Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (659)

Search Parameters:
Keywords = polyaniline (PANI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 - 1 Aug 2025
Viewed by 350
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

14 pages, 4216 KiB  
Article
Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors
by Yi Wang, Enkai Lin, Ze Wang, Tong Feng and An Xie
Gels 2025, 11(8), 568; https://doi.org/10.3390/gels11080568 - 23 Jul 2025
Viewed by 227
Abstract
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling [...] Read more.
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS. The incorporation of AQS into both the polymer matrix and the gel electrolyte introduces synergistic redox activity, facilitating bidirectional Faradaic reactions at the film–electrolyte interface and within the bulk gel phase. The resulting vertically aligned PANI-AQS nanoneedle films provide high surface area and efficient ion pathways, while the AQS-doped gel electrolyte contributes to enhanced ionic conductivity and electrochemical stability. The device exhibits rapid and reversible color switching from light green to deep black (within 2 s), along with a high areal capacitance of 194.2 mF·cm−2 at 1 mA·cm−2 and 72.1% capacitance retention over 5000 cycles—representing a 31.5% improvement over undoped systems. These results highlight the critical role of redox-functionalized gel electrolytes in enhancing both the energy storage and optical performance of EESDs, offering a scalable strategy for multifunctional, gel-based electrochemical systems in wearable and smart electronics. Full article
(This article belongs to the Special Issue Smart Gels for Sensing Devices and Flexible Electronics)
Show Figures

Graphical abstract

21 pages, 3864 KiB  
Review
PANI-Based Thermoelectric Materials
by Mengran Chen, Dongmei Xie, Hongqing Zhou and Pengan Zong
Organics 2025, 6(3), 33; https://doi.org/10.3390/org6030033 - 22 Jul 2025
Viewed by 299
Abstract
Polyaniline (PANI) based thermoelectric materials have attracted much attention in flexible energy harvesting devices due to their unique molecular structure, excellent chemical stability, and low cost. However, the intrinsic thermoelectric performance of intrinsic PANI makes it difficult to meet the needs of practical [...] Read more.
Polyaniline (PANI) based thermoelectric materials have attracted much attention in flexible energy harvesting devices due to their unique molecular structure, excellent chemical stability, and low cost. However, the intrinsic thermoelectric performance of intrinsic PANI makes it difficult to meet the needs of practical applications due to its low electronic transport properties. This review focuses on the preparation methods and key strategies for developing high-performance PANI-based thermoelectric materials. It aims to comprehensively update knowledge regarding synthesis methods, microstructures, thermoelectric properties, and underlying mechanisms. The overall goal is to provide timely insights to promote the development of high-performance PANI-based thermoelectric materials. Full article
Show Figures

Graphical abstract

14 pages, 2050 KiB  
Article
Electrospun PANI/PEO-Luffa Cellulose/TiO2 Nanofibers: A Sustainable Biocomposite for Conductive Applications
by Gözde Konuk Ege, Merve Bahar Okuyucu and Özge Akay Sefer
Polymers 2025, 17(14), 1989; https://doi.org/10.3390/polym17141989 - 20 Jul 2025
Viewed by 497
Abstract
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity [...] Read more.
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity on nanofiber morphology. Cellulose extracted from luffa was added to the PANI/PEO copolymer solution, and two different ratios of TiO2 were mixed into the PANI/PEO/LC biocomposite. The morphological, vibrational, and thermal characteristics of biocomposites were systematically investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As anticipated, the presence of TiO2 enhanced the electrical conductivity of biocomposites, while the addition of Luffa cellulose further improved the conductivity of the cellulose-based nanofibers. FTIR analysis confirmed chemical interactions between Luffa cellulose and PANI/PEO matrix, as evidenced by the broadening of the hydroxyl (OH) absorption band at 3500–3200 cm−1. Additionally, the emergence of characteristic peaks within the 400–1000 cm−1 range in the PANI/PEO/LC/TiO2 spectra signified Ti–O–Ti and Ti–O–C vibrations, confirming the incorporation of TiO2 into the biocomposite. SEM images of the biocomposites reveal that the thickness of nanofibers decreases by adding Luffa to PANI/PEO nanofibers because of the nanofibers branching. In addition, when blending TiO2 nanoparticles with the PANI/PEO/LC biocomposite, this increment continued and obtained thinner and smother nanofibers. Furthermore, the incorporation of cellulose slightly improved the crystallinity of the nanofibers, while TiO2 contributed to the enhanced crystallinity of the biocomposite according to the XRD and DCS results. Similarly, the TGA results supported the DSC results regarding the increasing thermal stability of the biocomposite nanofibers with TiO2 nanoparticles. These findings demonstrate the potential of PANI/PEO/LC/TiO2 nanofibers for advanced applications requiring conductive and structurally optimized biomaterials, e.g., for use in humidity or volatile organic compound (VOC) sensors, especially where flexibility and environmental sustainability are required. Full article
Show Figures

Figure 1

22 pages, 5400 KiB  
Article
Polyaniline/Ti3C2 MXene Composites with Artificial 3D Biomimetic Surface Structure of Natural Macaw Feather Applied for Anticorrosion Coatings
by Chen-Cheng Chien, Yu-Hsuan Liu, Kun-Hao Luo, Ting-Yun Liu, Yi-Ting Kao, Shih-Harn Yang and Jui-Ming Yeh
Biomimetics 2025, 10(7), 465; https://doi.org/10.3390/biomimetics10070465 - 15 Jul 2025
Viewed by 331
Abstract
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D [...] Read more.
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D Ti3C2 MXene nanosheets were prepared by treating the Ti3AlC2 using the optimized minimally intensive layer delamination (MILD) method, followed by characterization via XRD and SEM. Subsequently, the PMC was prepared by the oxidative polymerization of aniline monomers in the presence of Ti3C2 MXene nanosheets, followed by characterization via FTIR, XRD, SEM, TEM, CV, and UV–Visible. Eventually, the PMC coatings with the artificial biomimetic surface structure of a macaw feather were prepared by the nano-casting technique. The corrosion resistance of the PMC coatings, evaluated via Tafel polarization and Nyquist impedance measurements, shows that increasing the MXene loading up to 5 wt % shifts the corrosion potential (Ecorr) on steel from −588 mV to −356 mV vs. SCE, reduces the corrosion current density (Icorr) from 1.09 µA/cm2 to 0.035 µA/cm2, and raises the impedance modulus at 0.01 Hz from 67 kΩ to 3794 kΩ. When structured with the hierarchical feather topography, the PMC coating (Bio-PA-MX-5) further advances the Ecorr to +103.6 mV, lowers the Icorr to 7.22 × 10−4 µA/cm2, and boosts the impedance to 96,875 kΩ. Compared to neat coatings without biomimetic structuring, those with engineered biomimetic surfaces showed significantly improved corrosion protection performance. These enhancements arise from three synergistic mechanisms: (i) polyaniline’s redox catalysis accelerates the formation of a dense passive oxide layer; (ii) MXene nanosheets create a tortuous gas barrier that cuts the oxygen permeability from 11.3 Barrer to 0.9 Barrer; and (iii) the biomimetic surface traps air pockets, raising the water contact angle from 87° to 135°. This integrated approach delivers one of the highest combined corrosion potentials and impedance values reported for thin-film coatings, pointing to a general strategy for durable steel protection. Full article
(This article belongs to the Section Biomimetic Design, Constructions and Devices)
Show Figures

Figure 1

19 pages, 3483 KiB  
Article
Preparation of CF-NiO-PANI Electrodes and Study on the Efficiency of MFC in Recovering Potato Starch Wastewater
by Yiwei Han, Jingyuan Wang, Liming Jiang, Jiuming Lei, Wenjing Li, Tianyi Yang, Zhijie Wang, Jinlong Zuo and Yuyang Wang
Coatings 2025, 15(7), 776; https://doi.org/10.3390/coatings15070776 - 30 Jun 2025
Viewed by 266
Abstract
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic [...] Read more.
Microbial Fuel Cell (MFC) is a novel bioelectrochemical system that catalyzes the oxidation of chemical energy in organic waste and converts it directly into electrical energy through the attachment and growth of electroactive microorganisms on the electrode surface. This technology realizes the synergistic effect of waste treatment and renewable energy production. A CF-NiO-PANI capacitor composite anode was prepared by loading polyaniline on a CF-NiO electrode to improve the capacitance of a CF electrode. The electrochemical characteristics of the composite anode were evaluated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the electrode materials were analyzed comprehensively by scanning electron microscopy (SEM), energy diffusion spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). MFC system based on CF-NiO-PANI composite anode showed excellent energy conversion efficiency in potato starch wastewater treatment, and its maximum power density increased to 0.4 W/m3, which was 300% higher than that of the traditional CF anode. In the standard charge–discharge test (C1000/D1000), the charge storage capacity of the composite anode reached 2607.06 C/m2, which was higher than that of the CF anode (348.77 C/m2). Microbial community analysis revealed that the CF-NiO-PANI anode surface formed a highly efficient electroactive biofilm dominated by electrogenic bacteria (accounting for 47.01%), confirming its excellent electron transfer ability. The development of this innovative capacitance-catalytic dual-function anode material provides a new technical path for the synergistic optimization of wastewater treatment and energy recovery in MFC systems. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 6418 KiB  
Article
Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate
by Seung-Woo Lee, Ju-Seong Lee, Hyeon-Wook Yu, Tae-Hee Kim and Hyun-Seok Kim
Polymers 2025, 17(13), 1825; https://doi.org/10.3390/polym17131825 - 30 Jun 2025
Viewed by 380
Abstract
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing [...] Read more.
Wearable sensors have rapidly advanced, enabling applications such as human activity monitoring, electronic skin, and biomimetic robotics. To meet the growing demands of these applications, multifunctional sensing has become essential for wearable devices. However, most existing studies predominantly focus on enhancing single-function sensing capabilities. This study introduces a multifunctional sensor that combines high stretchability for strain and pressure detection with ultraviolet (UV) sensing capability. To achieve simultaneous detection of strain, pressure, and UV light, a multi-sensing approach was employed: a capacitive method for strain and pressure detections and a resistive method utilizing a pn-heterojunction diode for UV detection. In the capacitive method, polyaniline (PANI) served as parallel-plate electrodes, while silicon-based elastomer acted as the dielectric layer. This configuration enabled up to 100% elongation and enhanced operational stability through encapsulation. The sensor demonstrated a strong linear relationship between capacitance value changes reasonably based on the area of PANI, and showed a good linearity with an R-squared value of 0.9918. It also detected pressure across a wide range, from low (0.4 kPa) to high (9.4 kPa). Furthermore, for wearable applications, the sensor reliably captured capacitance variations during finger bending at different angles. For UV detection, a pn-heterojunction diode composed of p-type silicon and n-type zinc oxide nanorods exhibited a rapid response time of 6.1 s and an on/off ratio of 13.8 at −10 V. Durability under 100% tensile strain was confirmed through Von Mises stress calculations using finite element modeling. Overall, this multifunctional sensor offers significant potential for a variety of applications, including human motion detection, wearable technology, and robotics. Full article
(This article belongs to the Special Issue Polymer Thin Films: Synthesis, Characterization and Applications)
Show Figures

Figure 1

12 pages, 2165 KiB  
Article
Flexible Piezoresistive Sensors Based on PANI/rGO@PDA/PVDF Nanofiber for Wearable Biomonitoring
by Hong Pan, Yuxiao Wang, Guangzhong Xie, Chunxu Chen, Haozhen Li, Fang Wu and Yuanjie Su
J. Compos. Sci. 2025, 9(7), 339; https://doi.org/10.3390/jcs9070339 - 30 Jun 2025
Viewed by 419
Abstract
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) [...] Read more.
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) nanofiber piezoresistive sensor (PNPS) capable of versatile wearable biomonitoring. The PNPS was fabricated by integrating rGO sheets and PANI particles into a PDA-modified PVDF nanofiber network, where PDA was implemented to boost the interaction between the nanofiber networks and functional materials, PANI particles were deposited on a nanofiber substrate to construct electroactive nanofibers, and rGO sheets were utilized to interconnect nanofibers to strengthen in-plane charge carrier transport. Benefitting from the synergistic effect of multi-dimensional electroactive materials in piezoresistive membranes, the as-fabricated PNPS exhibits a high sensitivity of 13.43 kPa−1 and a fast response time of 9 ms, which are significantly superior to those without an rGO sheet. Additionally, a wide pressure detection range from 0 to 30 kPa and great mechanical reliability over 12,000 cycles were attained. Furthermore, the as-prepared PNPS demonstrated the capability to detect radial arterial pulses, subtle limb motions, and diverse respiratory patterns, highlighting its potential for wearable biomonitoring and healthcare assessment. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

16 pages, 4935 KiB  
Article
Interlayer-Spacing-Modification of MoS2 via Inserted PANI with Fast Kinetics for Highly Reversible Aqueous Zinc-Ion Batteries
by Shuang Fan, Yangyang Gong, Suliang Chen and Yingmeng Zhang
Micromachines 2025, 16(7), 754; https://doi.org/10.3390/mi16070754 - 26 Jun 2025
Viewed by 449
Abstract
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, [...] Read more.
Layered transition metal dichalcogenides (TMDs) have gained considerable attention as promising cathodes for aqueous zinc-ion batteries (AZIBs) because of their tunable interlayer architecture and rich active sites for Zn2+ storage. However, unmodified TMDs face significant challenges, including limited redox activity, sluggish kinetics, and insufficient structural stability during cycling. These limitations are primarily attributed to their narrow interlayer spacing, strong electrostatic interactions, the large ionic hydration radius, and their high binding energy of Zn2+ ions. To address these restrictions, an in situ organic polyaniline (PANI) intercalation strategy is proposed to construct molybdenum disulfide (MoS2)-based cathodes with extended layer spacing, thereby improving the zinc storage capabilities. The intercalation of PANI effectively enhances interplanar spacing of MoS2 from 0.63 nm to 0.98 nm, significantly facilitating rapid Zn2+ diffusion. Additionally, the π-conjugated electron structure introduced by PANI effectively shields the electrostatic interaction between Zn2+ ions and the MoS2 host, thereby promoting Zn2+ diffusion kinetics. Furthermore, PANI also serves as a structural stabilizer, maintaining the integrity of the MoS2 layers during Zn-ion insertion/extraction processes. Furthermore, the conductive conjugated PANI boosts the ionic and electronic conductivity of the electrodes. As expected, the PANI–MoS2 electrodes exhibit exceptional electrochemical performance, delivering a high specific capacity of 150.1 mA h g−1 at 0.1 A g−1 and retaining 113.3 mA h g−1 at 1 A g−1, with high capacity retention of 81.2% after 500 cycles. Ex situ characterization techniques confirm the efficient and reversible intercalation/deintercalation of Zn2+ ions within the PANI–MoS2 layers. This work supplies a rational interlayer engineering strategy to optimize the electrochemical performance of MoS2-based electrodes. By addressing the structural and kinetic limitations of TMDs, this approach offers new insights into the development of high-performance AZIBs for energy storage applications. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

13 pages, 2217 KiB  
Article
Gaseous Ammonia Sensing from Liquids via a Portable Chemosensor with Signal Correction for Humidity
by Andrea Rescalli, Ilaria Porello, Pietro Cerveri and Francesco Cellesi
Biosensors 2025, 15(7), 407; https://doi.org/10.3390/bios15070407 - 25 Jun 2025
Viewed by 370
Abstract
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, [...] Read more.
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, lack of portability, and poor compatibility with miniaturized systems. This study introduces a proof-of-concept for a compact, portable device tailored for POC detection of gaseous ammonia released from liquid samples. The device combines a polyaniline (PANI)-based chemoresistive sensor with interdigitated electrodes and a resistance readout circuit, enclosed in a gas-permeable hydrophobic membrane that permits ammonia in the vapor phase only to reach the sensing layer, ensuring selectivity and protection from liquid interference. The ink formulation was optimized. PANI nanoparticle suspension exhibited a monomodal, narrow particle size distribution with an average size of 120 nm and no evidence of larger aggregates. A key advancement of this device is its ability to limit the impact of water vapor, a known source of interference in PANI-based sensors, while maintaining a simple sensor design. A tailored signal processing strategy was implemented, extracting the slope of resistance variation over time as a robust metric for ammonia quantification. The sensor demonstrated reliable performance across a concentration range of 1.7 to 170 ppm with strong logarithmic correlation (R2 = 0.99), and very good linear correlations in low (R2 = 0.96) and high (R2 = 0.97) subranges. These findings validate the feasibility of this POC platform for sensitive, selective, and practical ammonia detection in clinical and environmental applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

13 pages, 2748 KiB  
Article
Polyaniline/Tungsten Disulfide Composite for Room-Temperature NH3 Detection with Rapid Response and Low-PPM Sensitivity
by Kuo Zhao, Yunbo Shi, Haodong Niu, Qinglong Chen, Jinzhou Liu, Bolun Tang and Canda Zheng
Sensors 2025, 25(13), 3948; https://doi.org/10.3390/s25133948 - 25 Jun 2025
Viewed by 378
Abstract
Polyaniline (PANI) is an important conductive-polymer gas-sensing material with working temperature and mechanical flexibilities superior to those of conventional metal oxide sensing materials. However, its applicability is limited by its low sensitivity, high detection limits, and long response/recovery times. In this study, we [...] Read more.
Polyaniline (PANI) is an important conductive-polymer gas-sensing material with working temperature and mechanical flexibilities superior to those of conventional metal oxide sensing materials. However, its applicability is limited by its low sensitivity, high detection limits, and long response/recovery times. In this study, we prepared PANI/WS2 composites via chemical oxidative polymerization and mechanical blending. A multilayer sensor structure—sequentially printed silver-paste heating electrodes, fluorene polyester insulating layer, silver interdigitated electrodes, and sensing material layer—was fabricated on a polyimide substrate via flexible microelectronic printing and systematically characterized using scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The optimized 5 wt% WS2 composite showed enhanced gas-sensing performance, with 219.1% sensitivity to 100 ppm ammonia (2.4-fold higher than that of pure PANI) and reduced response and recovery times of 24 and 91 s, respectively (compared to 81 and 436 s for pure PANI, respectively). Notably, the PANI/WS2 sensor detected an ultralow ammonia concentration (100 ppb) with 0.104% sensitivity. The structural characterization and performance analysis results were used to deduce a mechanism for the enhanced sensing capability. These findings highlight the application potential of PANI/WS2 composites in flexible gas sensors and provide fundamental insights for PANI-based sensing materials research. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

24 pages, 11397 KiB  
Article
Carbon-Rich Nanocomposites Based on Polyaniline/Titania Nanotubes Precursor: Synergistic Effect Between Surface Adsorption and Photocatalytic Activity
by Brankica Gajić, Milica Milošević, Dejan Kepić, Gordana Ćirić-Marjanović, Zoran Šaponjić and Marija Radoičić
Molecules 2025, 30(12), 2628; https://doi.org/10.3390/molecules30122628 - 17 Jun 2025
Viewed by 343
Abstract
Nowadays, there is an urgent need for efficient photocatalysts and adsorbents for environmentally relevant applications. This study investigates the effect of polyaniline (PANI) on the structure and performance of carbonized nanocomposites composed of PANI and TiO2 nanotubes (NTs), focusing on their photocatalytic [...] Read more.
Nowadays, there is an urgent need for efficient photocatalysts and adsorbents for environmentally relevant applications. This study investigates the effect of polyaniline (PANI) on the structure and performance of carbonized nanocomposites composed of PANI and TiO2 nanotubes (NTs), focusing on their photocatalytic degradation efficiency and dye adsorption capacity. The hypothesis was that PANI forms conductive carbon domains and stabilizes the anatase phase during thermal treatment, enhancing the performance of TiO2-NTs as photocatalysts. Nanocomposites based on PANI and TiO2-NTs (TTP) were synthesized through chemical oxidative polymerization of aniline (ANI) in the presence of TiO2-NTs using two TiO2/ANI molar ratios of 50 and 150 and subsequently carbonized at 650 °C, yielding CTTP-50 and CTTP-150. The novel CTTP composites and carbonized pristine TiO2-NTs (CTNT) were characterized by various techniques, including TEM, UV-Vis diffuse reflectance, Raman spectroscopy, XRD, and TGA. Their performance regarding dye adsorption and photocatalytic degradation under visible light was evaluated with Acid Orange 7, Methylene Blue, and Rhodamine B. CTTP-150 exhibited the highest adsorption capacity and photodegradation rate, attributed to the synergistic effect of PANI, which stabilizes the TiO2 phase and enhances visible-light absorption and adsorption. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Graphical abstract

15 pages, 4602 KiB  
Article
Construction of Symmetric Flexible Electrochromic and Rechargeable Supercapacitors Based on a 1,3,6,8-Pyrenetetrasulfonic Acid Tetrasodium Salt-Loaded Polyaniline Nanostructured Film
by Yi Wang, Ze Wang, Zilong Zhang, Yujie Yan, An Xie, Tong Feng and Chunyang Jia
Materials 2025, 18(12), 2836; https://doi.org/10.3390/ma18122836 - 16 Jun 2025
Cited by 1 | Viewed by 423
Abstract
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage [...] Read more.
Electrochromic supercapacitors (ECSCs), which visually indicate their operating status through color changes, have attracted considerable attention in the field of wearable electronics. The conductive polymer polyaniline (PANI) shows great potential for integrated intelligent devices by combining bi-functional electrochromic spectral modulation and energy storage capabilities. In this work, a microsphere-like structured PANI-based composite film was fabricated on a porous Au/nylon 66 electrode via a one-step electrochemical copolymerization process, using 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) as both the dopant and cross-linking agent for the PANI backbone, serving as the ECSC electrode. Compared to the pristine PANI electrode, the PANI-PTSA composite film exhibits lower intrinsic resistance and higher electrical conductivity, delivering a higher specific capacitance of 310.0 F g⁻1@1 A g⁻1 and an areal capacitance of 340.0 mF cm⁻2@1 mA cm⁻2, respectively. The dopant facilitates enhanced electrochemical performance by promoting charge transport within the PANI polymer network. Meanwhile, as a counter anion to the PANI backbone, PTSA regulates the growth of PANI chains and acts as a morphological controller. Furthermore, a symmetric ECSC based on the PANI-PTSA8:1 electrode was assembled, and its electrochemical properties were thoroughly investigated. The device demonstrated a high specific capacitance of 169.2 mF cm⁻2 at 1 mA cm⁻2, a notable energy density of 23.5 μWh cm⁻2 at a power density of 0.5 mW cm⁻2, and excellent cycling stability with 79% capacitance retention after 3000 cycles at a current density of 5 mA cm⁻2, alongside remarkable mechanical flexibility. Additionally, the working status of the ECSCs can be directly monitored through reversible color changes from yellow-green to deep blue during charge–discharge processes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

16 pages, 3318 KiB  
Article
Nanofibrous Membranes Based on Collagen and Conductive Polymers with Perspective for Biological Applications
by Tonantzi Pérez-Moreno, Claudia D’Urso, Gabriel Trejo, Maria V. Contreras-Martínez, Omar Lozano, Gerardo J. García-Rivas, Luis G. Arriaga, Gabriel Luna-Barcenas and Janet Ledesma-García
Membranes 2025, 15(6), 177; https://doi.org/10.3390/membranes15060177 - 11 Jun 2025
Viewed by 3177
Abstract
In this study, membranes of collagen–chitosan (C-Ch) in combination with conductive polymers (CPs) such as polyaniline (Pani) and polypyrrole (Ppy) were obtained by electrospinning using non-toxic solvents such as PBS and ethanol. The change in the morphology after swelling was observed by SEM, [...] Read more.
In this study, membranes of collagen–chitosan (C-Ch) in combination with conductive polymers (CPs) such as polyaniline (Pani) and polypyrrole (Ppy) were obtained by electrospinning using non-toxic solvents such as PBS and ethanol. The change in the morphology after swelling was observed by SEM, while an FTIR analysis showed specific interactions between C-Ch and CP. Mechanical tests showed that C-Ch/Ppy exhibited more elastic behavior and a better stress distribution compared to C-Ch/Pani. The diffusion of Na+ and Ca2+ ions through the membranes was evaluated and showed a greater resistance for Ca2+ in both membrane types. Preliminary biocompatibility testing with H9C2 cells showed a successful cell adhesion to the membranes. These results emphasize the potential of C-Ch/Pani composites for electrically active scaffolds and of C-Ch/PPy composites for applications in mechanically dynamic tissue-specific regeneration. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Figure 1

10 pages, 1887 KiB  
Article
Polyaniline-Supported Atomic-Level Pt and Pt-Au Clusters as Catalytic Electrodes in Propanol Oxidation
by Kengo Watanabe, Keisuke Okamoto, Hiroki Kawakami, Shohei Yoshida, Tomoyuki Kurioka, Chun-Yi Chen, Chi-Hua Yu, Yung-Jung Hsu, Takamichi Nakamoto, Masato Sone and Tso-Fu Mark Chang
Materials 2025, 18(11), 2594; https://doi.org/10.3390/ma18112594 - 2 Jun 2025
Viewed by 449
Abstract
Noble metals are widely recognized for their ability to catalyze the electro-oxidation of organic compounds, with smaller particle sizes significantly enhancing electrocatalytic activity. In this study, catalytic electrodes decorated with atomic-level platinum and Pt-Au clusters were fabricated using cyclic atomic-metal electrodeposition. The interactions [...] Read more.
Noble metals are widely recognized for their ability to catalyze the electro-oxidation of organic compounds, with smaller particle sizes significantly enhancing electrocatalytic activity. In this study, catalytic electrodes decorated with atomic-level platinum and Pt-Au clusters were fabricated using cyclic atomic-metal electrodeposition. The interactions between the iminium (protonated imine) groups in emeraldine salt polyaniline (PANI) and metal chloride complexes in the electrolyte enabled precise control over the cluster size and composition. The electrocatalytic activity of these electrodes for propanol oxidation was systematically evaluated using cyclic voltammetry (CV). Notably, PANI electrodes decorated with odd-numbered atomic-level Pt clusters exhibited higher peak oxidation currents compared to even-numbered clusters, revealing a unique even–odd effect. For atomic-level Pt-Au clusters, the catalytic activity was significantly influenced by the sequence of Pt and Au deposition, with PANI-Au1Pt3 achieving the highest catalytic activity (35.34 mA/cm2). Bi-metallic clusters consistently outperformed mono-metallic clusters, and clusters containing only one Pt atom demonstrated superior catalytic activity. These findings provide valuable insights into the design of high-performance catalytic electrodes by leveraging atomic-level control of the cluster size, composition, and deposition sequence, paving the way for advanced applications in electrochemical sensors. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

Back to TopTop