Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment
Abstract
1. Introduction
2. Climate Hazards and Impacts for Seaports
2.1. Coastal Floods
2.2. Extreme Temperatures
2.3. Other Climatic Hazards
3. Methodology
3.1. Assessment of the Marine Flood Exposure
3.1.1. Marine Flood Hazard: Mean and Extreme Sea Levels
3.1.2. Port Flood Threshold
3.1.3. Dynamic Flood Simulations
3.2. Heat Exposure Assessment Based on Operational and Health Thresholds
3.2.1. Heat Hazard: Extreme Temperatures
3.2.2. Extreme Temperatures: Exposure of and Impacts on Coastal Transport Infrastructure
3.2.3. Extreme Temperatures: Health and Safety Issues
4. Results
4.1. Flood Exposure
4.1.1. Hazards: Mean and Extreme Sea Levels
4.1.2. Flood Threshold
4.1.3. Dynamic Simulations for Selected Ports
4.2. Heat Exposure
4.2.1. Hazards
4.2.2. Exposure of and Impacts on Transport Infrastructure
4.2.3. Human Safety/Health Risks
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Asariotis, R.; Monioudi, I.N.; Mohos Naray, V.; Velegrakis, A.F.; Vousdoukas, M.I.; Mentaschi, L.; Feyen, L. Climate Change and Seaports: Hazards, Impacts and Policies and Legislation for Adaptation. Anthr. Coasts 2024, 7, 14. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Sánchez-Arcilla, A.; Sierra, J.P.; Brown, S.; Casas-Prat, M.; Nicholls, R.J.; Lionello, P.; Conte, D. A Review of Potential Physical Impacts on Harbours in the Mediterranean Sea under Climate Change. Reg. Environ. Change 2016, 16, 2471–2484. [Google Scholar] [CrossRef]
- UNECE. Climate Change Impacts and Adaptation for Transport Networks and Nodes; ECE/TRANS/283; United Nations Publications: Geneva, Switzerland, 2020; ISBN 978-92-1-117237-9. [Google Scholar]
- Izaguirre, C.; Losada, I.J.; Camus, P.; Vigh, J.L.; Stenek, V. Climate Change Risk to Global Port Operations. Nat. Clim. Chang. 2021, 11, 14–20. [Google Scholar] [CrossRef]
- UNECE. Transport for Sustainable Development: The Case of Inland Transport; Transport Trends and Economics Series; ECE/TRANS/251; United Nations Publications: New York, NY, USA; Geneva, Switzerland, 2015; ISBN 978-92-1-117096-2. [Google Scholar]
- Verschuur, J.; Koks, E.E.; Hall, J.W. Systemic Risks from Climate-Related Disruptions at Ports. Nat. Clim. Chang. 2023, 13, 804–806. [Google Scholar] [CrossRef]
- Verschuur, J.; Koks, E.E.; Li, S.; Hall, J.W. Multi-Hazard Risk to Global Port Infrastructure and Resulting Trade and Logistics Losses. Commun. Earth Environ. 2023, 4, 5. [Google Scholar] [CrossRef]
- Marcos, M.; Amores, A.; Agulles, M.; Robson, J.; Feng, X. Global Warming Drives a Threefold Increase in Persistence and 1 °C Rise in Intensity of Marine Heatwaves. Proc. Natl. Acad. Sci. USA 2025, 122, e2413505122. [Google Scholar] [CrossRef]
- Lucio, D.; Lara, J.L.; Tomás, A.; Losada, I.J. Probabilistic Assessment of Climate-Related Impacts and Risks in Ports. Reliab. Eng. Syst. Saf. 2024, 251, 110333. [Google Scholar] [CrossRef]
- Becker, A.; Ng, A.K.Y.; McEvoy, D.; Mullett, J. Implications of Climate Change for Shipping: Ports and Supply Chains. WIREs Clim. Change 2018, 9, e508. [Google Scholar] [CrossRef]
- Asariotis, R. Climate Change Impacts on Seaports: A Growing Threat to Sustainable Trade and Development. Available online: https://unctad.org/news/climate-change-impacts-seaports-growing-threat-sustainable-trade-and-development (accessed on 5 December 2023).
- Tselentis, B.; Pelagidis, T.; Manologlou, S. The Role of Modern Ports and Marine Protected Areas in Eastmed’s Environmental Sustainability: The Case of Greece. In Operational Research in Agriculture and Tourism; Krassadaki, E., Baourakis, G., Zopounidis, C., Matsatsinis, N., Eds.; Springer: Cham, Switzerland, 2020; pp. 131–143. [Google Scholar]
- Asariotis, R. Climate Change and Adaptation for Coastal Transport Infrastructure: A Sustainable Development Challenge for SIDS in the Caribbean and Beyond. In Coastal and Marine Environments; Wang, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2020; Volume 5, pp. 253–264. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; ISBN 978-1-107-05821-7. [Google Scholar]
- UNFCCC. Policy Brief: Technologies for Averting, Minimizing and Addressing Loss and Damage in Coastal Zones. In United Nations Framework Convention OnClimate Change; Executive Committee of the Warsaw International Mechanism for Loss and Damage: Bonn, Germany, 2020. [Google Scholar]
- Wang, N.; Wu, M.; Yuen, K.F. Assessment of Port Resilience Using Bayesian Network: A Study of Strategies to Enhance Readiness and Response Capacities. Reliab. Eng. Syst. Saf. 2023, 237, 109394. [Google Scholar] [CrossRef]
- Monioudi, I.Ν.; Asariotis, R.; Becker, A.; Bhat, C.; Dowding-Gooden, D.; Esteban, M.; Feyen, L.; Mentaschi, L.; Nikolaou, A.; Nurse, L.; et al. Climate Change Impacts on Critical International Transportation Assets of Caribbean Small Island Developing States (SIDS): The Case of Jamaica and Saint Lucia. Reg. Environ. Change 2018, 18, 2211–2225. [Google Scholar] [CrossRef]
- Bove, G.; Becker, A.; Sweeney, B.; Vousdoukas, M.; Kulp, S. A Method for Regional Estimation of Climate Change Exposure of Coastal Infrastructure: Case of USVI and the Influence of Digital Elevation Models on Assessments. Sci. Total Environ. 2020, 710, 136162. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- EU. Directive (EU) 2022/2557 of the European Parliament and of the Council of 14 December 2022 on the Resilience of Critical Entities and Repealing Council Directive 2008/114/EC; Official Journal L 333; EU: Brussels, Belgium, 2022; pp. 164–198. [Google Scholar]
- GEBCO. Compilation Group The GEBCO_2024 Grid-a Continuous Terrain Model of the Global Oceans and Land; NERC EDS British Oceanographic Data Centre NOC: Liverpool, UK, 2024. [Google Scholar] [CrossRef]
- Sierra, J.P.; Sánchez-Arcilla, A.; Gironella, X.; Gracia, V.; Altomare, C.; Mösso, C.; González-Marco, D.; Gómez, J.; Barceló, M.; Barahona, C. Impact of Climate Change on Berthing Areas in Ports of the Balearic Islands: Adaptation Measures. Front. Mar. Sci. 2023, 10, 1124763. [Google Scholar] [CrossRef]
- Li, P.; Tong, M.; Wu, J.; Meng, X.; Fan, X.; Sun, X.; Li, J.; Xue, T. Flood Exposure Contributes to Under-Five Mortality in Low- and Middle-Income Countries. One Earth 2025, 8, 101305. [Google Scholar] [CrossRef]
- EEA. European Climate Risk Assessment; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- Monioudi, I.N.; Velegrakis, A.F.; Chatzistratis, D.; Vousdoukas, M.I.; Savva, C.; Wang, D.; Bove, G.; Mentaschi, L.; Paprotny, D.; Morales-Nápoles, O.; et al. Climate Change—Induced Hazards on Touristic Island Beaches: Cyprus, Eastern Mediterranean. Front. Mar. Sci. 2023, 10, 1188896. [Google Scholar] [CrossRef]
- Hanson, S.E.; Nicholls, R.J. Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea-Level Rise. Earths Future 2020, 8, e2020EF001543. [Google Scholar] [CrossRef]
- Abdelhafez, M.A.; Ellingwood, B.; Mahmoud, H. Vulnerability of Seaports to Hurricanes and Sea Level Rise in a Changing Climate: A Case Study for Mobile, AL. Coast. Eng. 2021, 167, 103884. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Athanasiou, P.; Giardino, A.; Mentaschi, L.; Stocchino, A.; Kopp, R.E.; Menéndez, P.; Beck, M.W.; Ranasinghe, R.; Feyen, L. Small Island Developing States under Threat by Rising Seas Even in a 1.5 °C Warming World. Nat. Sustain. 2023, 6, 1552–1564. [Google Scholar] [CrossRef]
- WMO. State of the Global Climate 2024; Chair, Publications Board, World Meteorological Organization: Geneva, Switzerland, 2024; ISBN 978-92-63-11368-5. [Google Scholar]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; ISBN 978-4-88788-232-4. [Google Scholar]
- Slangen, A.B.A.; Palmer, M.D.; Camargo, C.M.L.; Church, J.A.; Edwards, T.L.; Hermans, T.H.J.; Hewitt, H.T.; Garner, G.G.; Gregory, J.M.; Kopp, R.E.; et al. The Evolution of 21st Century Sea-Level Projections from IPCC AR5 to AR6 and Beyond. Camb. Prism. Coast. Futures 2023, 1, e7. [Google Scholar] [CrossRef]
- Jevrejeva, S.; Jackson, L.P.; Riva, R.E.M.; Grinsted, A.; Moore, J.C. Coastal Sea Level Rise with Warming above 2 °C. Proc. Natl. Acad. Sci. USA 2016, 113, 13342–13347. [Google Scholar] [CrossRef]
- Velegrakis, A.F.; Monioudi, I.; Tzoraki, O.; Vousdoukas, M.I.; Tragou, E.; Hasiotis, T.; Asariotis, R.; Andreadis, O. Coastal Hazards and Related Impacts in Greece. In The Geography of Greece: Managing Crises and Building Resilience; Darques, R., Sidiropoulos, G., Kalabokidis, K., Eds.; Springer: Cham, Switzerland, 2024; pp. 353–370. ISBN 978-3-031-29819-6. [Google Scholar]
- Uzun, P.; Otay, E.N. Sea-Level Change in Eastern Mediterranean, Aegean and Black Seas Analyzed at Subregional Scale of Six CORDEX Domains. Reg. Stud. Mar. Sci. 2025, 83, 104099. [Google Scholar] [CrossRef]
- Cherif, S.; Doblas-Miranda, E.; Lionello, P.; Borrego, C.; Giorgi, F.; Iglesias, A.; Jebari, S.; Mahmoudi, E.; Moriondo, M.; Pringault, O.; et al. Drivers of Change. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2021; pp. 59–180. [Google Scholar]
- Zittis, G.; Almazroui, M.; Alpert, P.; Ciais, P.; Cramer, W.; Dahdal, Y.; Fnais, M.; Francis, D.; Hadjinicolaou, P.; Howari, F.; et al. Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East. Rev. Geophys. 2022, 60, e2021RG000762. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Shaw, A.G.P. Seasonal Sea Level Extremes in the Mediterranean Sea and at the Atlantic European Coasts. Nat. Hazards Earth Syst. Sci. 2010, 10, 1457–1475. [Google Scholar] [CrossRef]
- Androulidakis, Y.; Christos, M.; Zisis, M.; Krestenitis, Y. Sea Level Variability and Coastal Inundation over the Northeastern Mediterranean Sea. Coast. Eng. J. 2023, 65, 514–545. [Google Scholar] [CrossRef]
- Camus, P.; Tomás, A.; Díaz-Hernández, G.; Rodríguez, B.; Izaguirre, C.; Losada, I.J. Probabilistic Assessment of Port Operation Downtimes under Climate Change. Coast. Eng. 2019, 147, 12–24. [Google Scholar] [CrossRef]
- Tsoukala, V.K.; Chondros, M.; Kapelonis, Z.G.; Martzikos, N.; Lykou, A.; Belibassakis, K.; Makropoulos, C. An Integrated Wave Modelling Framework for Extreme and Rare Events for Climate Change in Coastal Areas—The Case of Rethymno, Crete. Oceanologia 2016, 58, 71–89. [Google Scholar] [CrossRef]
- Mentaschi, L.; Vousdoukas, M.I.; Voukouvalas, E.; Dosio, A.; Feyen, L. Global Changes of Extreme Coastal Wave Energy Fluxes Triggered by Intensified Teleconnection Patterns. Geophys. Res. Lett. 2017, 44, 2416–2426. [Google Scholar] [CrossRef]
- Bevacqua, E.; Vousdoukas, M.I.; Zappa, G.; Hodges, K.; Shepherd, T.G.; Maraun, D.; Mentaschi, L.; Feyen, L. More Meteorological Events That Drive Compound Coastal Flooding Are Projected under Climate Change. Commun. Earth Environ. 2020, 1, 47. [Google Scholar] [CrossRef]
- Paprotny, D.; Vousdoukas, M.I.; Morales-Nápoles, O.; Jonkman, S.N.; Feyen, L. Pan-European Hydrodynamic Models and Their Ability to Identify Compound Floods. Nat. Hazards 2020, 101, 933–957. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Compound Events under Global Warming: A Dependence Perspective. J. Hydrol. Eng. 2020, 25, 03120001. [Google Scholar] [CrossRef]
- Xu, K.; Wang, C.; Bin, L. Compound Flood Models in Coastal Areas: A Review of Methods and Uncertainty Analysis. Nat. Hazards 2023, 116, 469–496. [Google Scholar] [CrossRef]
- Green, J.; Haigh, I.D.; Quinn, N.; Neal, J.; Wahl, T.; Wood, M.; Eilander, D.; de Ruiter, M.; Ward, P.; Camus, P. Review Article: A Comprehensive Review of Compound Flooding Literature with a Focus on coastal and Estuarine Regions. Nat. Hazards Earth Syst. Sci. 2025, 25, 747–816. [Google Scholar] [CrossRef]
- Notteboom, T.; Pallis, A.; Rodrigue, J.-P. Port Economics, Management and Policy, 1st ed.; Routledge: London, UK, 2022; ISBN 9780429318184. [Google Scholar]
- Liban, C.B.; Kafalenos, R.; Alessa, L.; Anenberg, S.; Chester, M.; DeFlorio, J.; Dóñez, F.J.; Flannery, A.; Sanio, M.R.; Scott, B.A.; et al. Transportation. In Fifth National Climate Assessment; Crimmins, A.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2023. [Google Scholar]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global Risk of Deadly Heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Dasgupta, S.; van Maanen, N.; Gosling, S.N.; Piontek, F.; Otto, C.; Schleussner, C.-F. Effects of Climate Change on Combined Labour Productivity and Supply: An Empirical, Multi-Model Study. Lancet Planet. Health 2021, 5, e455–e465. [Google Scholar] [CrossRef] [PubMed]
- van Daalen, K.R.; Romanello, M.; Rocklöv, J.; Semenza, J.C.; Tonne, C.; Markandya, A.; Dasandi, N.; Jankin, S.; Achebak, H.; Ballester, J.; et al. The 2022 Europe Report of the Lancet Countdown on Health and Climate Change: Towards a Climate Resilient Future. Lancet Public Health 2022, 7, e942–e965. [Google Scholar] [CrossRef] [PubMed]
- Kostopoulou, E.; Giannakopoulos, C.; Hatzaki, M.; Karali, A.; Hadjinicolaou, P.; Lelieveld, J.; Lange, M.A. Spatio-Temporal Patterns of Recent and Future Climate Extremes in the Eastern Mediterranean and Middle East Region. Nat. Hazards Earth Syst. Sci. 2014, 14, 1565–1577. [Google Scholar] [CrossRef]
- Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T. High Resolution Projections for Extreme Temperatures and Precipitation over Greece. Clim. Dyn. 2023, 61, 633–667. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Akritidis, D.; Kalisoras, A.; Kapsomenakis, J.; Melas, D.; Zerefos, C.S.; Zanis, P. Climate Change Projections for Greece in the 21st Century from High-Resolution EURO-CORDEX RCM Simulations. Atmos. Res. 2022, 271, 106049. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Giannakopoulos, C. Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate 2023, 11, 49. [Google Scholar] [CrossRef]
- Zanis, P.; Georgoulias, A.K.; Velikou, K.; Akritidis, D.; Kalisoras, A.; Melas, D. Future Projections of Precipitation Extremes for Greece Based on an Ensemble of High-Resolution Regional Climate Model Simulations. Atmosphere 2024, 15, 601. [Google Scholar] [CrossRef]
- UNECE. Climate Change Impacts and Adaptation for International Transport Networks; ECE/TRANS/238; United Nations Publications: New York, NY, USA; Switzerland, Geneva, 2014. [Google Scholar]
- Folkman, D.; Gharehgozli, A.; Mileski, J.; Galvao, C.B. Port Resiliency and the Effects of Hurricanes on Port Operations. Int. J. Adv. Oper. Manag. 2021, 13, 409–430. [Google Scholar] [CrossRef]
- Wu, X.; Sun, Y.; Wu, Y.; Su, N.; Peng, S. The Interference Effects of Wind Load and Wind-Induced Dynamic Response of Quayside Container Cranes. Appl. Sci. 2022, 12, 10969. [Google Scholar] [CrossRef]
- Castillo, A.P.P.; Herazo, J.C.M. A Review of Wind Impact on Container Port Operations: Current Technologies, Strategies and Future Perspectives. Procedia Comput. Sci. 2024, 251, 783–788. [Google Scholar] [CrossRef]
- Gu, B.; Liu, J. A Systematic Review of Resilience in the Maritime Transport. Int. J. Logist. Res. Appl. 2025, 28, 257–278. [Google Scholar] [CrossRef]
- Vagenas, C.; Anagnostopoulou, C.; Tolika, K. Climatic Study of the Marine Surface Wind Field over the Greek Seas with the Use of a High Resolution RCM Focusing on Extreme Winds. Climate 2017, 5, 29. [Google Scholar] [CrossRef]
- Ricci, A.; Vasaturo, R.; Blocken, B. An Integrated Tool to Improve the Safety of Seaports and Waterways under Strong Wind Conditions. J. Wind Eng. Ind. Aerodyn. 2023, 234, 105327. [Google Scholar] [CrossRef]
- Soukissian, T.; Karathanasi, F.; Axaopoulos, P.; Voukouvalas, E.; Kotroni, V. Offshore Wind Climate Analysis and Variability in the Mediterranean Sea. Int. J. Climatol. 2018, 38, 384–402. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A Simple Raster-Based Model for Flood Inundation Simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Jackson, L.P.; Jevrejeva, S. A Probabilistic Approach to 21st Century Regional Sea-Level Projections Using RCP and High-End Scenarios. Glob. Planet. Change 2016, 146, 179–189. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global Probabilistic Projections of Extreme Sea Levels Show Intensification of Coastal Flood Hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casanovas, I.; Mösso, C.; Mestres, M.; Sánchez-Arcilla, A. Vulnerability of Catalan (NW Mediterranean) Ports to Wave Overtopping Due to Different Scenarios of Sea Level Rise. Reg. Environ. Change 2016, 16, 1457–1468. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casas-Prat, M.; Virgili, M.; Mösso, C.; Sánchez-Arcilla, A. Impacts on Wave-Driven Harbour Agitation Due to Climate Change in Catalan Ports. Nat. Hazards Earth Syst. Sci. 2015, 15, 1695–1709. [Google Scholar] [CrossRef]
- Galiatsatou, P.; Makris, C.; Prinos, P. Optimized Reliability Based Upgrading of Rubble Mound Breakwaters in a Changing Climate. J. Mar. Sci. Eng. 2018, 6, 92. [Google Scholar] [CrossRef]
- González-Marco, D.; Sierra, J.P.; Fernández de Ybarra, O.; Sánchez-Arcilla, A. Implications of Long Waves in Harbor Management: The Gijón Port Case Study. Ocean Coast. Manag. 2008, 51, 180–201. [Google Scholar] [CrossRef]
- Dong, Y.; Zheng, Z.; Ma, Y.; Gao, J.; Ma, X.; Dong, G. Numerical Investigation on the Mitigation of Harbor Oscillations by Periodic Undulating Topography. Ocean Eng. 2023, 279, 114580. [Google Scholar] [CrossRef]
- Monioudi, I.; Akylas, A.; Tsoukala, V.K.; Stamou, A.; Moutzouris, C.I. Investigation of Wave Transmission through a Renewal Pipe at Breakwaters. In Proceedings of the 4th Panhellenic Conference of Harbor Works, Athens, Greece, 20–23 November 2006. [Google Scholar]
- Chrisafinos, D.; Kavvadas, I. Quality Assessment of the New Backgrounds LSO25. In Proceedings of the 14th National Conference on Chartography of the Greek Scientific Association of Chartography, Titled “The Chartography in a Changing World”, Thessaloniki, Greece, 2–4 November 2016; pp. 2–4. [Google Scholar]
- Velegrakis, A.F.; Chatzistratis, D.; Chalazas, T.; Armaroli, C.; Schiavon, E.; Alves, B.; Grigoriadis, D.; Hasiotis, T.; Ieronymidi, E. Earth Observation Technologies, Policies and Legislation for the Coastal Flood Risk Assessment and Management: A European Perspective. Anthr. Coasts 2024, 7, 3. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Voukouvalas, E.; Mentaschi, L.; Dottori, F.; Giardino, A.; Bouziotas, D.; Bianchi, A.; Salamon, P.; Feyen, L. Developments in Large-Scale Coastal Flood Hazard Mapping. Nat. Hazards Earth Syst. Sci. 2016, 16, 1841–1853. [Google Scholar] [CrossRef]
- Makris, C.; Mallios, Z.; Androulidakis, Y.; Krestenitis, Y. CoastFLOOD: A High-Resolution Model for the Simulation of Coastal Inundation Due to Storm Surges. Hydrology 2023, 10, 103. [Google Scholar] [CrossRef]
- Bates, P.D.; Dawson, R.J.; Hall, J.W.; Horritt, M.S.; Nicholls, R.J.; Wicks, J. Mohamed Ahmed Ali Mohamed Hassan Simplified Two-Dimensional Numerical Modelling of Coastal Flooding and Example Applications. Coast. Eng. 2005, 52, 793–810. [Google Scholar] [CrossRef]
- Seenath, A.; Wilson, M.; Miller, K. Hydrodynamic versus GIS Modelling for Coastal Flood Vulnerability Assessment: Which Is Better for Guiding Coastal Management? Ocean Coast. Manag. 2016, 120, 99–109. [Google Scholar] [CrossRef]
- Le Gal, M.; Fernández-Montblanc, T.; Duo, E.; Montes Perez, J.; Cabrita, P.; Souto Ceccon, P.; Gastal, V.; Ciavola, P.; Armaroli, C. A New European Coastal Flood Database for Low–Medium Intensity Events. Nat. Hazards Earth Syst. Sci. 2023, 23, 3585–3602. [Google Scholar] [CrossRef]
- Bates, P.D.; Horritt, M.S.; Fewtrell, T.J. A Simple Inertial Formulation of the Shallow Water Equations for Efficient Two-Dimensional Flood Inundation Modelling. J. Hydrol. 2010, 387, 33–45. [Google Scholar] [CrossRef]
- Shaw, J.; Kesserwani, G.; Neal, J.; Bates, P.; Sharifian, M.K. LISFLOOD-FP 8.0: The New Discontinuous Galerkin Shallow-Water Solver for Multi-Core CPUs and GPUs. Geosci. Model. Dev. 2021, 14, 3577–3602. [Google Scholar] [CrossRef]
- Martzikos, N.T.; Prinos, P.E.; Memos, C.D.; Tsoukala, V.K. Statistical Analysis of Mediterranean Coastal Storms. Oceanologia 2021, 63, 133–148. [Google Scholar] [CrossRef]
- Papaioannou, G.; Efstratiadis, A.; Vasiliades, L.; Loukas, A.; Papalexiou, S.M.; Koukouvinos, A.; Tsoukalas, I.; Kossieris, P. An Operational Method for Flood Directive Implementation in Ungauged Urban Areas. Hydrology 2018, 5, 24. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service; Climate Data Store. CORDEX Regional Climate Model Data on Single Levels. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/datasets/projections-cordex-domains-single-levels?tab=overview (accessed on 18 January 2025).
- Leviäkangas, P.; Tuominen, A.; Molarius, R.; Schabel, J.; Toivonen, S.; Keränen, J.; Törnqvist, J.; Makkonen, L.; Vajda, A.; Tuomenvirta, H. Extreme Weather Impacts on Transport Systems; EWENT Project Deliverable D1; VTT: Espoo, Finland, 2011. [Google Scholar]
- Deroubaix, A.; Labuhn, I.; Camredon, M.; Gaubert, B.; Monerie, P.-A.; Popp, M.; Ramarohetra, J.; Ruprich-Robert, Y.; Silvers, L.G.; Siour, G. Large Uncertainties in Trends of Energy Demand for Heating and Cooling under Climate Change. Nat. Commun. 2021, 12, 5197. [Google Scholar] [CrossRef]
- Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Giannakopoulos, C.; Varotsos, K.V.; Gakis, N. Climate Change Impacts on the Energy System of a Climate-Vulnerable Mediterranean Country (Greece). Atmosphere 2024, 15, 286. [Google Scholar] [CrossRef]
- Rothfusz, L.P.; NWS Southern Region Headquarters. The Heat Index Equation (or, More than You Ever Wanted to Know about Heat Index). Fort Worth Tex. Natl. Ocean. Atmos. Adm. Natl. Weather Serv. Off. Meteorol. 1990, 9023, 640. [Google Scholar]
- EPPE. Recommendations for Maritime Works. ROM 2.0-11, Volume I. In Recommendations for the Design and Construction of Berthing and Mooring Structures, Translated Version of the Original Spanish Text, 1st ed.; Organismo Público Puertos del Estado: Madrid, Spain, 2019. [Google Scholar]
- Karditsa, A.; Roumpis, E.; Markozanes, F.; Lesioti, M.; Monioudi, I.; Poulos, S.; Hatzaki, M.; Vaggelas, G. The Impact of Sea Level Rise on the Port of Heraklio: Operational Risk Assessment and Economic Implications. Tech. Ann. 2024, 1. [Google Scholar] [CrossRef]
- Papaioannou, G.; Polydoropoulou, A.; Tsirimpa, A. Analyzing the Passenger Traffic Demand Patterns of Greek Ferry Terminals. Transp. Res. Procedia 2023, 72, 2920–2927. [Google Scholar] [CrossRef]
- Chatzistratis, D.; Monioudi, I.N.; Velegrakis, A.F.; Chalazas, T.; Tragou, E. Exposure to Coastal Erosion and Flooding in the Northeastern Aegean Islands, Greece. In CIESM Monograph 52, Marine Hazards, Coastal Vulnerability, Risk (Mis) Perceptions—A Mediterranean Perspective; Briand, F., Ed.; CIESM Publisher: Monte-Carlo, Monaco, 2024; Volume 52, pp. 115–130. [Google Scholar]
- Galiatsatou, P.; Makris, C.; Kokkinos, D.; Prinos, P.; Krestenitis, Y. Climate Change Effects on Extreme Total Water Levels of the Greek Coastal Zone. In Proceedings of the 1st International Scientific Conference on Design and Management of Port Coastal and Offshore Works (DMPCO), Athens, Greece, 8–11 May 2019; pp. 169–173. [Google Scholar]
- Esteban, M.; Hiroshi, T.; Robert, J.N.; Dyah, F.; Munawir Bintang, P.; Shota, K.; Xiong, Y.; Izumi, I.; Takahito, M.; Paolo, V.; et al. Adapting Ports to Sea-Level Rise: Empirical Lessons Based on Land Subsidence in Indonesia and Japan. Marit. Policy Manag. 2020, 47, 937–952. [Google Scholar] [CrossRef]
- Fernandez-Perez, A.; Losada, I.J.; Lara, J.L. A Framework for Climate Change Adaptation of Port Infrastructures. Coast. Eng. 2024, 191, 104538. [Google Scholar] [CrossRef]
- Evagorou, E.; Hasiotis, T.; Petsimeris, I.T.; Monioudi, I.N.; Andreadis, O.P.; Chatzipavlis, A.; Christofi, D.; Kountouri, J.; Stylianou, N.; Mettas, C.; et al. A Holistic High-Resolution Remote Sensing Approach for Mapping Coastal Geomorphology and Marine Habitats. Remote Sens. 2025, 17, 1437. [Google Scholar] [CrossRef]
- Jebbad, R.; Sierra, J.P.; Mösso, C.; Mestres, M.; Sánchez-Arcilla, A. Assessment of Harbour Inoperability and Adaptation Cost Due to Sea Level Rise. Application to the Port of Tangier-Med (Morocco). Appl. Geogr. 2022, 138, 102623. [Google Scholar] [CrossRef]
- Singh, S.J.; Huang, T.; Nagabhatla, N.; Schweizer, P.-J.; Eckelman, M.; Verschuur, J.; Soman, R. Socio-Metabolic Risk and Tipping Points on Islands. Environ. Res. Lett. 2022, 17, 065009. [Google Scholar] [CrossRef]
- Sharifi, A. Co-Benefits and Synergies between Urban Climate Change Mitigation and Adaptation Measures: A Literature Review. Sci. Total Environ. 2021, 750, 141642. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, B.; Lemonsu, A.; Schoetter, R. A Statistical–Dynamical Downscaling Methodology for the Urban Heat Island Applied to the EURO-CORDEX Ensemble. Clim. Dyn. 2021, 56, 2487–2508. [Google Scholar] [CrossRef]
- Asariotis, R.; Benamara, H.; Mohos, N.V. Port Industry Survey on Climate Change Impacts and Adaptation. UNCTAD/SER.RP/2017/18/Rev.1. Available online: https://unctad.org/system/files/official-document/ser-rp-2017d18_en.pdf (accessed on 18 January 2024).
- PIANC. Climate Change Costs to Ports and Waterways: Scoping the Business Case Assessment for Investment in Adaptation; PTGCC Technical Note No. 2; PIANC: Brussels, Belgium, 2024. [Google Scholar]
- Sweeney, B.; Becker, A. Considering Future Sea Level Change in Maritime Infrastructure Design: A Survey of US Engineers. J. Waterw. Port. Coast. Ocean Eng. 2020, 146, 04020019. [Google Scholar] [CrossRef]
- Kalaidjian, E.; Robinson, S. Reviewing the Nature and Pitfalls of Multilateral Adaptation Finance for Small Island Developing States. Clim. Risk Manag. 2022, 36, 100432. [Google Scholar] [CrossRef]
- Kontopyrakis, K.E.; Velegrakis, A.F.; Monioudi, I.N.; Ćulibrk, A. Prioritizing Environmental Policies in Greek Coastal Municipalities. Anthr. Coasts 2024, 7, 1. [Google Scholar] [CrossRef]
- Polydoropoulou, A.; Bouhouras, E.; Papaioannou, G.; Karakikes, I. Living Labs for the Resilience of Ports against Climate Change Disruptions. Ocean. Coast. Manag. 2025, 261, 107528. [Google Scholar] [CrossRef]
- Polydoropoulou, A.; Velegrakis, A.; Papaioannou, G.; Karakikes, I.; Bouhouras, E.; Thanopoulou, H.; Chatzistratis, D.; Monioudi, I.; Moschopoulos, K.; Chatzipavlis, A. A Composite Port Resilience Index Focused on Climate-Related Hazards: Results from Greek Ports’ Living-Labs. Marit. Transp. Res. 2025, 9, 100136. [Google Scholar] [CrossRef]
- Chatzistratis, D.; Velegrakis, A.F.; Chalazas, T.; Alves, B.; Schiavon, E.; Monioudi, I.N.; Armaroli, C. European Early Warning Systems for Coastal Floods: User Needs, System Availability and Pertinent Policy and Legislation. Int. J. Disaster Risk Reduct. 2025, 126, 105602. [Google Scholar] [CrossRef]
Factor/Hazard | Impacts | ||
---|---|---|---|
Ports | Roads | Rail | |
Temperature | |||
Higher mean temperatures; heat waves/droughts; changes in the warm- and cool-day numbers | Damage to infrastructure, equipment (and cargo; higher energy consumption for cooling; occupational health/safety issues from extreme temperatures; insurance issues | Thermal pavement/bridge damages; asphalt rutting; asset lifetime reduction; increased cooling needs for passenger/freight; occupational health/safety issues from extreme temperatures; shorter maintenance windows; increased construction and maintenance costs; demand changes; insurance issues | Track buckling; infrastructure and rolling stock overheating; slope failures; signalling problems; speed restrictions; asset lifetime reduction; higher cooling costs; shorter maintenance windows; higher construction and maintenance costs; demand changes; occupational health and safety issues from extreme temperatures; insurance issues |
Precipitation | |||
Changes in mean values and the intensity, type, frequency of extremes and their impacts (floods and droughts) | Port infrastructure inundation and/or damages; poor vessel port maneuverability due to increased water level/flows and poor visibility; insurance issues | Inundation, damages, wash-outs of roads/bridges; landslides; bridge scouring; earthwork failures; poor visibility; reduced vehicle traction; delays; demand changes; insurance issues | Flooding, damages, wash-outs, scouring of bridges; drainage system and tunnel flooding; landslides, mudslides, rockslides; embankment and earthwork damages; disruptions/delays; demand changes, insurance issues |
Windstorms | |||
Changes in frequency and intensity of extreme events | Problems in vessel navigation and berthing in ports; damages to equipment; insurance issues | Fence damages; increased risk of road accidents; damages; road signage and traffic damages; road obstructions by fallen power lines/trees; bridge closures; insurance issues | Damages to installations; electricity supply issues; rail line obstructions (fallen power lines/trees); rail car blow-overs; disruption to operations; insurance issues |
Mean and extreme sea levels | |||
Relative sea level rise (RSLR) | Port inundation; increased port protection costs; changes in port hydro- and sediment dynamics; changed dredging requirements; insurance issues | Increased risk of permanent inundation and erosion of coastal roads; damages and wash-outs of roads and bridges; insurance issues | Bridge scour, damage of coastal assets; flooding, and damages/wash-outs of tracks, embankments, bridges and culverts; tunnel flooding; insurance issues |
Increased extreme sea levels (ESLs); changes in waves | Inundation; higher construction and maintenance costs; port sedimentation; potential wave penetration; vessel safety; insurance issues | Structural damages to coastal roads; temporary inundation rendering the roads unusable; delays/diversions of traffic; insurance issues | Structural damages to coastal railways, embankments and earthworks; restrictions and disruption of coastal train operations |
Baseline | Mid-Century | End-Century | |||
---|---|---|---|---|---|
RCP 4.5 | RCP 8.5 | RCP 4.5 | RCP 8.5 | ||
RSLR (m) | 0 | 0.13–0.15 | 0.17–0.21 | 0.46–0.53 | 0.74–0.84 |
Tide (m) | 0.02–0.12 | 0.02–0.12 | 0.02–0.12 | 0.03–0.13 | 0.02–0.13 |
SSL100 (m) | 0.31–0.76 | 0.30–0.74 | 0.31–0.73 | 0.28–0.78 | 0.30–0.68 |
1 ESL100 (m) | 0.42–0.81 | 0.54–0.92 | 0.60–0.99 | 0.86–1.35 | 1.16–1.56 |
Tmean (°C) | 12.0–19.0 | 13.2–20.2 | 13.8–20.6 | 14.1–21.1 | 15.8–22.5 |
Tmax (°C) | 27.9–43.0 | 29.1–44.3 | 29.7–46.4 | 30.3–45.0 | 31.2–47.6 |
RH (%) | 69.5–82.6 | 68.7–82.1 | 68.0–81.7 | 68.7–82.1 | 68.2–81.5 |
Number (and Percentage) of Ports | ||||||
---|---|---|---|---|---|---|
Sea-Level Rise Scenario | Freeboard (Based on the Average Quay Elevation) | |||||
Year | RCP | <1.5 m | <0.5 m | <0 m | <−0.5 m | |
RSLR | Baseline | 98 (71%) | 5 (4%) | 0 | 0 | |
2050 | 4.5 | 111 (80%) | 8 (6%) | 0 | 0 | |
8.5 | 114 (83%) | 12 (9%) | 1 (0.7%) | 0 | ||
2100 | 4.5 | 131 (95%) | 37 (27%) | 5 (4%) | 0 | |
8.5 | 135 (98%) | 76 (55%) | 18 (13%) | 3 (2%) | ||
ESL100 | Baseline | 132 (96%) | 43 (31%) | 6 (4%) | 1 (0.7%) | |
2050 | 4.5 | 133 (96%) | 55 (40%) | 13 (9%) | 3 (2%) | |
8.5 | 134 (97%) | 64 (46%) | 17 (12%) | 3 (2%) | ||
2100 | 4.5 | 137 (99%) | 103 (75%) | 42 (30%) | 7 (5%) | |
8.5 | 138 (100%) | 124 (90%) | 80 (58%) | 23 (17%) | ||
Freeboard (Based on Quay Elevation Range) | ||||||
Year | RCP | <1.5 m | <0.5 m | <0 m | <−0.5 m | |
RSLR | Baseline | 63–115 (46–83%) | 3–14 (2–10%) | 0 | 0 | |
2050 | 4.5 | 94–126 (68–91%) | 4–20 (3–14%) | 0–1 (0–0.7%) | 0 | |
8.5 | 94–126 (68–91%) | 4–24 (3–17%) | 0–1 (0–0.7%) | 0 | ||
2100 | 4.5 | 123–134 (89–97%) | 26–64 (19–46%) | 2–9 (1–7%) | 0 | |
8.5 | 131–137 (95–99%) | 52–107 (38–78%) | 7–39 (5–28%) | 1–5 (0.7–4%) | ||
ESL100 | Baseline | 127–136 (92–99%) | 29–70 (21–51%) | 3–16 (2–12%) | 0–3 (0–2%) | |
2050 | 4.5 | 131–136 (95–99%) | 36–85 (26–62%) | 7–24 (5–17%) | 1–3 (0.7–2%) | |
8.5 | 131–136 (95–99%) | 45–94 (33–68%) | 9–28 (7–20%) | 1–4 (0.7–3%) | ||
2100 | 4.5 | 135–138 (98–100%) | 80–122 (58–88%) | 28–67 (20–49%) | 3–16 (2–12%) | |
8.5 | 136–138 (99–100%) | 109–132 (79–96%) | 56–108 (41–78%) | 12–39 (9–28%) |
Number (and Percentage) of Ports | |||||
---|---|---|---|---|---|
Average Days per Year of Tmax ≥ 32 °C | |||||
Year | RCP | >10 | >20 | >50 | >80 |
Historical | 40 (26%) | 27 (17%) | 2 (1%) | 0 | |
2050 | 4.5 | 65 (42%) | 51 (33%) | 23 (15%) | 0 |
8.5 | 68 (44%) | 53 (34%) | 27 (17%) | 2 (1%) | |
2100 | 4.5 | 81 (52%) | 64 (41%) | 30 (19%) | 4 (3%) |
8.5 | 116 (75%) | 93 (60%) | 48 31(%) | 22 (14%) | |
Relative Change in CDD (%) | |||||
Year | RCP | >50 | >70 | >100 | >200 |
2050 | 4.5 | 146 (94%) | 74 (48%) | 33 (21%) | 5 (3%) |
8.5 | 154 (99%) | 115 (74%) | 43 (28%) | 6 (4%) | |
2100 | 4.5 | 155 (100%) | 153 (99%) | 92 (59%) | 13 (8%) |
8.5 | 155 (100%) | 155 (100%) | 155 (100%) | 52 (34%) | |
Relative Change in HDD (%) | |||||
Year | RCP | <−10 | <−30 | <−50 | <−70 |
2050 | 4.5 | 70 (45%) | 7 (5%) | 0 | 0 |
8.5 | 125 (81%) | 68 (44%) | 3 (2%) | 0 | |
2100 | 4.5 | 152 (98%) | 99 (64%) | 30 (19%) | 0 |
8.5 | 155 (100%) | 153 (99%) | 94 (61%) | 35 (23%) |
Number (and Percentage) of Ports | ||||||
---|---|---|---|---|---|---|
Average Days per Year | ||||||
Threshold | Year | RCP | >10 | >20 | >50 | >70 |
HI ≥ 39.4 °C High risk | Historical | 33 (21%) | 15 (10%) | 0 | 0 | |
2050 | 4.5 | 53 (34%) | 46 (30%) | 9 (6%) | 0 | |
8.5 | 54 (35%) | 50 (32%) | 13 (8%) | 0 | ||
2100 | 4.5 | 56 (36%) | 52 (34%) | 20 (13%) | 3 (2%) | |
8.5 | 142 (92%) | 93 (60%) | 48 (31%) | 29 (10%) | ||
HI ≥ 46.1 °C Very high risk | Historical | 0 | 0 | 0 | 0 | |
2050 | 4.5 | 21 (14%) | 7 (5%) | 0 | 0 | |
8.5 | 25 (16%) | 8 (5%) | 0 | 0 | ||
2100 | 4.5 | 31 (20%) | 14 (9%) | 0 | 0 | |
8.5 | 53 (34%) | 44 (28%) | 7 (5%) | 0 | ||
Deadly heat | Historical | 0 | 0 | 0 | 0 | |
2050 | 4.5 | 14 (9%) | 2 (1%) | 0 | 0 | |
8.5 | 25 (16%) | 5 (3%) | 0 | 0 | ||
2100 | 4.5 | 77 (50%) | 21 (14%) | 0 | 0 | |
8.5 | 133 (86%) | 110 (71%) | 31 (20%) | 1 (0.7%) | ||
Threshold | Year | RCP | >50 | >80 | >100 | >120 |
Unsafe heat | Historical | 148 (95%) | 113 (73%) | 80 (52%) | 4 (3%) | |
2050 | 4.5 | 155 (100%) | 149 (96%) | 117 (75%) | 72 (46%) | |
8.5 | 155 (100%) | 150 (97%) | 127 (82%) | 88 (57%) | ||
2100 | 4.5 | 155 (100%) | 152 (98%) | 139 (90%) | 99 (64%) | |
8.5 | 155 (100%) | 155 (100%) | 154 (99%) | 139 (90%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monioudi, I.N.; Chatzistratis, D.; Moschopoulos, K.; Velegrakis, A.F.; Polydoropoulou, A.; Chalazas, T.; Bouhouras, E.; Papaioannou, G.; Karakikes, I.; Thanopoulou, H. Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment. Water 2025, 17, 1897. https://doi.org/10.3390/w17131897
Monioudi IN, Chatzistratis D, Moschopoulos K, Velegrakis AF, Polydoropoulou A, Chalazas T, Bouhouras E, Papaioannou G, Karakikes I, Thanopoulou H. Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment. Water. 2025; 17(13):1897. https://doi.org/10.3390/w17131897
Chicago/Turabian StyleMonioudi, Isavela N., Dimitris Chatzistratis, Konstantinos Moschopoulos, Adonis F. Velegrakis, Amalia Polydoropoulou, Theodoros Chalazas, Efstathios Bouhouras, Georgios Papaioannou, Ioannis Karakikes, and Helen Thanopoulou. 2025. "Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment" Water 17, no. 13: 1897. https://doi.org/10.3390/w17131897
APA StyleMonioudi, I. N., Chatzistratis, D., Moschopoulos, K., Velegrakis, A. F., Polydoropoulou, A., Chalazas, T., Bouhouras, E., Papaioannou, G., Karakikes, I., & Thanopoulou, H. (2025). Exposure of Greek Ports to Marine Flooding and Extreme Heat Under Climate Change: An Assessment. Water, 17(13), 1897. https://doi.org/10.3390/w17131897