Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Design of Multifunctional Sensor
2.4. Fabrication of Capacitive Sensor Using PANI
2.5. Fabrication of UV Sensor Using ZnO
2.6. Stress Performance Calculation
3. Results
3.1. Capacitance Variation in Strain Sensing
3.2. Capacitance Variation in Pressure Sensing
3.3. Human Monitoring
3.4. UV Sensing Through the Photodetector
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Resistance Drift over Time on the Sensor
Appendix A.2. I-V Characteristic of UV Photodetector
References
- Xie, M.; Hisano, K.; Zhu, M.; Toyoshi, T.; Pan, M.; Okada, S.; Tsutsumi, O.; Kawamura, S.; Bowen, C. Flexible Multifunctional Sensors for Wearable and Robotic Applications. Adv. Mater. Technol. 2019, 4, 1800626. [Google Scholar] [CrossRef]
- Lin, M.; Zheng, Z.; Yang, L.; Luo, M.; Fu, L.; Lin, B.; Xu, C. A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection. Adv. Mater 2022, 34, 2107309. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, I.; Tessarolo, M.; Mariani, F.; Possanzini, L.; Scavetta, E.; Fraboni, B. Textile Chemical Sensors Based on Conductive Polymers for the Analysis of Sweat. Polymers 2021, 13, 894. [Google Scholar] [CrossRef] [PubMed]
- Jamatia, T.; Matyas, J.; Olejnik, R.; Danova, R.; Maloch, J.; Skoda, D.; Slobodian, P.; Kuritka, I. Wearable and Stretchable SEBS/CB Polymer Conductive Strand as a Piezoresistive Strain Sensor. Polymers 2023, 15, 1618. [Google Scholar] [CrossRef]
- Han, F.; Chen, S.; Wang, F.; Liu, M.; Li, J.; Liu, H.; Yang, Y.; Zhang, H.; Liu, D.; He, R.; et al. High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions. Adv. Sci. 2025, 12, 2412726. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.M.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef]
- Veeralingam, S.; Priya, S.; Badhulika, S. NiO nanofibers interspersed sponge based low cost, multifunctional platform for broadband UV protection, ultrasensitive strain and robust finger-tip skin inspired pressure sensor. Chem. Eng. J. 2020, 389, 124415. [Google Scholar] [CrossRef]
- Liao, X.; Liao, Q.; Zhang, Z.; Yan, X.; Liang, Q.; Wang, Q.; Li, M.; Zhang, Y. A Highly Stretchable ZnO@Fiber-Based Multifunctional Nanosensor for Strain/Temperature/UV Detection. Adv. Funct. Mater. 2016, 26, 3074–3081. [Google Scholar] [CrossRef]
- Hadano, F.S.; Gavim, A.E.X.; Stefanelo, J.C.; Gusso, S.L.; Macedo, A.G.; Rodrigues, P.C.; Yusoff, A.R.b.M.; Schneider, F.K.; de Deus, J.F.; da Silva, W.J. NH3 Sensor Based on rGO-PANI Composite with Improved Sensitivity. Sensors 2021, 21, 4947. [Google Scholar] [CrossRef]
- Li, D.; Huang, J.; Kaner, R.B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 2009, 42, 135–145. [Google Scholar] [CrossRef]
- Sun, S.; Xu, Y.; Maimaitiyiming, X. 3D printed carbon nanotube/polyaniline/gelatin flexible NH3, stress, strain, temperature multifunctional sensor. React. Funct. Polym. 2023, 190, 105625. [Google Scholar] [CrossRef]
- Cui, C.; Faraji, N.; Lauto, A.; Travaglini, L.; Tonkin, J.; Mahns, D.; Humphrey, E.; Terracciano, C.; Gooding, J.J.; Seidel, J.; et al. A flexible polyaniline-based bioelectronic patch. Biomater. Sci. 2018, 6, 493–500. [Google Scholar] [CrossRef]
- Nunez, C.G.; Vilouras, A.; Navaraj, W.T.; Liu, F.; Dahiya, R. ZnO Nanowires-Based Flexible UV Photodetector System for Wearable Dosimetry. IEEE Sens. J. 2018, 18, 7881–7888. [Google Scholar] [CrossRef]
- Flemban, T.H.; Haque, A.; Ajia, I.A.; Alwadai, N.; Mitra, S.; Wu, T.; Roqan, I.S. A Photodetector Based on p-Si/n-ZnO Nanotube Heterojunctions with High Ultraviolet Responsivity. ACS Appl. Mater. Interfaces 2017, 9, 37120–37127. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.u.H.S.; Shahid, A.; Lee, J.Y.; Kim, H.-S. High-Power Microwave-Assisted Ga Doping, an Effective Method to Tailor n-ZnO/p-Si Heterostructure Optoelectronic Characteristics. Phys. Status Solidi A 2018, 215, 1700763. [Google Scholar] [CrossRef]
- Kwon, D.; Lee, T.-I.; Shim, J.; Ryu, S.; Kim, M.S.; Kim, S.; Kim, T.-S.; Park, I. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater. Interfaces 2016, 8, 16922–16931. [Google Scholar] [CrossRef]
- Vaicekauskaite, J.; Mazurek, P.; Vudayagiri, S.; Skov, A.L. Mapping the mechanical and electrical properties of commercial silicone elastomer formulations for stretchable transducers. J. Mater. Chem. C 2020, 8, 1273–1279. [Google Scholar] [CrossRef]
- Sha, R.; Komori, K.; Badhulika, S. Graphene–Polyaniline composite based ultra-sensitive electrochemical sensor for non-enzymatic detection of urea. Electrochim. Acta 2017, 233, 44–51. [Google Scholar] [CrossRef]
- Adhav, P.; Pawar, D.; Diwate, B.; Bora, M.; Jagtap, S.; Chourasia, A.; Dallavalle, S.; Chabukswar, V. Room temperature operable ultra-sensitive ammonia sensor based on polyaniline-silver (PANI-Ag) nanocomposites synthesized by ultra-sonication. Synth. Met. 2023, 293, 117237. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Labat, F.; Ciofini, I.; Pauporté, T.; Adelung, R. Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. Sens. Actuators B Chem. 2018, 254, 1259–1270. [Google Scholar] [CrossRef]
- Li, Y.; Della Valle, F.; Simonnet, M.; Yamada, I.; Delaunay, J.-J. High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology 2008, 20, 045501. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Gu, Y.; Liu, T.; Pecht, M. Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications. Sens. Actuators A Phys. 2021, 326, 112720. [Google Scholar] [CrossRef]
- Shintake, J.; Piskarev, Y.; Jeong, S.H.; Floreano, D. Ultrastretchable strain sensors using carbon black-filled elastomer composites and comparison of capacitive versus resistive sensors. Adv. Mater. Technol. 2018, 3, 1700284. [Google Scholar] [CrossRef]
- Choy, J.-Y.; Jo, E.-B.; Yim, C.-J.; Youi, H.-K.; Hwang, J.-H.; Lee, J.-H.; Kim, H.-S. Improvement in Strain Sensor Stability by Adapting the Metal Contact Layer. Sensors 2022, 22, 630. [Google Scholar] [CrossRef]
- Kim, K.-Y.; Lee, D.-H.; Lee, Y.-A.; Cho, Y.-A.; Choi, J.-H.; Kim, J.-H.; Kim, H.-S. Design and Batch Fabrication of Stretchable Bifunctional Sensor Using Polyaniline and ZnO Nanostructures for Tensile and UV Sensing. IEEE Sens. J. 2024, 24, 19791–19800. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, W.; Tiwari, N.; Yan, H.; Li, T.; Cheng, H. Multimodal Sensors with Decoupled Sensing Mechanisms. Adv. Sci. 2022, 9, 2202470. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, M.; Wang, R.; Deng, Z.; Gui, L. Stretchable Pressure Sensor with Leakage-Free Liquid-Metal Electrodes. Sensors 2019, 19, 1316. [Google Scholar] [CrossRef]
- Kim, J.-S.; Truong, T.; Kim, J. Development of Embroidery-Type Sensor Capable of Detecting Respiration Using the Capacitive Method. Polymers 2023, 15, 503. [Google Scholar] [CrossRef]
- Hailiang, M.; Yixiao, S.; Junjie, P.; Guanjun, B. Flexible Tactile Sensor Arrays with Capacitive and Resistive Dual-Mode Transduction. IEEE Sens. J. 2024, 24, 15892–15899. [Google Scholar] [CrossRef]
- Gong, X.X.; Fei, G.T.; Fu, W.B.; Fang, M.; Gao, X.D.; Zhong, B.N.; De Zhang, L. Flexible strain sensor with high performance based on PANI/PDMS films. Org. Electron. 2017, 47, 51–56. [Google Scholar] [CrossRef]
- Kim, T.; Lee, T.; Lee, G.; Choi, Y.W.; Kim, S.M.; Kang, D.; Choi, M. Polyimide Encapsulation of Spider-Inspired Crack-Based Sensors for Durability Improvement. Appl. Sci. 2018, 8, 367. [Google Scholar] [CrossRef]
- Rana, A.; Kang, M.; Kim, H.S. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage. Sci. Rep. 2016, 6, 24870. [Google Scholar] [CrossRef] [PubMed]
- Navaraj, W.T.; Gupta, S.; Lorenzelli, L.; Dahiya, R. Wafer Scale Transfer of Ultrathin Silicon Chips on Flexible Substrates for High Performance Bendable Systems. Adv. Electron. Mater. 2018, 4, 1700277. [Google Scholar] [CrossRef]
- McLaughlin, J.C.; Willoughby, A.F.W. Fracture of silicon wafers. J. Cryst. Growth 1987, 85, 83–90. [Google Scholar] [CrossRef]
- Nikitin, S.E.; Shpeizman, V.V.; Pozdnyakov, A.O.; Stepanov, S.I.; Timashov, R.B.; Nikolaev, V.I.; Terukov, E.I.; Bobyl, A.V. Fracture strength of silicon solar wafers with different surface textures. Mater. Sci. Semicond. Process. 2022, 140, 106386. [Google Scholar] [CrossRef]
- Sun, H.; Fang, X.; Fang, Z. An ultrasensitive and stretchable strain sensor based on a microcrack structure for motion monitoring. Microsyst. Nanoeng. 2022, 8, 111. [Google Scholar] [CrossRef]
- Bai, Z.; Yan, X.; Chen, X.; Cui, Y.; Lin, P.; Shen, Y.; Zhang, Y. Ultraviolet and visible photoresponse properties of a ZnO/Si heterojunction at zero bias. RSC Adv. 2013, 3, 17682–17688. [Google Scholar] [CrossRef]
- Hanna, B.; Surendran, K.P.; Narayanan Unni, K.N. Low temperature-processed ZnO thin films for p–n junction-based visible-blind ultraviolet photodetectors. RSC Adv. 2018, 8, 37365–37374. [Google Scholar] [CrossRef]
- Mun, J.H.; Lee, H.; Lee, S.H.; Yoon, T.-S.; Han, S.H.; Kim, D.H. Strain-Induced Photocurrent Enhancement in Photodetectors Based on Nanometer-Thick ZnO Films on Flexible Polydimethylsiloxane Substrates. ACS Appl. Nano Mater. 2020, 3, 10922–10930. [Google Scholar] [CrossRef]
Type | Material | On/Off Ratio | Rectifying Ratio | Response Time | Recovery Time | Reference |
---|---|---|---|---|---|---|
Photo Detector | ZnO/Au/Al2O3 | 20,000 (Under 0 V) | 1000 (Under ±3 V) | <7.4 ms | - | [37] |
Photo Detector | Al/ZnO/ITO | 1500 (Under 0 V) | - | <156 ms | <319 ms | [38] |
Wearable Sensor | ZnO/PDMS | 4.2 (Under +5 V) | - | 50~60 s | 50~60 s | [39] |
Wearable Sensor | ZnO/Au(IDT) /PDMS | 25.3 (Under +2 V) | - | 89 s | 100~120 s | [25] |
Photo Detector and Wearable Sensor | p-Si/n-ZnO | 13.8 (Under −10 V) | 25.8 (Under ±10 V) | 6.1 s | 3.3 s | This Paper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.-W.; Lee, J.-S.; Yu, H.-W.; Kim, T.-H.; Kim, H.-S. Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate. Polymers 2025, 17, 1825. https://doi.org/10.3390/polym17131825
Lee S-W, Lee J-S, Yu H-W, Kim T-H, Kim H-S. Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate. Polymers. 2025; 17(13):1825. https://doi.org/10.3390/polym17131825
Chicago/Turabian StyleLee, Seung-Woo, Ju-Seong Lee, Hyeon-Wook Yu, Tae-Hee Kim, and Hyun-Seok Kim. 2025. "Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate" Polymers 17, no. 13: 1825. https://doi.org/10.3390/polym17131825
APA StyleLee, S.-W., Lee, J.-S., Yu, H.-W., Kim, T.-H., & Kim, H.-S. (2025). Multifunctional Sensor for Strain, Pressure, and UV Light Detections Using Polyaniline and ZnO Nanostructures on a Flexible Substrate. Polymers, 17(13), 1825. https://doi.org/10.3390/polym17131825