Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (810)

Search Parameters:
Keywords = relative sea-level

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4469 KiB  
Article
Assessment of Large Forest Fires in the Canary Islands and Their Relationship with Subsidence Thermal Inversion and Atmospheric Conditions
by Jordan Correa and Pedro Dorta
Geographies 2025, 5(3), 37; https://doi.org/10.3390/geographies5030037 (registering DOI) - 1 Aug 2025
Abstract
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the [...] Read more.
The prevailing environmental conditions before and during the 28 Large Forest Fires (LFFs) that have occurred in the Canary Islands since 1983 are analyzed. These conditions are often associated with episodes characterized by the advection of continental tropical air masses originating from the Sahara, which frequently result in intense heatwaves. During the onset of the LFFs, the base of the subsidence thermal inversion layer—separating a lower layer of cool, moist air from an upper layer of warm, dry air—is typically located at an altitude of around 350 m above sea level, approximately 600 m below the usual average. Understanding these Saharan air advection events is crucial, as they significantly alter the vertical thermal structure of the atmosphere and create highly conducive conditions for wildfire ignition and spread in the forested mid- and high-altitude zones of the archipelago. Analysis of meteorological records from various weather stations reveals that the average maximum temperature on the first day of fire ignition is 30.3 °C, with mean temperatures of 27.4 °C during the preceding week and 28.9 °C throughout the fire activity period. Relative humidity on the ignition days averages 24.3%, remaining at around 30% during the active phase of the fires. No significant correlation has been found between dry or wet years and the occurrence of LFFs, which have been recorded across years with widely varying precipitation levels. Full article
Show Figures

Figure 1

17 pages, 4065 KiB  
Article
Relative Sea Level Changes in the Bay of Maladroxia, Southwestern Sardinia, and Their Implications for the Pre- and Protohistoric Cultures
by Steffen Schneider, Marlen Schlöffel, Anna Pint and Constance von Rüden
Geosciences 2025, 15(8), 287; https://doi.org/10.3390/geosciences15080287 (registering DOI) - 1 Aug 2025
Abstract
A multidisciplinary study was conducted to reconstruct the paleoenvironmental evolution of Maladroxia Bay, one of the principal bays of the islet of Sant’Antioco in southwestern Sardinia, over the past eight millennia. As part of an archaeological landscape project, this study explores the paleogeography [...] Read more.
A multidisciplinary study was conducted to reconstruct the paleoenvironmental evolution of Maladroxia Bay, one of the principal bays of the islet of Sant’Antioco in southwestern Sardinia, over the past eight millennia. As part of an archaeological landscape project, this study explores the paleogeography and environment of the bay from a diachronic perspective to gain insights into the Holocene relative sea level history, shoreline displacements, and the environmental conditions during different phases. This study is based on an analysis of four sediment cores in conjunction with a chronological model that is based on radiocarbon dates. Four relative sea level indicators were produced. These are the first such indicators from the early and middle Holocene for the island of Sant’Antioco. The results indicate that in the early Holocene, the area was a terrestrial, fluvial environment without marine influence. In the 6th millennium BCE, the rising sea level and marine transgression resulted in the formation of a shallow inner lagoon. It reached its maximum extent in the middle of the 5th millennium BCE. Afterwards, a gradual transition from lagoon to floodplain, and a seaward shift of the shoreline occurred. The lagoon potentially served as a valuable source of food and resources during the middle Holocene. During the Nuragic period (2nd to 1st millennium BCE), the Bay of Maladroxia was very similar to how it is today. Its location was ideal for use as an anchorage, due to the calm and sheltered conditions that prevailed. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

23 pages, 15846 KiB  
Article
Habitats, Plant Diversity, Morphology, Anatomy, and Molecular Phylogeny of Xylosalsola chiwensis (Popov) Akhani & Roalson
by Anastassiya Islamgulova, Bektemir Osmonali, Mikhail Skaptsov, Anastassiya Koltunova, Valeriya Permitina and Azhar Imanalinova
Plants 2025, 14(15), 2279; https://doi.org/10.3390/plants14152279 - 24 Jul 2025
Viewed by 317
Abstract
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of [...] Read more.
Xylosalsola chiwensis (Popov) Akhani & Roalson is listed in the Red Data Book of Kazakhstan as a rare species with a limited distribution, occurring in small populations in Kazakhstan, Uzbekistan, and Turkmenistan. The aim of this study is to deepen the understanding of the ecological conditions of its habitats, the floristic composition of its associated plant communities, the species’ morphological and anatomical characteristics, and its molecular phylogeny, as well as to identify the main threats to its survival. The ecological conditions of the X. chiwensis habitats include coastal sandy plains and the slopes of chinks and denudation plains with gray–brown desert soils and bozyngens on the Mangyshlak Peninsula and the Ustyurt Plateau at altitudes ranging from −3 to 270 m above sea level. The species is capable of surviving in arid conditions (less than 100 mm of annual precipitation) and under extreme temperatures (air temperatures exceeding 45 °C and soil surface temperatures above 65 °C). In X. chiwensis communities, we recorded 53 species of vascular plants. Anthropogenic factors associated with livestock grazing, industrial disturbances, and off-road vehicle traffic along an unregulated network of dirt roads have been identified as contributing to population decline and the potential extinction of the species under conditions of unsustainable land use. The morphometric traits of X. chiwensis could be used for taxonomic analysis and for identifying diagnostic morphological characteristics to distinguish between species of Xylosalsola. The most taxonomically valuable characteristics include the fruit diameter (with wings) and the cone-shaped structure length, as they differ consistently between species and exhibit relatively low variability. Anatomical adaptations to arid conditions were observed, including a well-developed hypodermis, which is indicative of a water-conserving strategy. The moderate photosynthetic activity, reflected by a thinner palisade mesophyll layer, may be associated with reduced photosynthetic intensity, which is compensated for through structural mechanisms for water conservation. The flow cytometry analysis revealed a genome size of 2.483 ± 0.191 pg (2n/4x = 18), and the phylogenetic analysis confirmed the placement of X. chiwensis within the tribe Salsoleae of the subfamily Salsoloideae, supporting its taxonomic distinctness. To support the conservation of this rare species, measures are proposed to expand the area of the Ustyurt Nature Reserve through the establishment of cluster sites. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 15938 KiB  
Article
Coastal Eddy Detection in the Balearic Sea: SWOT Capabilities
by Laura Fortunato, Laura Gómez-Navarro, Vincent Combes, Yuri Cotroneo, Giuseppe Aulicino and Ananda Pascual
Remote Sens. 2025, 17(15), 2552; https://doi.org/10.3390/rs17152552 - 23 Jul 2025
Viewed by 424
Abstract
Mesoscale coastal eddies are key components of ocean circulation, mediating the transport of heat, nutrients, and marine debris. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution sea surface height data, offering a novel opportunity to improve the observation and characterization of [...] Read more.
Mesoscale coastal eddies are key components of ocean circulation, mediating the transport of heat, nutrients, and marine debris. The Surface Water and Ocean Topography (SWOT) mission provides high-resolution sea surface height data, offering a novel opportunity to improve the observation and characterization of these features, especially in coastal regions where conventional altimetry is limited. In this study, we investigate a mesoscale anticyclonic coastal eddy observed southwest of Mallorca Island, in the Balearic Sea, to assess the impact of SWOT-enhanced altimetry in resolving its structure and dynamics. Initial eddy identification is performed using satellite ocean color imagery, followed by a qualitative and quantitative comparison of multiple altimetric datasets, ranging from conventional nadir altimetry to wide-swath products derived from SWOT. We analyze multiple altimetric variables—Sea Level Anomaly, Absolute Dynamic Topography, Velocity Magnitude, Eddy Kinetic Energy, and Relative Vorticity—highlighting substantial differences in spatial detail and intensity. Our results show that SWOT-enhanced observations significantly improve the spatial characterization and dynamical depiction of the eddy. Furthermore, Lagrangian transport simulations reveal how altimetric resolution influences modeled transport pathways and retention patterns. These findings underline the critical role of SWOT in advancing the monitoring of coastal mesoscale processes and improving our ability to model oceanic transport mechanisms. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Ocean and Coastal Environment Monitoring)
Show Figures

Figure 1

21 pages, 8441 KiB  
Article
Upper Pleistocene Marine Levels of the Es Copinar–Es Estufadors (Formentera, Balearic Islands, West Mediterranean)
by Laura del Valle, Guillem X. Pons and Joan J. Fornós
Quaternary 2025, 8(3), 38; https://doi.org/10.3390/quat8030038 - 21 Jul 2025
Viewed by 255
Abstract
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, [...] Read more.
Late Pleistocene coastal deposits on the southeastern coast of Formentera (Es Ram–Es Estufadors) provide a high-resolution record of sea-level and climatic fluctuations associated with Marine Isotope Stage (MIS) 5. Three distinct beach levels (Sef-1, Sef-2, Sef-3) were identified, corresponding to substages MIS 5e, 5c, and possibly 5a, based on sedimentological features, fossil assemblages, and Optically Stimulated Luminescence (OSL) dating. The oldest beach level (Sef-1) is attributed to MIS 5e (ca. 128–116 ka) and is characterised by the widespread presence of thermophilic Senegalese fauna—including Thetystrombus latus, Conus ermineus, and Linatella caudata—which mark the onset of this interglacial phase and are associated with two peaks in relative sea-level highstand. A subsequent cooling event during MIS 5d is recorded by the development of thin palaeosols and the disappearance of these warm-water taxa. The second beach level (Sef-2) reflects renewed sea-level rise and warmer conditions during MIS 5c, with abundant macrofauna and red algae. The transition to MIS 5b (~97 ka) is marked by a significant sea-level drop (down to –60 m), cooler climate, and enhanced colluvial sedimentation linked to increased runoff and erosion. In total, 54 macrofaunal species were identified—16 from Sef-1 and 46 from Sef-2—highlighting ecological shifts across substages. These results improve our understanding of coastal response to sea-level oscillations and paleoenvironmental dynamics in the western Mediterranean during the Late Pleistocene. Full article
Show Figures

Figure 1

25 pages, 18172 KiB  
Article
Sea Cucumber Egg Oligopeptides Ameliorate Cognitive Impairments and Pathology of Alzheimer’s Disease Through Regulating HDAC3 and BDNF/NT3 via the Microbiota–Gut–Brain Axis
by Guifeng Zhang, Yanjie Dou, Huiwen Xie, Dan Pu, Longxing Wang, Renjun Wang and Xiaofei Han
Nutrients 2025, 17(14), 2312; https://doi.org/10.3390/nu17142312 - 14 Jul 2025
Viewed by 516
Abstract
Background: Oligopeptides from sea cucumber eggs (SCEPs) are rarely studied for their neuroprotective effects. Methods: Therefore, we prepared SCEPs via simulated gastrointestinal digestion and then administered them to an Alzheimer’s disease (AD) mouse model via gavage. Behavior tests, gut–brain histopathology and fecal microbiota [...] Read more.
Background: Oligopeptides from sea cucumber eggs (SCEPs) are rarely studied for their neuroprotective effects. Methods: Therefore, we prepared SCEPs via simulated gastrointestinal digestion and then administered them to an Alzheimer’s disease (AD) mouse model via gavage. Behavior tests, gut–brain histopathology and fecal microbiota transplantation (FMT) experiments were conducted, and gut microbiota and metabolite short-chain fatty acids (SCFAs) were evaluated via 16sRNA gene sequencing and LC-MS. Results: The results showed that both the SCEP and FMT groups experienced improvements in the cognitive impairments of AD and showed reduced levels of Aβ, P-Tau, GFAP, and NFL in the brain, especially in the hippocampus. SCEP remodeled the gut microbiota, increasing the relative abundances of Turicibacter and Lactobacillus by 2.7- and 4.8-fold compared with the model at the genus level. In the SCEP and FMT treatments, four SCFA-producing bacteria obtained from gut microbiota profiling showed consistent trends, indicating that they may be involved in mediating the neuroprotective effects of SCEP. Mechanically, SCEP regulated the SCFA distribution in feces, blood, and the brain, greatly increased the content of SCFAs in the brain up to 2000 μg/mg, eased gut–brain barrier dysfunction, inhibited HDAC3 overexpression, and upregulated BDNF/NT3 levels. Conclusions: This study provides a promising candidate for preventing AD and a reference for applying SCEP. Full article
(This article belongs to the Section Lipids)
Show Figures

Figure 1

19 pages, 13404 KiB  
Article
A New Bronze Age Productive Site on the Margin of the Venice Lagoon: Preliminary Data and Considerations
by Cecilia Rossi, Rita Deiana, Gaia Alessandra Garosi, Alessandro de Leo, Stefano Di Stefano, Sandra Primon, Luca Peruzzo, Ilaria Barone, Samuele Rampin, Pietro Maniero and Paolo Mozzi
Land 2025, 14(7), 1452; https://doi.org/10.3390/land14071452 - 11 Jul 2025
Viewed by 432
Abstract
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology [...] Read more.
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology planned during some water restoration works in the Giare–Mira area. Three small excavations revealed, approximately one meter below the current surface and covered by alluvial sediments, a rather complex palimpsest dated to the late Recent and the early Final Bronze Age. Three large circular pits containing exclusively purified grey/blue clay and very rare inclusions of vegetable fibres, and many large, fired clay vessels’ bases, walls and rims clustered in concentrated assemblages and random deposits point to potential on-site production. Two pyro-technological structures, one characterised by a sub-circular combustion chamber and a long inlet channel/praefurnium, and the second one with a sub-rectangular shape with arched niches along its southern side, complete the exceptional context here discovered. To analyse the relationship between the site and the natural sedimentary succession and to evaluate the possible extension of this site, three electrical resistivity tomography (ERT) and low-frequency electromagnetic (FDEM) measurements were collected. Several manual core drillings associated with remote sensing integrated the geophysical data in the analysis of the geomorphological evolution of this area, clearly related to different phases of fluvial activity, in a framework of continuous relative sea level rise. The typology and chronology of the archaeological structures and materials, currently undergoing further analyses, support the interpretation of the site as a late Recent/early Final Bronze Age productive site. Geophysical and geomorphological data provide information on the palaeoenvironmental setting, suggesting that the site was located on a fine-grained, stable alluvial plain at a distance of a few kilometres from the lagoon shore to the south-east and the course of the Brenta River to the north. The archaeological site was buried by fine-grained floodplain deposits attributed to the Brenta River. The good preservation of the archaeological structures buried by fluvial sediments suggests that the site was abandoned soon before sedimentation started. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

23 pages, 48857 KiB  
Article
A 36-Year Assessment of Mangrove Ecosystem Dynamics in China Using Kernel-Based Vegetation Index
by Yiqing Pan, Mingju Huang, Yang Chen, Baoqi Chen, Lixia Ma, Wenhui Zhao and Dongyang Fu
Forests 2025, 16(7), 1143; https://doi.org/10.3390/f16071143 - 11 Jul 2025
Viewed by 297
Abstract
Mangrove forests serve as critical ecological barriers in coastal zones and play a vital role in global blue carbon sequestration strategies. In recent decades, China’s mangrove ecosystems have experienced complex interactions between degradation and restoration under intense coastal urbanization and systematic conservation efforts. [...] Read more.
Mangrove forests serve as critical ecological barriers in coastal zones and play a vital role in global blue carbon sequestration strategies. In recent decades, China’s mangrove ecosystems have experienced complex interactions between degradation and restoration under intense coastal urbanization and systematic conservation efforts. However, the long-term spatiotemporal patterns and driving mechanisms of mangrove ecosystem health changes remain insufficiently quantified. This study developed a multi-temporal analytical framework using Landsat imagery (1986–2021) to derive kernel normalized difference vegetation index (kNDVI) time series—an advanced phenological indicator with enhanced sensitivity to vegetation dynamics. We systematically characterized mangrove growth patterns along China’s southeastern coast through integrated Theil–Sen slope estimation, Mann–Kendall trend analysis, and Hurst exponent forecasting. A Deep Forest regression model was subsequently applied to quantify the relative contributions of environmental drivers (mean annual sea surface temperature, precipitation, air temperature, tropical cyclone frequency, and relative sea-level rise rate) and anthropogenic pressures (nighttime light index). The results showed the following: (1) a nationally significant improvement in mangrove vitality (p < 0.05), with mean annual kNDVI increasing by 0.0072/yr during 1986–2021; (2) spatially divergent trajectories, with 58.68% of mangroves exhibiting significant improvement (p < 0.05), which was 2.89 times higher than the proportion of degraded areas (15.10%); (3) Hurst persistence analysis (H = 0.896) indicating that 74.97% of the mangrove regions were likely to maintain their growth trends, while 15.07% of the coastal zones faced potential degradation risks; and (4) Deep Forest regression id the relative rate of sea-level rise (importance = 0.91) and anthropogenic (nighttime light index, importance = 0.81) as dominant drivers, surpassing climatic factors. This study provides the first national-scale, 30 m resolution assessment of mangrove growth dynamics using kNDVI, offering a scientific basis for adaptive management and blue carbon strategies in subtropical coastal ecosystems. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

13 pages, 1504 KiB  
Article
Mapping and Potential Risk Assessment of Marine Debris in Mangrove Wetlands in the Northern South China Sea
by Peng Zhou, Zhongchen Jiang, Li Zhao, Huina Hu and Dongmei Li
Sustainability 2025, 17(14), 6311; https://doi.org/10.3390/su17146311 - 9 Jul 2025
Viewed by 373
Abstract
Mangrove wetlands, acting as significant traps for marine debris, have received insufficient attention in previous research. Here, we conduct the first comprehensive investigation into the magnitude, accumulation, source, and fate of marine debris across seven mangrove areas in the northern South China Sea [...] Read more.
Mangrove wetlands, acting as significant traps for marine debris, have received insufficient attention in previous research. Here, we conduct the first comprehensive investigation into the magnitude, accumulation, source, and fate of marine debris across seven mangrove areas in the northern South China Sea (MNSCS) during 2019–2020. Systematic field surveys employed stratified random sampling, partitioning each site by vegetation density and tidal influence. Marine debris were collected and classified in sampling units by material (plastic, fabric, styrofoam), size (categorized into small, medium, and large), and origin (distinguishing between land-based and sea-based). Source identification and potential risk assessment were achieved through the integration of debris feature analysis. The results indicate relatively low debris levels in MNSCS mangroves, with plastics dominant. More than 70% of all debris weight with plastics (48.34%) and fabrics (14.59%) is land-based, and more than 70% comes from coastal/recreational activities. More than 90% of all debris items with plastics (52.50%) and Styrofoam (36.32%) are land-based, and more than 90% come from coastal/recreational activities. Medium/large-sized debris are trapped in mangrove wetlands under the influencing conditions of local tidal level, debris item materials, and sizes. Our study quantifies marine debris characteristics, sources, and ecological potential risks in MNSCS mangroves. From environmental, economic, and social sustainability perspectives, our findings are helpful for guiding marine debris management and mangrove conservation. By bridging research and policies, our work balances human activities with ecosystem health for long-term sustainability. Full article
(This article belongs to the Section Sustainable Oceans)
Show Figures

Figure 1

23 pages, 7965 KiB  
Article
A COSMIC-2-Based Global Mean TEC Model and Its Application to Calibrating IRI-2020 Global Ionospheric Maps
by Yuxiao Lei, Weitang Wang, Yibin Yao and Liang Zhang
Remote Sens. 2025, 17(13), 2322; https://doi.org/10.3390/rs17132322 - 7 Jul 2025
Viewed by 270
Abstract
While space weather indices (e.g., F10.7, Dst index) are commonly employed to characterize ionospheric activity levels, the Global Mean Electron Content (GMEC) provides a more direct and comprehensive indicator of the global ionospheric state. This metric demonstrates greater potential than space weather indices [...] Read more.
While space weather indices (e.g., F10.7, Dst index) are commonly employed to characterize ionospheric activity levels, the Global Mean Electron Content (GMEC) provides a more direct and comprehensive indicator of the global ionospheric state. This metric demonstrates greater potential than space weather indices for calibrating empirical ionospheric models such as IRI-2020. The COSMIC-2 constellation enables continuous, all-weather global ionospheric monitoring via radio occultation, unimpeded by land–sea distribution constraints, with over 8000 daily occultation events suitable for GMEC modeling. This study developed two lightweight GMEC models using COSMIC-2 data: (1) a POD GMEC model based on slant TEC (STEC) extracted from Level 1b podTc2 products and (2) a PROF GMEC model derived from vertical TEC (VTEC) calculated from electron density profiles (EDPs) in Level 2 ionPrf products. Both backpropagation neural network (BPNN)-based models generate hourly GMEC outputs as global spatial averages. Critically, GMEC serves as an essential intermediate step that addresses the challenges of utilizing spatially irregular occultation data by compressing COSMIC-2’s ionospheric information into an integrated metric. Building on this compressed representation, we implemented a convolutional neural network (CNN) that incorporates GMEC as an auxiliary feature to calibrate IRI-2020’s global ionospheric maps. This approach enables computationally efficient correction of systemic IRI TEC errors. Experimental results demonstrate (i) 48.5% higher accuracy in POD/PROF GMEC relative to IRI-2020 GMEC estimates, and (ii) the calibrated global IRI TEC model (designated GCIRI TEC) reduces errors by 50.15% during geomagnetically quiet periods and 28.5% during geomagnetic storms compared to the original IRI model. Full article
Show Figures

Figure 1

26 pages, 41871 KiB  
Article
Episodic vs. Sea Level Rise Coastal Flooding Scenarios at the Urban Scale: Extreme Event Analysis and Adaptation Strategies
by Sebastian Spadotto, Saverio Fracaros, Annelore Bezzi and Giorgio Fontolan
Water 2025, 17(13), 1991; https://doi.org/10.3390/w17131991 - 2 Jul 2025
Viewed by 476
Abstract
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. [...] Read more.
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. Here, a thorough investigation is conducted in Grado, one of the most significant coastal and historical towns in the Friuli Venezia Giulia region of Italy. Grado is located on a barrier island of the homonymous lagoon, the northernmost of the Adriatic Sea, and is prone to flooding from both the sea and the back lagoon. The mean and maximum sea levels from the historical dataset of Venice (1950–2023) were analysed using the Gumbel-type distribution, allowing for the identification of annual extremes based on their respective return periods (RPs). Grado and Trieste sea level datasets (1991–2023) were used to calibrate the statistics of the extremes and to calculate the local component (subsidence) of relative SLR. The research examined the occurrence of annual exceedance of the minimum threshold water level of 110 cm, indicating Grado’s initial notable marine ingression. The study includes a detailed analysis of flood impacts on the urban fabric, categorised into sectors based on the promenade elevation on the lagoon side, the most vulnerable to flooding. Inundated areas were obtained using a high-resolution digital terrain model through a GIS-based technique, assessing both the magnitude and exposure of the urban environment to flood risk due to storm surges, also considering relative SLR projections for 2050 and 2100. Currently, approximately 42% of Grado’s inhabited area is inundated with a sea level threshold value of 151 cm, which occurs during surge episodes with a 30-year RP. By 2100, with an optimistic forecast (SSP1-2.6) of local SLR of around +53 cm, the same threshold will be met with a surge of ca. 100 cm, which occurs once a year. Thus, extreme levels linked with more catastrophic events with current secular RPs will be achieved with a multi-year frequency, inundating more than 60% of the urbanized area. Grado, like Venice, exemplifies trends that may impact other coastal regions and historically significant towns of national importance. As a result, the generated simulations, as well as detailed analyses of urban sectors where coastal flooding may occur, are critical for medium- to long-term urban planning aimed at adopting proper adaptation measures. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

15 pages, 6065 KiB  
Article
Characteristics of Microorganisms and Origins of Organic Matter in Permian Shale in Northwestern Sichuan Basin, South China
by Yuying Zhang, Baojian Shen, Bo Gao, Dongjun Feng, Pengwei Wang, Min Li, Yifei Li and Yang Liu
Processes 2025, 13(7), 2080; https://doi.org/10.3390/pr13072080 - 1 Jul 2025
Viewed by 285
Abstract
Permian shale gas, a resource-rich energy source, has garnered significant attention in recent years regarding its organic matter enrichment characteristics. This study conducted detailed observations via scanning electron microscopy (SEM) and optical microscopy to clarify the differences in the types and assemblages of [...] Read more.
Permian shale gas, a resource-rich energy source, has garnered significant attention in recent years regarding its organic matter enrichment characteristics. This study conducted detailed observations via scanning electron microscopy (SEM) and optical microscopy to clarify the differences in the types and assemblages of hydrocarbon-generating organisms across Permian shale formations in Northwestern Sichuan, as well as to determine the characteristics of organic matter sources. The types and combinations of hydrocarbon-generating organisms in the Gufeng Formation, Wujiaping Formation, and Dalong Formation in Northwestern Sichuan are systematically summarized. Based on this information, the primary sources of organic matter in the Permian shale were analyzed. Hydrocarbon-generating organisms in the Permian shales of the study area are predominantly acritarchs (a type of planktonic algae), followed by higher plants and green algae. In the Gufeng Formation, acritarchs constituted the vast majority of hydrocarbon-generating organisms, with smaller amounts of higher plants and green algae. At the bottom of the Wujiaping Formation, the relative acritarch content decreases significantly, while that of higher plants substantially increases. In the Dalong Formation, acritarchs regain dominance, and higher plants decline, resembling the Gufeng Formation in microorganism composition. The relative content of green algae shows minimal variation across all layers. Overall, the organic matter sources of Permian shale in the study area were mainly acritarchs (derived from planktonic algae), followed by green algae, and terrestrial higher plants. During the Gufeng Formation period, the sea level was relatively high. The Kaijiang–Liangping Trough in Northwestern Sichuan was generally a siliceous deep shelf. The main source of organic matter was aquatic planktonic algae, containing a small amount of terrigenous input. At the bottom of the Wujiaping Formation, the sea level was relatively low, resulting in the overall coastal marsh environment of the Kaijiang–Liangping Trough, which was characterized by mixed organic matter sources, due to an increase in terrigenous organic matter content. The sedimentary environment and organic matter sources of the Dalong Formation were similar to those of the Gufeng Formation. This research can provide a theoretical basis for exploration and development of Permian shale gas. Full article
Show Figures

Figure 1

22 pages, 8219 KiB  
Article
Estimation of Relative Sea Level Change in Locations Without Tide Gauges Using Artificial Neural Networks
by Heeryun Kim, Young Il Park, Wansik Ko, Taehyun Yoon and Jeong-Hwan Kim
J. Mar. Sci. Eng. 2025, 13(7), 1243; https://doi.org/10.3390/jmse13071243 - 27 Jun 2025
Viewed by 298
Abstract
Sea level rise due to climate change poses an increasing threat to coastal ecosystems, infrastructure, and human settlements. However, accurately estimating sea level changes in regions without tide gauge observations remains a major challenge. While satellite altimetry provides wide spatial coverage, its accuracy [...] Read more.
Sea level rise due to climate change poses an increasing threat to coastal ecosystems, infrastructure, and human settlements. However, accurately estimating sea level changes in regions without tide gauge observations remains a major challenge. While satellite altimetry provides wide spatial coverage, its accuracy diminishes near coastlines. In contrast, tide gauges offer high precision but are spatially limited. This study aims to develop an artificial neural network-based model for estimating relative sea level changes in coastal regions where tide gauge data are unavailable. Unlike conventional forecasting approaches focused on future time series prediction, the proposed model is designed to learn spatial distribution patterns and temporal rates of sea level change from a fusion of satellite altimetry and tide gauge data. A normalization scheme is applied to reduce inconsistencies in reference levels, and Bayesian optimization is employed to fine-tune hyperparameters. A case analysis is conducted in two coastal regions in South Korea, Busan and Ansan, using data from 2018 to 2023. The model demonstrates strong agreement with observed tide gauge records, particularly in estimating temporal trends of sea level rise. This approach effectively compensates for the limitations of satellite altimetry in coastal regions and fills critical observational gaps in ungauged areas. The proposed method holds substantial promise for coastal hazard mitigation, infrastructure planning, and climate adaptation strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 10755 KiB  
Article
Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment
by Isavela N. Monioudi, Dimitris Chatzistratis, Konstantinos Moschopoulos, Adonis F. Velegrakis, Amalia Polydoropoulou, Theodoros Chalazas, Efstathios Bouhouras, Georgios Papaioannou, Ioannis Karakikes and Helen Thanopoulou
Water 2025, 17(13), 1897; https://doi.org/10.3390/w17131897 - 26 Jun 2025
Viewed by 664
Abstract
This study assesses the exposure of the 155 Greek seaports to marine flooding and extreme heat under climate change. Flood exposure was estimated through a threshold approach that compared projected mean and extreme sea levels to high-resolution port quay elevation data. It was [...] Read more.
This study assesses the exposure of the 155 Greek seaports to marine flooding and extreme heat under climate change. Flood exposure was estimated through a threshold approach that compared projected mean and extreme sea levels to high-resolution port quay elevation data. It was found that while relatively few ports will face quay inundation, the majority will experience operational disruptions due to insufficient freeboard for berthing of commercial vessels under both the mean (80%) and extreme sea (96%) levels by 2050. For selected ports, 2-D flood modelling was undertaken that showed that the used ‘static’ flood threshold approach likely underestimates flood exposure. Future heat exposure was studied through the comparison of extreme temperature and humidity projections to operational and health/safety thresholds. Port infrastructure and personnel/users will be exposed to large material, operational and health risks, whereas energy demand will rise steeply. Deadly heat days (due to mean temperature/humidity combination) will increase, particularly at island ports: 20% of Greek ports might face more than 50 such days annually by end-century. As ports are associated with large urban clusters, these findings suggest a broader health risk. Our findings suggest an urgent climate adaptation need given the strategic socio-economic importance of ports. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

19 pages, 5173 KiB  
Technical Note
Numerical Simulation of Storm Surge-Induced Water Level Rise in the Bohai Sea with Adjoint Data Assimilation
by Liqun Jiao, Youqi Wang, Dong Jiang, Qingrong Liu, Jing Gao and Xianqing Lv
Remote Sens. 2025, 17(12), 2054; https://doi.org/10.3390/rs17122054 - 14 Jun 2025
Viewed by 359
Abstract
This study applied an adjoint data assimilation model capable of integrating wind fields to investigate a temperate storm surge event in the Bohai Sea region during October 18 to 21, 2024. Based on in situ water level measurements from five tide gauge stations, [...] Read more.
This study applied an adjoint data assimilation model capable of integrating wind fields to investigate a temperate storm surge event in the Bohai Sea region during October 18 to 21, 2024. Based on in situ water level measurements from five tide gauge stations, the model simulated the spatial distributions of water levels under different wind stress drag coefficients (CD) schemes driven by reanalysis wind fields and interpolated wind fields. The results demonstrated that the scheme without the adjoint data assimilation exhibited relatively low accuracy. Upon integrating the adjoint data assimlation method, the errors of the reanalysis wind fields were reduced by 44%, while those of the interpolated wind fields experienced a 74% decrease in error magnitude. Overall, this study provides a reference for enhancing the accuracy of water level predictions during storm surge events. Full article
(This article belongs to the Special Issue Remote Sensing of High Winds and High Seas)
Show Figures

Figure 1

Back to TopTop