factor 9 | yes | [51,52] | |
FIGLA | Folliculogenesis specific BHLH transcription factor | - | [53] | |
SALL4 | Sal-like protein 4 | yes | [54] | |
AR | Androgen receptor | yes | [55] | |
FSHR | Follicle-stimulating hormone receptor | yes | [56] | |
FOXO1A, 3A | Forkhead box O1 transcription factor | yes | [57] | |
CDKN1B | Cyclin-dependent kinase inhibitor 1B | - | ||
INHA | Inhibin subunit alpha | yes | [58] | |
CYP19A1 | Cytochrome P450 family 19 subfamily A member 1 | yes | [59] | |
NANOS3 | Nanos C2HC-type zinc finger 3 | yes | [60] | |
SOHLH1, 2 | Spermatogenesis and oogenesis specific basic helix-loop-helix 1 | yes | [61] | |
ESR1, 2 | Estrogen receptor 1 | yes | [62] | |
LHCGR | Luteinizing hormone/choriogonadotropin receptor | yes | [63] | |
MRPS22 | Mitochondrial ribosomal protein S22 | Primary follicle (Oocyte maturation) | - | |
POF1B | Premature ovarian failure 1B | yes | [64] | |
POLR3H | RNA polymerase III subunit H | - | ||
REC8 | Meiotic recombination protein 8 | yes | [65] | |
SMC1B | Structural maintenance of chromosomes 1B | yes | [66] | |
SPIDR | Scaffold protein involved in DNA repair | - | ||
CPEB1 | Cytoplasmic polyadenylation element binding protein 1 | yes | [67] | |
PLCB1 | Phospholipase C beta 1 | yes | [68] | |
RB1CC1 | Rb1 inducible coiled-coil 1 | yes | [69] | |
MAP4K4 | Mitogen-activated protein kinase kinase kinase kinase 4 | yes | [70] | |
RBBP8 | RB binding protein 8, endonuclease | yes | [71] | |
IMMP2L | Inner mitochondrial membrane peptidase subunit 2 | yes | [72] | |
FER1L6 | Fer-1 like family member 6 | - | ||
MEIG1 | Meiosis/spermiogenesis associated 1 | - | ||
DIAPH2 | Diaphanous homolog 2 | - | ||
SOX8 | SRY-box transcription factor 8 | yes | [73] | |
HAX1 | HCLS1-associated protein X-1 | - | ||
ZP1, 2, 3 | Zona pellucida 1 | Secondary follicle (Oocyte maturation) | yes | [74] |
AXL | AXL receptor tyrosine kinase | Early antral follicle (Oocyte maturation) [phenotype: ovarian insufficiency, POI—primary ovarian insufficiency, PCOS—polycystic ovarian syndrome] oocyte maturation | yes | [75,76] |
PCOS1 | Polycystic ovary syndrome 1 | yes | [77] | |
SRD5A1, A2 | Steroid 5-alpha-reductase 1 | yes | [78] | |
CYP11A1 | Cytochrome P450 family 11 subfamily A member 1 | yes | [79,80] | |
FBN3 | Fibrillin 3 | yes | [81] | |
INS | Insulin | yes | [82] | |
INSR | Insulin receptor | yes | [83] | |
TCF7L2 | Transcription factor 7 like 2 | yes | [84] | |
CAPN10 | Calpain 10 | yes | [85] | |
FTO | Fat mass and obesity-associated | yes | [86] | |
SHBG | Sex hormone binding globulin | yes | [87] | |
DENND1A | DENN domain-containing 1A | yes | [88] | |
ATG7, 9A | Autophagy-related | yes | [89] | |
CCDC141 | Coiled-coil domain-containing 141 | yes | [90] | |
DUSP6 | Dual specificity phosphatase 6 | yes | [91] | |
FEZF1 | FEZ family zinc finger 1 | yes | [92] | |
FGF8, 17 | Fibroblast growth factor 17 | yes | [93] | |
FGFR1 | Fibroblast growth factor receptor 1 | yes | [94] | |
FLRT3 | Fibronectin leucine-rich transmembrane protein 3 | yes | [95] | |
FSHB | Follicle-stimulating hormone subunit beta | - | ||
GNRH1, 2 | Gonadotropin-releasing hormone 1 | yes | [96] | |
HS6ST1 | Heparan sulfate 6-O-sulfotransferase 1 | yes | [97] | |
IL17RD | Interleukin 17 receptor D | yes | [98] | |
KISS1 | KiSS-1 metastasis suppressor | yes | [99] | |
LHB | Luteinizing hormone subunit beta | - | ||
NSMF | NMDA receptor synaptonuclear signaling and neuronal migration factor | yes | [100] | |
PROK2 | Prokineticin 2 | yes | [101] | |
PROKR2 | Prokineticin receptor 2 | - | ||
SEMA3A | Semaphorin 3A | yes | [102] | |
SPRY4 | Sprouty RTK signaling antagonist 4 | yes | [103] | |
TAC3 | Tachykinin precursor 3 | yes | [104] | |
TACR3 | Tachykinin precursor receptor 3 | yes | [105] | |
WDR11 | WD repeat domain 11 | - | ||
PANX1 | Pannexin 1 | - | ||
FMR1 | Fragile X messenger ribonucleoprotein 1 | Preovulatory follicle and Secondary oocyte (Oocyte maturation) [phenotype: menstrual problem] | yes | [106] |
EIF4ENIF1 | Eukaryotic translation initiation factor 4E nuclear import factor 1 | - | ||
RCBTB1 | RCC1 and BTB domain-containing protein 1 | yes | [107] | |
NLRP2, 5, 7 | NLR family pyrin domain-containing 2 | Zygote (Fertilization) [phenotype: embryonic arrest] | yes | [108] |
PATL2 | PAT1 homolog 2 | - | ||
TUBB8 | Tubulin beta 8 class VIII | - | ||
SHOX | Short stature homeobox-containing gene | yes | [109] | |
RMST | Rhabdomyosarcoma 2-associated transcript | yes | [110] | |
WEE2 | WEE2 oocyte meiosis-inhibiting kinase | - | ||
KHDC3L | KH domain-containing 3-like, subcortical maternal complex member | yes | [111] | |
MEI1 | Meiotic double-stranded break formation protein 1 | Embryo (Epigenetic modification, chromatin remodeling) [phenotype: embryonic arrest] | yes | [112] |
TOP6BL | TOP6B-like initiator of meiotic double-strand breaks | - | ||
RECI14 | RecQ protein-like 4 | - | ||
PAD16TLE6 | Peptidyl arginine deiminase 6 | - | ||
EMX2 | Empty spiracles homeobox 2 | Fetus, placenta [phenotype: reproductive track malformation, reduced fetal viability] | yes | [113] |
HNF1B | Hepatocyte nuclear factor-1 beta | yes | [114] | |
HOXA13 | Homeobox A13 | yes | [115] | |
LHX1 | LIM homeobox 1 | yes | [116] | |
PAX2, 8 | Paired box 2 | yes | [117] | |
WNT4, 7A, 9B | Wnt family member 4 | - | [118] | |
ANXA5 | Annexin A5 | yes | [119,120] | |
CYP21A2 | Cytochrome P450 Family 21 Subfamily A Member | Other infertility-associated genes | no | [121] |
CYP17A1 | Cytochrome P450 enzyme family | no | [121] | |
UPF3B | Regulator of nonsense-mediated mRNA decay | no | [122] | |
IRF8 | Interferon regulatory factor 8 | yes | [123] | |
PSMB1 | Beta-6 subunit of the proteasome beta-type family | no | [124] | |
CETN2 | Centrin 2 | yes (only in males) | [125] | |
CSTF2 | Cleavage Stimulation Factor Subunit 2 | yes | [126] | |
EMD | Emerin | - | ||
EZR | Ezrin | yes | [127] | |
FLNA | Filamin A | - | ||
HCFC1 | Host cell factor 1 (VP16-accessory protein) | - | ||
IKBKG | Inhibitor Of Nuclear Factor Kappa B Kinase Regulatory Subunit Gamma | yes | [128] | |
KPNA5 | Karyopherin subunit alpha 5 | - | ||
NUP43 | Nucleoporin 43 | - | ||
NXF2, 3, 5 | Nuclear RNA export factor | yes | [129] | |
NXT2 | Nuclear transport factor 2-like export factor 2 | yes | [130] | |
SLC25A5 | Solute carrier family 25 member 5 | yes | [131] | |
TAB2 | TGF-beta activated kinase 1 (MAP3K7) binding protein 2 | yes | [132] | |
TBP | TATA-box binding protein | - | ||
TCP1 | T-complex 1 | - | ||
THOC2 | THO Complex Subunit 2 | yes | [133] | |
MALE | ||||
SRY | Sex determining region Y | Testicular disorder | yes | [134] |
SOX3, 9 | SRY-box transcription factor 3 | yes | [135] | |
NR5A1 | Nuclear receptor subfamily 5 group A member 1 | - | [42] | |
RSPO1 | R-spondin 1 | yes | [136] | |
DAX1 | Nuclear receptor subfamily 0 group B member 1 | - | ||
WT1 | WT1 transcription factor | Reproductive dysgenesis | - | |
NR5A1 | Nuclear receptor subfamily 5 group A member 1 | - | [42] | |
CBX2 | Chromobox 2 | - | ||
AMH | Anti-Mullerian hormone | yes | [137] | |
AMHR2 | Anti-Mullerian hormone receptor type 2 | yes | [138] | |
ARX | Aristaless related homeobox | yes | [139] | |
GNRHR | Receptor for type 1 gonadotropin-releasing hormone | yes | [140] | |
CHD7 | Chromodomain helicase DNA binding protein 7 | - | ||
KAL1 | Kallmann syndrome 1 | Hypogonadism | yes | [141] |
FGFR1 | Fibroblast growth factor receptor 1 | yes | [94] | |
PROKR2 | Prokineticin receptor 2 | - | ||
GNRH1 | Gonadotropin releasing hormone 1 | yes | [96] | |
TAC3 | Tachykinin precursor 3 | yes | [104] | |
LEP | Leptin | yes | [142] | |
NSMF | NMDA receptor synaptonuclear signaling and neuronal migration factor | yes | [100] | |
DAX1 | Nuclear receptor subfamily 0 group B member 1 | - | ||
KISS1R | KiSS-1 metastasis suppressor | yes | [99] | |
DMRT1 | Doublesex and mab-3 related transcription factor 1 | Gonadal dysgenesis | - | |
DPY19L2 | Dpy-19-like 2 | yes | [143] | |
AR | Androgen receptor | Androgen insensitivity | yes | [55] |
AURKC | Aurora kinase C | Abnormal sperm morphology/motility | yes | [144] |
PRM1 | Protamine 1 | yes | [145] | |
SLC26A8 | Solute carrier family 26 member 8 | - | ||
SPATA16 | Spermatogenesis-associated 16 | yes | [146] | |
ZPBP | Zona pellucida binding protein | - | ||
DNAAF5 | Dynein axonemal assembly factor 5 | yes | [147] | |
ARMC4 | Component of the outer dynein arm-docking complex | - | ||
DNAH6 | Dynein axonemal heavy chain 6 | - | ||
HSF2 | Heat Shock transcription factor 2 | Azoo- and oligo-zoospermia | yes | [148] |
SOHLH1 | Spermatogenesis and oogenesis specific basic helix-loop-helix 1 | yes | [61] | |
ETV5 | ETS variant transcription factor 5 | yes | [149] | |
GILZ | TSC22 domain family member 3 | yes | [150] | |
PRM2 | Protamine 2 | yes | [151] | |
NR5A1 | Nuclear receptor subfamily 5 group A member 1 | yes | [42] | |
KLHL10 | Kelch-like family member 10 | yes | [152] | |
PRM3 | Protamine 3 | |||
TNP2 | Transition protein 2 | yes | [153] | |
PSME3 | Proteasome activator complex subunit 3 | Other infertility-associated genes | - | |
PSMD3 | 26S proteasome non-ATPase regulatory subunit 3 | - | ||
CDC27 | Cell division cycle 27 | yes | [154] | |
APC | Adenomatous polyposis coli | yes | [155] | |
BRCA1 | Breast cancer type 1 susceptibility | yes | [156] | |
CHAD | Chondroadherin | yes | [157] | |
COL1A1 | Pro-alpha1 chains of type I collagen | yes | [158] | |
COL13A1 | Collagen type XIII alpha 1 chain | yes | [159] | |
FZD2 | Frizzled class receptor 2 | no | [115] | |
several HOXB | Homeobox B | yes | [160] | |
TBX21 | T-box transcription factor | yes | [161] | |
THRA | Thyroid hormone receptor alpha | yes | [162] | |
WNT3 | Wnt family member 3 | yes | [163] | |
WNT9B | Wnt family member 9B | yes | [164] | |
ZMIZ1 | Zinc Finger MIZ-Type Containing 1 | yes | [165] | |
RARA | Retinoic acid receptor alpha | yes | [166] | |
PLCD3 | Phospholipase C delta 3 | - | ||
NEUROG3 | Neurogenin-3 | - | ||
MMP21 | Matrix metallopeptidase 21 | yes | [167] | |
KRT19 | Keratin 19 | yes | [168] | |
KAT2A | Lysine histone acetyltransferase 2A | - | ||
ITGA3 | Integrin subunit alpha 3 | yes | [169] | |
ITGB3 | Integrin subunit beta 3 | yes | [170] | |
HBB | Hemoglobin subunit beta | Genetics syndromes: (Sickle cell anemia) | yes | [171] |
DNAI1 | Dynein axonemal intermediate chain 1 | (Kartagener’s syndrome) | - | |
DMPK | DM1 protein kinase | (Myotonic dystrophy) | yes | [172] |
FANCA | FA complementation group A | (Fanconi anemia) | yes | [173] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dusa, F.C.; Vellai, T.; Sipos, M. Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging. Dietetics 2025, 4, 30. https://doi.org/10.3390/dietetics4030030
Dusa FC, Vellai T, Sipos M. Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging. Dietetics. 2025; 4(3):30. https://doi.org/10.3390/dietetics4030030
Chicago/Turabian StyleDusa, Fanny Cecília, Tibor Vellai, and Miklós Sipos. 2025. "Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging" Dietetics 4, no. 3: 30. https://doi.org/10.3390/dietetics4030030
APA StyleDusa, F. C., Vellai, T., & Sipos, M. (2025). Nutrition and DNA Methylation: How Dietary Methyl Donors Affect Reproduction and Aging. Dietetics, 4(3), 30. https://doi.org/10.3390/dietetics4030030