Past Practice and Future Prospects in Coastal Environmental Reconstructions

A special issue of Quaternary (ISSN 2571-550X).

Deadline for manuscript submissions: 20 December 2024 | Viewed by 3398

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue will focus on the best practice and prospects in coastal environmental reconstruction. Coastal environments include highly sensitive depositional systems and may, therefore, record the main morpho-climatic variations, reflecting depositional systems. Besides the natural control factors, the coastal areas have recorded the impact of the human settlement on the depositional environments. The sedimentary record and the related coastal geomorphologic modification may control the shifting of the coastal and marine facies during relative sea level fluctuations.

We welcome you to submit a paper to the Special Issue “Best Practice and Future Prospects in Coastal Environmental Reconstruction”, including main issues on seismic and sequence stratigraphy in coastal environments, facies analysis of coastal sequences, marine micropaleontology, coastal vulnerability and coastal hazard through GIS methodologies, and micropaleontological and sedimentological reconstruction of coastal environments, also in the Late Holocene. Geoarcheological issues are also welcome. High-resolution chronostratigraphic research, focusing on tephrostratigraphy, is also invited

Best regards,

Dr. Gemma Aiello
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Quaternary is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • coastal environments
  • marine depositional systems
  • facies analysis
  • seismic and sequence stratigraphy
  • sedimentary record
  • human settlements
  • geoarcheology
  • coastal hazard
  • GIS studies in coastal areas
  • micropaleontology
  • sedimentology
  • tephrostratigraphy

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 4996 KiB  
Article
Characterization of Heavy Minerals and Their Possible Sources in Quaternary Alluvial and Beach Sediments by an Integration of Microanalytical Data and Spectroscopy (FTIR, Raman and UV-Vis)
by Adel A. Surour and Amira M. El-Tohamy
Quaternary 2024, 7(4), 46; https://doi.org/10.3390/quat7040046 - 22 Oct 2024
Viewed by 716
Abstract
Quaternary stream sediments and beach black sand in north-western Saudi Arabia (namely Wadi Thalbah, Wadi Haramil and Wadi Al Miyah) are characterized by the enrichment of heavy minerals. Concentrates of the heavy minerals in two size fractions (63–125 μm and 125–250 μm) are [...] Read more.
Quaternary stream sediments and beach black sand in north-western Saudi Arabia (namely Wadi Thalbah, Wadi Haramil and Wadi Al Miyah) are characterized by the enrichment of heavy minerals. Concentrates of the heavy minerals in two size fractions (63–125 μm and 125–250 μm) are considered as potential sources of “strategic” accessory minerals. A combination of mineralogical, geochemical and spectroscopic data of opaque and non-opaque minerals is utilized as clues for provenance. ThO2 (up to 17.46 wt%) is correlated with UO2 (up to 7.18 wt%), indicating a possible uranothorite solid solution in zircon. Hafnoan zircon (3.6–5.75 wt% HfO2) is a provenance indicator that indicates a granitic source, mostly highly fractionated granite. In addition, monazite characterizes the same felsic provenance with rare-earth element oxides (La, Ce, Nd and Sm amounting) up to 67.88 wt%. These contents of radionuclides and rare-earth elements assigned the investigated zircon and monazite as “strategic” minerals. In the bulk black sand, V2O5 (up to 0.36 wt%) and ZrO2 (0.57 wt%) are correlated with percentages of magnetite and zircon. Skeletal or star-shaped Ti-magnetite is derived from the basaltic flows. Mn-bearing ilmenite, with up to 5.5 wt% MnO, is derived from the metasediments. The Fourier-transform infrared transmittance (FTIR) spectra indicate lattice vibrational modes of non-opaque silicate heavy minerals, e.g., amphiboles. In addition, the FTIR spectra show O-H vibrational stretching that is related to magnetite and Fe-oxyhydroxides, particularly in the magnetic fraction. Raman data indicate a Verwey transition in the spectrum of magnetite, which is partially replaced by possible ferrite/wüstite during the measurements. The Raman shifts at 223 cm−1 and 460 cm−1 indicate O-Ti-O symmetric stretching vibration and asymmetric stretching vibration of Fe-O bonding in the FeO6 octahedra, respectively. The ultraviolet-visible-near infrared (UV-Vis-NIR) spectra confirm the dominance of ferric iron (Fe3+) as well as some Si4+ transitions of magnetite (226 and 280 nm) in the opaque-rich fractions. Non-opaque heavy silicates such as hornblende and ferrohornblende are responsible for the 192 nm intensity band. Full article
Show Figures

Figure 1

17 pages, 4304 KiB  
Article
Past and Present Drivers of Karst Formation of Ciénega de El Mangle, Panama
by Jaime Rivera-Solís, Adolfo Quesada-Román and Fran Domazetović
Quaternary 2023, 6(4), 58; https://doi.org/10.3390/quat6040058 - 29 Nov 2023
Viewed by 1867
Abstract
Tropical coastal karst areas represent dynamic, fragile, and biodiverse environments. Central America’s karst regions have been scarcely studied, with most of the research focused on the northern part of the region and on several larger cave systems. The coastal carbonate zones of the [...] Read more.
Tropical coastal karst areas represent dynamic, fragile, and biodiverse environments. Central America’s karst regions have been scarcely studied, with most of the research focused on the northern part of the region and on several larger cave systems. The coastal carbonate zones of the Central American region represent a unique karstic landscape, which, so far, has been insufficiently studied. Therefore, in this paper, we aim to describe the (i) landscape geomorphology and (ii) chemical conditions that define Ciénega de El Mangle in Panama as a distinctive karstic site. Carried geomorphological mapping and the characterization of karstic features have resulted in the identification of the different karstic forms and processes that are present within this unique karstic area. Considering that the chosen karstic study area is located in a marine–coastal fringe on the periphery of a lagoon, it is affected by a combination of several factors and processes, including seawater intrusion (through sinkholes), the formation of conchiferous limestone (CaCO3), and NaCl precipitation related to efflorescence. Due to the seasonally humid tropical climate, the chemical weathering processes are intense, thus forming alkaline soils that are hindering the development of mangrove vegetation. The geomorphology of the area results from intense evaporation combined with an influx of brackish groundwater, due to which a landscape has evolved in the marine–coastal strips, of seasonal tropical climates, that exhibit saline beaches, known as a littoral shott. In total, 24 karstic microdolines have evolved within the shott, of which six represent domical geoforms formed by gradual evaporitic precipitation, while seven other geoforms represent active karstic sinkholes filled with brackish water. These results are key for understanding the past and present climate interactions and conditions that have led to the formation of tropical karst environments. Full article
Show Figures

Figure 1

Back to TopTop