Nanofibrous Membranes Based on Collagen and Conductive Polymers with Perspective for Biological Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymerization
2.3. Electrospinning
2.4. Characterization
2.4.1. Morphology
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. BET Analysis of Porosity
2.4.4. Mechanical Characterization
2.4.5. Electrical Conductivity
2.4.6. Ionic Conductivity
2.4.7. Cell Viability Evaluation
3. Results
3.1. Fourier Transform Infrared Spectroscopy
3.2. Scanning Electron Microscopy
3.3. Porosity
3.4. Mechanical Properties
3.5. Conductivity
3.6. Cell Viability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts-Thomson, K.C.; Kistler, P.M.; Sanders, P.; Morton, J.B.; Haqqani, H.M.; Stevenson, I.; Vohra, J.K.; Sparks, P.B.; Kalman, J.M. Fractionated Atrial Electrograms during Sinus Rhythm: Relationship to Age, Voltage, and Conduction Velocity. Heart Rhythm. 2009, 6, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Nasser, R.A.; Arya, S.S.; Alshehhi, K.H.; Teo, J.C.M.; Pitsalidis, C. Conducting Polymer Scaffolds: A New Frontier in Bioelectronics and Bioengineering. Trends Biotechnol. 2024, 42, 760–779. [Google Scholar] [CrossRef]
- Montero, P.; Flandes-Iparraguirre, M.; Musquiz, S.; Pérez Araluce, M.; Plano, D.; Sanmartín, C.; Orive, G.; Gavira, J.J.; Prosper, F.; Mazo, M.M. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front. Bioeng. Biotechnol. 2020, 8, 955. [Google Scholar] [CrossRef]
- Zhang, Y.; Le Friec, A.; Zhang, Z.; Müller, C.A.; Du, T.; Dong, M.; Liu, Y.; Chen, M. Electroactive Biomaterials Synergizing with Electrostimulation for Cardiac Tissue Regeneration and Function-Monitoring. Mater. Today 2023, 70, 237–272. [Google Scholar] [CrossRef]
- Reis, L.A.; Chiu, L.L.Y.; Feric, N.; Fu, L.; Radisic, M. Biomaterials in Myocardial Tissue Engineering. J. Tissue Eng. Regen. Med. 2016, 10, 11–28. [Google Scholar] [CrossRef]
- Bhullar, S.K.; Thingnam, R.; Kirshenbaum, E.; Nematisouldaragh, D.; Crandall, M.; Willerth, S.M.; Ramkrishna, S.; Rabinovich-Nikitin, I.; Kirshenbaum, L.A. Living Nanofiber-Enabled Cardiac Patches for Myocardial Injury. JACC Basic. Transl. Sci. 2024, 10, 227–240. [Google Scholar] [CrossRef] [PubMed]
- Asl, S.K.; Rahimzadegan, M.; Asl, A.K. Progress in Cardiac Tissue Engineering and Regeneration: Implications of Gelatin-Based Hybrid Scaffolds. Int. J. Biol. Macromol. 2024, 261, 129924. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Li, B. Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering. Mater. Today 2013, 16, 229–241. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Q.; Wang, L.; Zhang, Y.; Liu, W.; Zhao, S.; Geng, X.; Fan, Y. A Novel Biomimetic Nanofibrous Cardiac Tissue Engineering Scaffold with Adjustable Mechanical and Electrical Properties Based on Poly (Glycerol Sebacate) and Polyaniline. Mater. Today Bio 2023, 23, 100798. [Google Scholar] [CrossRef]
- Aziz, R.; Falanga, M.; Purenovic, J.; Mancini, S.; Lamberti, P.; Guida, M. A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. Nanomaterials 2023, 13, 1374. [Google Scholar] [CrossRef]
- Islam, M.S.; Ang, B.C.; Andriyana, A.; Afifi, A.M. A Review on Fabrication of Nanofibers via Electrospinning and Their Applications. SN Appl. Sci. 2019, 1, 1248. [Google Scholar] [CrossRef]
- Jiang, Q.; Reddy, N.; Zhang, S.; Roscioli, N.; Yang, Y. Water-Stable Electrospun Collagen Fibers from a Non-Toxic Solvent and Crosslinking System. J. Biomed. Mater. Res. A 2013, 101A, 1237–1247. [Google Scholar] [CrossRef]
- Erencia, M.; Cano, F.; Tornero, J.A.; Macanás, J.; Carrillo, F. Preparation of Electrospun Nanofibers from Solutions of Different Gelatin Types Using a Benign Solvent Mixture Composed of Water/PBS/Ethanol. Polym. Adv. Technol. 2016, 27, 382–392. [Google Scholar] [CrossRef]
- Dong, B.; Arnoult, O.; Smith, M.E.; Wnek, G.E. Electrospinning of Collagen Nanofiber Scaffolds from Benign Solvents. Macromol. Rapid Commun. 2009, 30, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Nava, A.; Espino-Saldaña, A.E.; Pereida-Jaramillo, E.; Hernández-Vargas, J.; Martínez-Torres, A.; Vázquez-Lepe, M.O.; Mota-Morales, J.D.; Frontana Uribe, B.A.; Betzabe González-Campos, J. Surface Collagen Functionalization of Electrospun Poly(Vinyl Alcohol) Scaffold for Tissue Engineering. Process Biochem. 2023, 126, 1–14. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Ghaziof, S. Electrically Conductive Poly-ϵ-Caprolactone/Polyethylene Glycol/Multi-Wall Carbon Nanotube Nanocomposite Scaffolds Coated with Fibrin Glue for Myocardial Tissue Engineering. Appl. Phys. A Mater. Sci. Process 2018, 124, 77. [Google Scholar] [CrossRef]
- Saghebasl, S.; Akbarzadeh, A.; Gorabi, A.M.; Nikzamir, N.; SeyedSadjadi, M.; Mostafavi, E. Biodegradable Functional Macromolecules as Promising Scaffolds for Cardiac Tissue Engineering. Polym. Adv. Technol. 2022, 33, 2044–2068. [Google Scholar] [CrossRef]
- Miao, Y.E.; Liu, T. Electrospun Nanofiber Electrodes: A Promising Platform for Supercapacitor Applications. In Electrospinning Nanofabrication Applications, 1st ed.; Ding, B., Wang, X., Yu, J., Eds.; William Andrew Publishing: Rijswijk, The Netherlands, 2019; pp. 641–669. ISBN 9780323512701. [Google Scholar]
- Habibzadeh, F.; Sadraei, S.M.; Mansoori, R.; Singh Chauhan, N.P.; Sargazi, G. Nanomaterials Supported by Polymers for Tissue Engineering Applications: A Review. Heliyon 2022, 8, e12193. [Google Scholar] [CrossRef]
- Ashtari, K.; Nazari, H.; Ko, H.; Tebon, P.; Akhshik, M.; Akbari, M.; Alhosseini, S.N.; Mozafari, M.; Mehravi, B.; Soleimani, M.; et al. Electrically Conductive Nanomaterials for Cardiac Tissue Engineering. Adv. Drug Deliv. Rev. 2019, 144, 162–179. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Conductive Polymers: Towards a Smart Biomaterial for Tissue Engineering. Acta Biomater. 2014, 10, 2341–2353. [Google Scholar] [CrossRef]
- Esmaeili, H.; Patino-Guerrero, A.; Hasany, M.; Ansari, M.O.; Memic, A.; Dolatshahi-Pirouz, A.; Nikkhah, M. Electroconductive Biomaterials for Cardiac Tissue Engineering. Acta Biomater. 2022, 139, 118–140. [Google Scholar] [CrossRef] [PubMed]
- Zare, E.N.; Agarwal, T.; Zarepour, A.; Pinelli, F.; Zarrabi, A.; Rossi, F.; Ashrafizadeh, M.; Maleki, A.; Shahbazi, M.A.; Maiti, T.K.; et al. Electroconductive Multi-Functional Polypyrrole Composites for Biomedical Applications. Appl. Mater. Today 2021, 24, 101117. [Google Scholar] [CrossRef]
- Samwang, T.; Watanabe, N.M.; Okamoto, Y.; Umakoshi, H. Exploring the Influence of Morphology on Bipolaron–Polaron Ratios and Conductivity in Polypyrrole in the Presence of Surfactants. Molecules 2024, 29, 1197. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.P. Desarrollo y Evaluación de Una Membrana de Nanofibras de Colágeno/Quitosano Para Liberación de Ácido Tranexámico. Master’s Thesis, Universidad Autónoma de Querétaro, Querétaro, Mexico, 2022. [Google Scholar]
- Samwang, T.; Watanabe, N.M.; Okamoto, Y.; Srinives, S.; Umakoshi, H. Study of Chemical Polymerization of Polypyrrole with SDS Soft Template: Physical, Chemical, and Electrical Properties. ACS Omega 2023, 8, 48946–48957. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, Y.; Zheng, Z. Particle Size Reduction of Polyaniline Assisted by Anionic Emulsifier of Sodium Dodecyl Sulphate (SDS) Through Emulsion Polymerization You May Also like Investigation of SDS on Corrosion Behavior and Discharge Performance of AZ31B Magnesium Alloys in Aqueous Magnesium Air Batteries. IOP Conf. Ser. Mater. Sci. Eng. 2019, 515, 012080. [Google Scholar] [CrossRef]
- Liu, T.; Teng, W.K.; Chan, B.P.; Chew, S.Y. Photochemical Crosslinked Electrospun Collagen Nanofibers: Synthesis, Characterization and Neural Stem Cell Interactions. J. Biomed. Mater. Res. A 2010, 95, 276–282. [Google Scholar] [CrossRef]
- Zarei, M.; Samimi, A.; Khorram, M.; Abdi, M.M.; Golestaneh, S.I. Fabrication and Characterization of Conductive Polypyrrole/Chitosan/Collagen Electrospun Nanofiber Scaffold for Tissue Engineering Application. Int. J. Biol. Macromol. 2021, 168, 175–186. [Google Scholar] [CrossRef]
- Liang, Y.; Mitriashkin, A.; Lim, T.T.; Goh, J.C.H. Conductive Polypyrrole-Encapsulated Silk Fibroin Fibers for Cardiac Tissue Engineering. Biomaterials 2021, 276, 121008. [Google Scholar] [CrossRef]
- Yue, L.; Xie, Y.; Zheng, Y.; He, W.; Guo, S.; Sun, Y.; Zhang, T.; Liu, S. Sulfonated Bacterial Cellulose/Polyaniline Composite Membrane for Use as Gel Polymer Electrolyte. Compos. Sci. Technol. 2017, 145, 122–131. [Google Scholar] [CrossRef]
- Galindo-Padrón, A.G.; Lorenzo-Anota, H.Y.; Rueda-Munguía, M.; García-Carrasco, A.; López, M.G.; Vázquez-Garza, E.; Campos-González, E.; Lozano, O.; Cholula-Díaz, J.L. Study on the Regulated Cell Death of Hypertrophic H9c2 Cells Induced by Au:Ag Nanoparticles. Int. J. Nanomed. 2025, 20, 1491–1507. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Hu, T.; Guo, B.; Ma, P.X. Electrospun Conductive Nanofibrous Scaffolds for Engineering Cardiac Tissue and 3D Bioactuators. Acta Biomater. 2017, 59, 68–81. [Google Scholar] [CrossRef]
- Gelse, K.; Pöschl, E.; Aigner, T. Collagens—Structure, Function, and Biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Nourbakhsh, N.; Akbari Kenari, M.; Zare, M.; Ramakrishna, S. Collagen-Based Biomaterials for Biomedical Applications. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1986–1999. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Shi, X.; Zhang, X.; Li, L. Electrospinning of Polycaprolacton/Chitosan Core-Shell Nanofibers by a Stable Emulsion System. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123956. [Google Scholar] [CrossRef]
- Stryer, L.; Stryer, L. Biochemistry; W.H. Freeman and Company: New York, NY, USA, 1995; ISBN 0716720094. [Google Scholar]
- Salas, C.; Thompson, Z.; Bhattarai, N. Electrospun Chitosan Fibers. In Electrospun Nanofibers, 1st ed.; Afshari, M., Ed.; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 371–398. ISBN 9780081009116. [Google Scholar]
- Fu, Y.; Manthiram, A. Core-Shell Structured Sulfur-Polypyrrole Composite Cathodes for Lithium-Sulfur Batteries. RSC Adv. 2012, 2, 5927–5929. [Google Scholar] [CrossRef]
- Nicho, M.E.; Hu, H. Fourier Transform Infrared Spectroscopy Studies of Polypyrrole Composite Coatings. Sol. Energy Mater. Sol. Cells 2000, 63, 423–435. [Google Scholar] [CrossRef]
- He, S.; Wu, J.; Li, S.H.; Wang, L.; Sun, Y.; Xie, J.; Ramnath, D.; Weisel, R.D.; Yau, T.M.; Sung, H.W.; et al. The Conductive Function of Biopolymer Corrects Myocardial Scar Conduction Blockage and Resynchronizes Contraction to Prevent Heart Failure. Biomaterials 2020, 258, 120285. [Google Scholar] [CrossRef]
- Gil-Castell, O.; Ontoria-Oviedo, I.; Badia, J.D.; Amaro-Prellezo, E.; Sepúlveda, P.; Ribes-Greus, A. Conductive Polycaprolactone/Gelatin/Polyaniline Nanofibers as Functional Scaffolds for Cardiac Tissue Regeneration. React. Funct. Polym. 2022, 170, 105064. [Google Scholar] [CrossRef]
- Rani, G.; Bhawna; Ahlawat, R. A Critical Examination of Polyaniline and Its Composite Materials: Augmenting Supercapacitor Performance and Diversifying Application Potential. J. Energy Storage 2024, 97, 112690. [Google Scholar] [CrossRef]
- Borriello, A.; Guarino, V.; Schiavo, L.; Alvarez-Perez, M.A.; Ambrosio, L. Optimizing PANi Doped Electroactive Substrates as Patches for the Regeneration of Cardiac Muscle. J. Mater. Sci. Mater. Med. 2011, 22, 1053–1062. [Google Scholar] [CrossRef]
- Arthanari, S.; Mani, G.; Jang, J.H.; Choi, J.O.; Cho, Y.H.; Lee, J.H.; Cha, S.E.; Oh, H.S.; Kwon, D.H.; Jang, H.T. Preparation and Characterization of Gatifloxacin-Loaded Alginate/Poly (Vinyl Alcohol) Electrospun Nanofibers. Artif. Cells Nanomed. Biotechnol. 2016, 44, 847–852. [Google Scholar] [CrossRef] [PubMed]
- Morad, M.A.; Abo Ghazala, M.S.; El-Shaarawy, M.G.; Gouda, M.E.; Elrasasi, T.Y. Preparation and Characterization of Conjugated PVA/PANi Blend Films Doped with Functionalized Graphene for Thermoelectric Applications. Sci. Rep. 2024, 14, 16722. [Google Scholar] [CrossRef]
- Zamanifard, M.; Khorasani, M.T.; Daliri, M. Hybrid Electrospun Polyhydroxybutyrate/Gelatin/Laminin/Polyaniline Scaffold for Nerve Tissue Engineering Application: Preparation, Characterization, and in Vitro Assay. Int. J. Biol. Macromol. 2023, 235, 123738. [Google Scholar] [CrossRef]
- Parchehbaf-Kashani, M.; Ansari, H.; Mahmoudi, E.; Barekat, M.; Sepantafar, M.; Rajabi, S.; Pahlavan, S. Heart Repair Induced by Cardiac Progenitor Cell Delivery within Polypyrrole-Loaded Cardiogel Post-Ischemia. ACS Appl. Bio Mater. 2021, 4, 4849–4861. [Google Scholar] [CrossRef]
- Chen, W.-L.; Kan, C.-D. Using Cell-Seeded Electrospun Patch for Myocardial Injury: In-Vitro and in Rat Model. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, Hawaii, 17–21 July 2018; pp. 5338–5341. [Google Scholar] [CrossRef]
- Lozano, O.; Torres-Quintanilla, A.; García-Rivas, G. Nanomedicine for the Cardiac Myocyte: Where Are We? J. Control. Release 2018, 271, 149–165. [Google Scholar] [CrossRef] [PubMed]
- Roshanbinfar, K.; Vogt, L.; Ruther, F.; Roether, J.A.; Boccaccini, A.R.; Engel, F.B. Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering. Adv. Funct. Mater. 2020, 30, 1908612. [Google Scholar] [CrossRef]
- Zhou, L.; Fan, L.; Yi, X.; Zhou, Z.; Liu, C.; Fu, R.; Dai, C.; Wang, Z.; Chen, X.; Yu, P.; et al. Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair. ACS Nano 2018, 12, 10957–10967. [Google Scholar] [CrossRef] [PubMed]
- Bertuoli, P.T.; Ordono, J.; Armelin, E.; Pérez-Amodio, S.; Baldissera, A.F.; Ferreira, C.A.; Puiggalí, J.; Engel, E.; Del Valle, L.J.; Alemán, C. Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(Lactic Acid), Poly(Ethylene Glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega 2019, 4, 3660–3672. [Google Scholar] [CrossRef]
- Zengin, H.; Erkana, B. Synthesis and Characterization of Polyaniline/Silicon Dioxide Composites and Preparation of Conductive Films. Polym. Adv. Technol. 2010, 21, 216–223. [Google Scholar] [CrossRef]
- Ghimire, U.; Kandel, R.; Shrestha, S.; Moon, J.Y.; Jang, S.R.; Shrestha, B.K.; Park, C.H.; Kim, C.S. L-Cysteine Aided Polyaniline Capped SrO2 Nanoceramics: Assessment of MC3T3-E1-Arbitrated Osteogenesis and Anti-Bactericidal Efficacy on the Polyurethane 2D Nanofibrous Substrate. Colloids Surf. B Biointerfaces 2023, 223, 113152. [Google Scholar] [CrossRef]
- Gopal, S.; Multhaupt, H.A.B.; Couchman, J.R. Calcium in Cell-Extracellular Matrix Interactions. Adv. Exp. Med. Biol. 2020, 1131, 1079–1102. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Y.X.; Yan, J.; Yang, S.; Dong, P.; Soman, P. Fabrication of Conductive Polyaniline Hydrogel Using Porogen Leaching and Projection Microstereolithography. J. Mater. Chem. B 2015, 3, 5352–5360. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Min, K.; Jung, J.; Yi, J.; Tae, G.; Lee, J.Y. Implantable Conductive Polymer Bioelectrode with Enzymatic Antioxidant Activity for Enhanced Tissue Responses and in Vivo Performance. Chem. Eng. J. 2024, 494, 152861. [Google Scholar] [CrossRef]
- Wu, C.; He, X.; Weng, W.; Zhang, T.; Huang, D.; Cheng, K.; Chen, Z. Electroactive Extracellular Matrix/Polypyrrole Composite Films and Their Microenvironmental Effects on Osteogenic Differentiation of BMSCs. Chem. Eng. J. 2022, 443, 136508. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Y.X.; Yan, J.; Quinn, D.; Dong, P.; Sawyer, S.W.; Soman, P. Fabrication of Conductive Gelatin Methacrylate–Polyaniline Hydrogels. Acta Biomater. 2016, 33, 122–130. [Google Scholar] [CrossRef]
- Lin, X.; Yang, X.; Li, P.; Xu, Z.; Zhao, L.; Mu, C.; Li, D.; Ge, L. Antibacterial Conductive Collagen-Based Hydrogels for Accelerated Full-Thickness Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 22817–22829. [Google Scholar] [CrossRef]
- Podgórski, R.; Wojasiński, M.; Ciach, T. Nanofibrous Materials Affect the Reaction of Cytotoxicity Assays. Sci. Rep. 2022, 12, 9047. [Google Scholar] [CrossRef]
- Beijer, N.R.M.; Nauryzgaliyeva, Z.M.; Arteaga, E.M.; Pieuchot, L.; Anselme, K.; van de Peppel, J.; Vasilevich, A.S.; Groen, N.; Roumans, N.; Hebels, D.G.A.J.; et al. Dynamic Adaptation of Mesenchymal Stem Cell Physiology upon Exposure to Surface Micropatterns. Sci. Rep. 2019, 9, 9099. [Google Scholar] [CrossRef]
Membrane | Membrane Thickness (µm) | Young’s Modulus, ε (Mpa) |
---|---|---|
C-Ch | 47 | 0.882 |
C-Ch/Pani C-Ch/Ppy | 82 51 | 1.18 0.025 |
Membrane | Electrical Conductivity (S/cm) | Ionic Conductivity, Na1+, 1 (S/cm) | Ionic Conductivity, Ca2+, 2 (S/cm) |
---|---|---|---|
C-Ch | 2.69 × 10−4 | 1.68 × 10−10 | 6.64 × 10−9 |
C-Ch/Pani C-Ch/Ppy | 5.18 × 10−4 1.79 × 10−4 | 5.47 × 10−9 6.23 × 10−9 | 4.2 × 10−9 6.56 × 10−9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Moreno, T.; D’Urso, C.; Trejo, G.; Contreras-Martínez, M.V.; Lozano, O.; García-Rivas, G.J.; Arriaga, L.G.; Luna-Barcenas, G.; Ledesma-García, J. Nanofibrous Membranes Based on Collagen and Conductive Polymers with Perspective for Biological Applications. Membranes 2025, 15, 177. https://doi.org/10.3390/membranes15060177
Pérez-Moreno T, D’Urso C, Trejo G, Contreras-Martínez MV, Lozano O, García-Rivas GJ, Arriaga LG, Luna-Barcenas G, Ledesma-García J. Nanofibrous Membranes Based on Collagen and Conductive Polymers with Perspective for Biological Applications. Membranes. 2025; 15(6):177. https://doi.org/10.3390/membranes15060177
Chicago/Turabian StylePérez-Moreno, Tonantzi, Claudia D’Urso, Gabriel Trejo, Maria V. Contreras-Martínez, Omar Lozano, Gerardo J. García-Rivas, Luis G. Arriaga, Gabriel Luna-Barcenas, and Janet Ledesma-García. 2025. "Nanofibrous Membranes Based on Collagen and Conductive Polymers with Perspective for Biological Applications" Membranes 15, no. 6: 177. https://doi.org/10.3390/membranes15060177
APA StylePérez-Moreno, T., D’Urso, C., Trejo, G., Contreras-Martínez, M. V., Lozano, O., García-Rivas, G. J., Arriaga, L. G., Luna-Barcenas, G., & Ledesma-García, J. (2025). Nanofibrous Membranes Based on Collagen and Conductive Polymers with Perspective for Biological Applications. Membranes, 15(6), 177. https://doi.org/10.3390/membranes15060177